
Struct-NB: Predicting Protein-RNA Binding Sites Using Structural
Features

Fadi Towfic*,
Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA
50011-1040,USA, ftowfic@cs.iastate.edu

Cornelia Caragea,
Department of Computer Science, Iowa State University, Ames, IA 50011-1040,USA,
cornelia@cs.iastate.edu

David C. Gemperline,
Department of Biology, Department of Chemistry, Carthage College, 2001 Alford Park Drive,
Kenosha, WI 53140-1994, USA, dcgemperline@gmail.com

Drena Dobbs, and
Department of Genetics, Development and Cell Biology, Bioinformatics and Computational Biology
Graduate Program, Iowa State University, Ames, IA 50011-1040,USA, ddobbs@iastate.edu

Vasant Honavar
Department of Computer Science, Bioinformatics and Computational Biology Graduate Program,
Iowa State University, Ames, IA 50011-1040,USA, honavar@cs.iastate.edu

Abstract
We explore whether protein-RNA interfaces differ from non-interfaces in terms of their structural
features and whether structural features vary according to the type of the bound RNA (e.g., mRNA,
siRNA, etc.), using a non-redundant dataset of 147 protein chains extracted from protein-RNA
complexes in the Protein Data Bank. Furthermore, we use machine learning algorithms for training
classifiers to predict protein-RNA interfaces using information derived from the sequence and
structural features. We develop the Struct-NB classifier that takes into account structural information.
We compare the performance of Naïve Bayes and Gaussian Naïve Bayes with that of Struct-NB
classifiers on the 147 protein-RNA dataset using sequence and structural features respectively as
input to the classifiers. The results of our experiments show that Struct-NB outperforms Naïve
Bayes and Gaussian Naïve Bayes on the problem of predicting the protein-RNA binding interfaces
in a protein sequence in terms of a range of standard measures for comparing the performance of
classifiers.
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1 Introduction
Protein-RNA interactions play a vital role in RNA splicing, translation, replication of many
viruses as well as many other processes in the cell. The prediction of protein-RNA interfaces
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can aid in the design of drug-inhibitors for viruses, down-regulation of unwanted genes as well
as contributing to our basic understanding of the mechanisms involved in protein-RNA
recognition [Moore, 2005, Noller, 2005, Jurica and Moore, 2003, Freed and Mouland, 2006].
At least nine families of RNA-binding proteins have been identified using sequence-based
analyses of the major groups of RNA-binding proteins, together with functional
characterization of mutations that affect the specificity or affinity of RNA binding (for review,
see [Chen and Varani, 2005]). In contrast, the number of experimentally determined structures
for protein-RNA complexes is still relatively small and heavily biased (ribosomal proteins
represent 50% of all RNA binding proteins in the Protein Data Bank [PDB] [Berman et al.,
2000]).

Because of the importance of protein-RNA interactions in biological regulation and the
considerable effort required to identify RNA binding residues through biophysical analyses of
protein-RNA complexes or in vitro binding studies, there is an urgent need for computational
methods to identify RNA binding sites given a protein’s primary amino acid sequence, and
when available, its 3-dimensional structure. Several recent studies have focused on the
development of machine learning approaches to amino acid sequence-based prediction of
RNA-binding residues in proteins [Terribilini et al., 2007, Terribilini et al., 2006b, Jeong et
al., 2004, Jeong and Miyano, 2006]. The predictions obtained using such methods have already
contributed to the design of wet-lab experiments to decipher mechanisms of protein-RNA
recognition [Terribilini et al., 2006a, Bechara et al., 2007]. However, the machine learning
approaches to prediction of RNA-binding residues of proteins have focused largely on the
analysis of amino acid sequence as opposed to the structural features of the protein chain. Other
analyses of protein-RNA interfaces [Jones et al., 2001, M and E, 2001, Lejeune et al., 2005]
have focused on the analysis of hydrogen bonds or van der Waals contacts in between the
protein and the RNA. There has been relatively little attention paid to structural features of the
interface (e.g protrusion or roughness) rather than the atomic forces.

Against this background, it is natural to ask: Do protein-RNA interfaces differ from non-
interfaces in terms of their structural features? Do the structural features vary according to
the type of the bound RNA (e.g., mRNA, siRNA etc.)? Can structural features be utilized to
improve classification performance of protein-RNA interfaces relative to sequence-based
classifiers? If we find that the protein-RNA interfaces differ from noninterfaces in terms of
their structural features, then the structural features can be exploited by machine learning
approaches to predict protein-RNA interface residues when the structure of the protein is
available but the structures of the complexes formed by the protein with RNA are not. If the
different classes of protein-RNA interfaces significantly differ from each other with respect to
their structural features, it might be possible to improve the specificity and sensitivity of
protein-RNA interface residue prediction by training separate classifiers for each type of bound
RNA.

