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Thalamic and cortical activities are assumed to be time-locked
throughout all vigilance states. Using simultaneous intracortical and
intrathalamic recordings, we demonstrate here that the thalamic
deactivation occurring at sleep onsetmost often precedes that of the
cortex by several minutes, whereas reactivation of both structures
during awakening is synchronized. Delays between thalamus and
cortex deactivations can vary from one subject to another when a
similar cortical region is considered. In addition, heterogeneity in
activity levels throughout the corticalmantle is larger than previously
thought during the descent into sleep. Thus, asynchronous thalamo-
cortical deactivation while falling asleep probably explains the
production of hypnagogic hallucinations by a still-activated cortex
andthecommonself-overestimationofthe timeneededto fall asleep.

intracranial recording | EEG | dimension of activation | thalamus | wake-to-
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Abundant electrophysiological and functional imaging data have
revealed that sleep-related brain activity is not the result of a

global deactivation of cerebral structures but rather is a multifocal
process associated with local changes in brain activities (1–10).
Examples of such functional heterogeneities are, among others, the
fronto-occipital gradient in cortical activity during sleep (1, 2), the
preponderant fronto-parietal localization of sleep spindles (3, 4),
and interhemispheric imbalanced activity (5, 6). So far, very few
studies have addressed the time course of these regional differences
during transitions between vigilance states (11–14), and most of
these studies were based on scalp recordings performed during
stable periods of wakefulness or sleep. Although reports that favor
some asynchrony of sleep-onset activity between the different cort-
ical areas are accumulating, there still is a firm belief that thalamic
and cortical activities are tightly coupled, at both the cellular and
integrative level, during wakefulness and sleep (15–18). Recent
intracranial data in humans, however, indicate that, during both
paradoxical (rapid eye movement) sleep and sleep stage 2, thalamic
and cortical activities may alternate periods of coupling and
decoupling (19, 20). In this context, the question is whether
the dynamics of the neuronal deactivation that characterizes the
transition from wakefulness to sleep is identical in thalamus and
cortex, or, conversely, whether transient decoupling may occur at
this transition time thatwould suggest different sleep-onset timing in
these two structures.Theopportunity to record thalamicandcortical
activities simultaneously in epileptic patients chronically implanted
with intracerebral electrodes allowed us to address this issue. In
contrast to the generally accepted view that thalamic and cortical
activities are tightly locked along the different vigilance states, we
found that the thalamic activity most often decreased to sleep levels
several minutes before the cortical activity started to abate. This
finding suggests that the cortex remains neurophysiologically awake
but decoupled from thalamic input during the first minutes of sleep.

Results
Simultaneous thalamic and cortical activities were recorded in 13
patients with refractory temporal lobe epilepsy and analyzed using
a nonlinear approach, the dimension of activation (DA). The DA,

as an expansion of the correlation dimension, is a measure of the
dimensionality (and thus the complexity) of the space occupied by
a set of points; the coordinates of each point correspond to a
series of signal voltage values (SI Methods) (21–23). The DA
quantifies the amount of correlated information within a signal,
which depends on the number of frequencies constituting this
signal and on their phase relationships. For example, the syn-
chronization occurring in the low-frequency range during slow-
wave sleep increases the regularity of the EEG signal and reduces
frequency content and phase relationships, minimizing EEG sig-
nal complexity and decreasing the DA value. Conversely, during
wakefulness, the EEG signal is composed of a broader range of
various frequencies, each of which can show multiple phase cor-
relations with the others, thus increasing the signal complexity and
the DA. The nonlinear approach to EEG analysis has been used
in several domains, including epilepsy and sleep research, where it
has been validated against conventional spectral measures (ref-
erences are given in SI Methods).
Whendata fromall patients arepooled, themeandelay toachieve

a significant decrease in DA values is significantly longer in the
cortex than in the thalamus. The mean cortical DA decrease was
delayed by 8min 15 s± 6minwith respect to thalamus (paired t test,
two-tailed P< 0.0001). Of the 126 cortical regions explored (Fig. 1),
the DA decreased faster in cortex than in thalamus in only 9 (7.2%;
mean delay: 1 min 27 s; range: 30 s to 4 min 45 s). In the 117 other
cortical sites (92.8%), a DA decrease consistent with sleep onset
occurred 15 s to 27min later than in thalamus (mean: 9min 28 s± 6
min 12 s). The mean speed of DA decrease averaged over all
patients and cortical sites also was significantly slower in cortex than
in thalamus (3.1± 0.9 versus 7.4± 4.3*10−3DAunits/s; paired t test,
two-tailed P < 0.0036). This finding was verified in 77.2% of the
cortical regions explored (2.9 ± 1.2 versus 7.4 ± 4.1 *10−3 DA
units/s), whereas the reversewas observed in the remaining 22.8%of
the cortical sites (speed of mean DA decrease: 4.5 ± 1.5 *10−3 DA
units/s in the cortex versus 3.1 ± 0.6 *10−3 DA units/s in the thala-
mus).A stableDAvalue corresponding to the slow-wave sleep stage
4 was always reached later at the cortical than at the thalamic level
(mean: 14min 52 s± 8min 42 s; paired t test, two-tailedP< 0.0001).
This finding was true for all cortical sites, even for the minority
showing a DA decrease faster and/or steeper than in thalamus.
At an individual level, this differential pattern of deactivation