We describe an analysis of the structural features of protein chains from RNA-binding proteins
that explores this question using a non-redundant dataset of 147 protein chains from the RB147
dataset [Terribilini et al., 2007]. We focus on two of the six structural properties of amino acid
residues used in a recent analysis of protein-protein interfaces by Wu et al. [Wu et al., 2007],
namely, surface roughness [Lewis and Rees, 1985] and CX value [Pintar et al., 2002]. Solid
Angle [Connolly, 1986] was also used early in this study (see [Towfic et al., 2007]). However,
it was deemed unnecessary to include in this study since the results from Solid Angle overlap
with those of Roughness [Lewis and Rees, 1985] with a correlation of 0.88 (roughness and CX
overlap with a correlation of −0.56).

The results of our analysis show that protein-RNA interface residues tend to be protruding
compared to non-interface residues. Furthermore, interface residues tend to have rough
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surfaces. Our analysis also shows that the protein chains in protein-RNA interfaces containing
Viral-RNA and rRNA significantly differ from those that contain dsRNA, mRNA, siRNA,
snRNA, SRP RNA and tRNA with respect to their CX values. We developed Struct-NB
classifiers to demostrate the utilization of the structural features in predicting protein-RNA
interface residues in a protein sequence.

The rest of the paper is organized as follows: Section 2 describes the RB147 dataset and each
of 2 properties of amino acid residues examined in this study as well as the methods used in
the construction and evaluation of the Struct-NB classifier. Section 3 presents the results of our
analysis, comparing interface and noninterface residues based on these two properties and
comparing the various Naïve Bayes and Struct-NB classifiers constructed using sequence and
structural features. Section 4 concludes with a summary and an outline of some directions for
further research.

2 Materials and Methods
2.1 Dataset

The RB147 dataset [Terribilini et al., 2007] used in this study contains protein chains extracted
from structures of protein-RNA complexes in the PDB solved by X-ray crystallography, after
eliminating protein chains from structures with resolution worse than 3.5Å and protein chains
sharing a sequence identity greater than 30% with one or more other protein chains. The RB147
dataset contains 147 non-redundant protein chains and a total of 32,324 amino acids. The RNA-
binding residues are defined as follows: an RNA-binding residue is an amino acid containing
at least one atom within 5Å of any atom in the bound RNA. According to this definition, RB147
contains a total of 6,157 RNA-binding residues and 26,167 non-binding residues.

2.2 Classification of the Protein Chains Based on the Type of the Bound RNA
The protein chains in the RB147 dataset were classified into 9 classes according to the type(s)
of RNA that was found in the corresponding protein-RNA complex based on a taxonomy of
RNA types used previously by Ellis et al. [Ellis et al., 2007]: dsRNA, mRNA, rRNA, siRNA,
snRNA, SRP RNA, tRNA, Viral RNA or “other” (which denoted synthetic RNAs or pre-
mRNAs or a class of RNAs not included in any of the other categories). The classification for
each PDB id and chain in the dataset is shown in table 1. Over half of the protein chains belong
to complexes with rRNA, with tRNA, mRNA and viral RNA being the other dominant groups
(in that order).

2.3 Analysis of Structural Properties
Each chain in the dataset was analyzed in terms of its surface roughness [Lewis and Rees,
1985]and CX value [Pintar et al., 2002]. The analysis was repeated on subsets of the dataset
corresponding to the classification based on the type of the RNA found in the interface (see
table 1). We implemented a program in Java, Structure-Analyzer 1.0 (available at
http://www.public.iastate.edu/~ftowfic) for this analysis. The Java package has an easy-to-use
API to allow its use in other applications. The program generates a standard tab-delimited
output file with the PDBID, chain name, residue name (three letter abbreviation), residue
number, a + or − indicating whether or not the residue is part of the interface, a score derived
from the structural property being examined (roughness and cx) and a + or − denoting whether
or not the residue is part of the surface of the protein (the definition of a surface residue can
be varied within the class as desired). In our analysis, surface residues are defined as residues
that have a solvent accessible surface area that is at least 5% of their total surface area [Wu et
al., 2007, Connolly, 1993].
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2.4 Roughness Calculation
The roughness value for a residue denotes the degree of irregularity of that point at the surface
as outlined by Lewis et al. and Lee et al. [Lewis and Rees, 1985, Lee and Richards, 1971]. The
surface roughness value (D) is given by:

The roughness calculation requires a molecule surface area (As), which is obtained by rolling
a sphere with radius R against the protein and calculating the area of the resulting surface as
implemented in the MSP software package [Connolly, 1993]. The radius R of the sphere is
varied from 0.2 to 4.0Å in 0.1 increments. Thus, we get the surface area for each choice of the

radius which in turn can be used to calculate the partial derivative  for each residue.
Thus, a final roughness value (D) is associated with each residue on the surface of the protein.
For a perfectly smooth surface D = 2 whereas for a rough surface, D > 2.

2.5 CX Value Calculation
The CX value measures the ratio of the volume of atoms that occupy a 6Å sphere compared
to the empty volume within the sphere [Pintar et al., 2002]. The CX score is calculated by
centering a 6Å sphere around an atom and calculating the CX value based on the volume of
neighboring atoms according to the formula:

The CX value is calculated for each atom in the surface residues. The CX score for a residue
can be calculated using three different methods: First, the CX score can be extracted from the
alpha-carbon atom and that score is used for the whole residue (alphacarbon method). A second
method is to simply average the CX score across all atoms for the residue and use the average
score as the CX score for the residue (averagecx method). Finally, the CX scores for the atoms
in the R-group of the residue can be averaged and that average can be used as the CX score for
the residue (rgroup method). The CX score ranges from 0 (for residues that are non-protruding)
to 15 (for residues that are highly protruding from the protein surface).

2.6 Interface Propensity Calculations
Consider a residue-based property (such as residue roughness) with k discrete values: (v1, v2,...,
vk). Each surface residue is assigned to one of k disjoint subsets S1, S2,..., Sk based on the value
of the residue property. Let Ii and Ni respectively be the fractions of interface residues and non-
interface residues in the set Si. Let I and N respectively denote the fractions of interface and
non-interface residues in the entire dataset (over all of the score ranges). The log-propensity
for the interface can then be expressed by:

The interface propensity IPi of the property at value vi is a measure of the preference for the
value (or a range of values) vi among the interface residues (relative to the entire set of surface
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residues). IPi > 0 denotes that the specified property value (or a range of values) vi tends to be
more preferred among the interface residues relative to the surface residues. Similarly, IPi < 0
denotes that the specified property value vi tends to be less preferred among the interface
residues relative to the entire set of surface residues.

2.7 Predicting Protein-RNA Interfaces Using Machine Learning Approaches
The problem of identifying protein-RNA interface residues in a protein sequence can be
formulated as a binary classification problem: Given a sequence S of length N, S = s1s2 · ·
·sN over the alphabet Σ of amino acids, si ∈ Σ,i = 1, · · ·, N and S ∈ Σ*, the task is to predict
whether or not a residue in the sequence is protein-RNA interface residue.

One particular challenge in training classifiers using standard machine learning algorithms is
to capture predictive “features” that result in accurate classification of new examples. Hence,
in this study, we explored sequence and structural features as input to the classifiers trained to
label each residue in a protein-RNA sequence.

2.7.1 Feature representations—Since many standard machine learning algorithms
operate with a fixed number of input features, it is fairly common to use a “sliding window”
approach [Dietterich, 2002] to generate a collection of fixed length windows, where each
window corresponds to the target amino acid and an equal number of its sequence neighbors
on each side, si → (si−k, si−k+1, · · ·, si−1, si, si+1, · · ·, si+k−1, si+k) (sequence-based features).
The classifier is trained to label the target residue with a “+” or a “−” label. The target residue
has a “+” label if it is a protein-RNA interface residue, and to a “−” label otherwise. In addition
to sequence-based features, we encoded each residue si in a sequence using the structural
features, i.e., si → (cxvi−k,cxvi−k+1, · · ·,cxvi−1,cxvi; cxvi+1, · · ·,cxvi+k−1, cxvi+k), where each
cxvj, j = i − k; · · ·, i + k, represents alphacarbon, averagecx, rgroup, or roughness value
respectively corresponding to the residue sj in the sequence window.