was observed in each of the 13 patients studied, whatever the
location of the thalamic and cortical recording sites (Fig.2 A and
B). In each case, at least one of the cortical derivations showed a
DA decrease lagging the thalamic one by a minimum of 4 min.
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The temporo-parieto-occipital junction, strongly and recip-
rocally connected with the medial pulvinar nucleus (PuM) (24–
32), could be recorded during the wake–sleep transition in the 11
patients implanted in this thalamic nucleus (Fig. 3). Although the
mean delay of deactivation was significantly higher in cortical
sites than in thalamus, it was highly variable, ranging from −75 s
to +15 min 15 s (Fig. 3A). In two additional patients also
recorded in this cortical region but with thalamic electrodes
located in the medio-dorsal/central lateral or the central lateral/
ventral posterior lateral nuclei (Fig. 3C), thalamo-cortical delays
were 45 s and 14 min, respectively.
In contrast with these results, when thalamic DA increased

during transition from sleep stage 2 or 4 to waking, simultaneous
activation in cortical activity was observed (Fig. 4).

Discussion
Our findings show that, during natural sleep onset in humans, the
thalamus, under the influence of the hypothalamic and brainstem

circuitry regulating the sleep-wake function, undergoes a deacti-
vation process before the cortex. Of notice, the opposite phe-
nomenon (i.e., the cortex being deactivated before the thalamus)
has been claimed recently to occur during anesthesia induction
(33, 34). This precedence in the decrease in thalamic activity is
unlikely to be related to antiepileptic treatment or a patient’s
clinical condition. Indeed, night recording was conducted at least
5 days after electrode implantation, when anticonvulsant drug
intake had been drastically reduced, and remaining medications
widely varied among patients. Furthermore, only nights following
seizure-free days and with absent or limited interictal paroxysmal
activities at cortical recording sites were retained.
During physiological sleep onset, functional deafferentation of

the cerebral cortex caused by thalamic deactivation appears to be
a prerequisite to the fading of consciousness and to the occur-
rence of sleep. By localizing in the thalamus the starting event in
the genesis of cortical sleep rhythms, our data extend and refine
the scenario proposed originally by Steriade et al. (35) who, at that
time, did not consider the sleep-onset dynamics within the tha-
lamo-cortical ensemble. Whether the delay between thalamic and
cortical deactivation at sleep onset reflects a thalamus-driven
process or a difference in the sensitivity of the two structures to
firing patterns of brainstem and hypothalamic afferents remains
to be solved.
Deactivation of the cortical mantle, although almost system-

atically delayed relative to that of the thalamus, presentedmarked
topographical heterogeneities at sleep onset both within and
between patients, consistent with the previously described break-
down in cortico-cortical effective connectivity (36). Whether a
classification of cortical areas according to their respective deac-
tivation times is physiologically sound and whether asynchrony in
deactivation between the thalamic nuclei themselves also exists
thus remain questions to be investigated. However, the possibility
that these heterogeneities could be linked to the known intra- (14)
and interindividual (7, 8) local variations in cortical EEG power
during sleep and in preceding local brain activities during waking
periods (37–39) cannot be ignored. In addition to this challenge,
our results reveal that extensive cortical territories remain acti-
vated for several minutes after the thalamic deactivation at sleep
onset, a situation that may be propitious to the development of
hypnagogic experiences so common during the wake–sleep tran-
sition (40, 41). In addition, the errors in self-reported sleep latency
which commonly is overestimated by several minutes with respect
to the objective (polysomnographic) sleep onset (42, 43), might
result from these persistent and topographically heterogeneous
cortical activities.

Methods
Intracerebral Recording Procedure. To delineate the extent of the cortical
epileptogenic area and to plan a tailored surgical treatment, depth EEG
recording electrodes were implanted according to the stereotactic technique
of Talairach and Bancaud (44) (SI Methods). The thalamus, and more specif-
ically the PuM, was a target of stereotactic implantation because, given its
reciprocal connections with temporal cortical areas, it might be an important
relay in the building of epileptic discharges (45). Intracortical exploration of
temporal neocortical areas and of the PuMnucleuswas possible using a single
multicontact electrode, so that thalamic exploration did not increase the risk
of the procedure by requiring an additional electrode track specifically
devoted to the study of PuM activity. All patients were fully informed of the
aim of this investigation and gave their written consent for the implantation
and recording procedure, which was approved by the local ethics committee
(Comité Consultatifs de Protection des Personnes se Prêtant à des Recherches
Biomédicales Lyon – Centre Léon Bérard).

Data Acquisition and Analysis.Dayandnight recordingunder stereo-EEGvideo
monitoringwas conducted 5days ormore after electrode implantation. Based
on the criteria of Rechtschaffen and Kales (46), the states of vigilance were
scored visually in 30-s periods by one of the authors (H.B.) who was blind to
clinical data and positions of cortical recording sites. Sleep scoring was based
on analysis of the cortical activity on 3–16 intracortical contacts per subject

5 d < 10 min
10 d < 15 min
15 d < 20 min

-5 d < 0 min
0 d < 5 min

d 20 min

Fig. 1. Topographic distribution of the 126 cortical sites recorded in the 13
patients studied shown on lateral (Top) and medial (Bottom) views of the
anatomical model of normal brain proposed by the McConnell Brain Imaging
Center of the Montréal Neurological Institute. Color coding indicates values
of the thalamo-cortical delays (d) observed at sleep onset. Recording sites in
the superficial aspect of the cortical mantle are indicated by circles and in
deep cortical regions (e.g., medial temporal cortex or insula) by squares.
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selected for absent or limited interictal epileptic activities and of electro-
oculographic recordings. Bipolar EEG signals and electrooculograms were
amplified, filtered (band pass: 0.33–128 Hz), and stored with a sampling fre-
quency of 256 Hz (Micromed Systems).

To characterize cerebral activity, we used a nonlinear time series analysis
and considered the coefficient of DA (22), based on and derived from the
dimensional complexity approach (SI Methods) (23, 47). The nonlinear
approach has been applied to EEG signals in several domains, mainly in sleep
research where it has been validated against conventional spectral measures
(references are given in SI Methods). This technique provides an index of EEG
signal complexity, which is higher in wakefulness than during slow-wave

sleep, and allows a precise time analysis of activation changes in cortex and
thalamus. Recording the times at which a significant DA variation occurred
in each cortical and thalamic recording site allowed the measurement of the
time delay between cortical and thalamic deactivations. In addition, the
dynamics of the transition from sleep onset to sleep stage 4 were evaluated
by calculating the mean decrease in DA speed.

Part of the data also was analyzed using a spectral method. Significant
changes in cerebral activities were defined as EEG power values differing by
2 SD from the EEG power values averaged during a period ranging from 10 to
50 min before sleep onset or after sleep stage 4 was reached. It should be
emphasized that, unlike spectral analysis, the DA method allows an estimate
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Fig. 2. Timing of thalamic versus cortical deactivation at sleep onset. (A) Data obtained in one patient after analysis of concomitant activities at thalamic
(Lower) and cortical (BA 22) (Upper) levels using either the DA or the time–frequency approach. In the thalamus, sleep onset determined by spectral analysis
occurs 1 min before that obtained with the DA method. A reverse result is found when cortical activity is considered: Sleep onset defined by spectral analysis is
delayed by 1 min with respect to the time of onset obtained by the DA method. Despite these small shifts in the absolute sleep-onset times, the thalamo-
cortical delays calculated by the DA method and by the spectral analysis remain similar (12 min 30 s and 10 min 30 s, respectively). (B) Localizations (Upper) and
DA evolutions (Lower) of 1 thalamic and 13 cortical recordings obtained at sleep onset in a different patient. Cortical DA curves are presented in increasing
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of the complexity of a signal, which is independent of its amplitude. For this
reason, at the wake–sleep transition, DA and mean EEG power values show an
opposite evolution (i.e., an DA decrease versus mean EEG power increase;
Fig. 2).

Anatomical Localization of Recording Sites. The thalamic and cortical elec-
trode contact pairs used to perform the bipolar recordings were localized
with the help of skull radiographs after electrode implantation and by
using the appropriate MR slices of patient’s brains (MRIcro software) (48).
The placement of the contacts within the PuM was assessed using Morel’s
atlas of the human thalamus (49). Cortical contacts were localized ac-
cording to their positions with respect to the cortical anatomy in each
patient and were reported on the equivalent position on the anatomical
model of normal brain proposed by the McConnell Brain Imaging Center
of the Montréal Neurological Institute, McGill University, (http://www.bic.
mni.mcgill.ca/brainweb/). All cortical lobes were explored with a larger
sampling of the temporal cortex because of the suspected location of the
epileptogenic area.
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