2.7.2 Naïve Bayes and Gaussian Naïve Bayes classifiers—The Naïve Bayes (NB)
classifier [Mitchell, 1997] is a generative model, in which the probabilities p(si|y) and p(y) of
the sequence window si and the class label y (e.g “+” interface and “−” non-interface residue
labels) are estimated from the training data using maximum likelyhood estimates. Typically
the window si is high-dimensional, represented as a tuple of nominal attribute values (amino
acid residues), si = (si−k, si−k+1, · · ·, si−1, si, si+1, · · ·, si+k−1, si+k), making it impossible to
estimate p(si|y) for large values of the window length. However, the Naïve Bayes classifier
makes the assumption that the attribute values are conditionally independent given the class.
Therefore, training the Naïve Bayes classifier reduces to estimating probabilities p(sj|y), j = i
− k; · · ·, i + k, of the amino acids in the sequence window, and p(y), of the class labels, from
the training data. During classification, Bayes Rule is applied to compute p(yj|stest) and the
class label with the highest posterior probability is assigned to the new sequence window
stest

The Gaussian Naïve Bayes (GNB) classifier [Mitchell et al., 2004] is similar to the Naïve
Bayes classifier, except that the attribute values are numerical, si = (cxvi−k, · · ·,cxvi−1,cxvi;
cxvi+1, · · ·, cxvi+k). The estimated probability p(cxvj|y), j = i − k; · · ·, i + k fits a univariate
Gaussian distribution, using maximum likelyhood estimates of the mean and variance obtained
from the training data, while the probability p(y) fits a Bernoulli distribution.

The Naïve-Bayes classifier trained using sequence-based features is the same as the classifier
used for predicting protein-RNA interfaces by RNABindR [Terribilini et al., 2007].

2.7.3 Struct-NB Classifier—To take advantage of the structural information, we developed
a two-stage classifier, called Struct-NB: in the first stage, the windows that correspond to the
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surface target residues (i.e., target residues that are on the surface) are separated from those
that correspond to the non-surface target residues; in the second stage, if the target residue is
on the surface, the classifier returns a probability that this residue is an interface residue given
the sequence or structural features as input to the classifier; otherwise, if the target residue is
not on the surface, the classifier assigns this residue as a non-interface residue (see Figure 1).
One important advantage of this model is that it allows the use of existing machine learning
methods. In this study, we used Naïve Bayes classifiers.

2.7.4 Ensemble of Naïve Bayes classifiers—An ensemble of Naïve Bayes classifiers is
a collection of Naïve Bayes classifiers, each trained on a different feature representation of the
training data (see Figure 2). The prediction of the ensemble of Naïve Bayes classifiers is
computed from the predictions of the individual Naïve Bayes classifiers. That is, during
classification, for a new instance xtest, each individual Naïve Bayes classifier in the collection
returns a probability Pj(yi|xtest), that xtest belongs to a particular class yi, where j = 1; · · ·, n,
and n is the number of Naïve Bayes classifiers in the collection. The ensemble estimated
probability, PEns(yi|xtest) is obtained by:

In our experiments, we trained 5 Naïve Bayes classifiers (n = 5), one for each feature
representation: sequence-based, alphacarbon-based, averagecx-based, rgroup-based, and
roughness-based feature representations, respectively.

2.8 Performance Evaluation of Classifiers
Standard approaches to assessing the performance of classifiers rely on k-fold cross-validation
wherein a dataset is partitioned into k disjoint subsets (folds). The performance measure of
interest is estimated by averaging the measured performance of the classifier on k runs of a
cross-validation experiment, each using a different choice of the k − 1 subsets for training and
the remaining subset for testing the classifier. In our experiments, we used sequence-based (as
opposed to window-based) cross-validation, a procedure that guarantees that training and test
sets are disjoint at the sequence level [Caragea et al., 2007]. To assess the performance of our
classifiers we reported the following measures described in [Baldi et al., 2000]: Sensitivity+,
and Specificity+, Receiver Operating Characteristic (ROC) curve, and Area Under the ROC
Curve (AUC). If we denote true positives, false negatives, false positives, and true negatives
by TP, FN, FP, and TN respectively, then the Sensitivity+ and the Specificity+ can be defined
as follows:

(1)

(2)

The ROC curve plots the proportion of correctly classified positive examples, True Positive
Rate (TPR) as a function of the proportion of incorrectly classified negative examples, False
Positive Rate (FPR) for different classification thresholds. In comparing two different
classifiers using ROC curves, for the same False Positive Rate, the classifier with higher True
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Positive Rate gives better performance measures. Each point on the ROC curve represents a
classification threshold θ and corresponds to particular values of TPR and FPR.

To evaluate how good a classifier is at discriminating between the positive and negative
examples, we also report the AUC on the test set, which represents the probability of correct
classification [Baldi et al., 2000]. That is, an AUC of 0.5 indicates a random discrimination
between positives and negatives (random classifier), while an AUC of 1 indicates a perfect
discrimination (very good classifier).

3 Results
Now we proceed to explore the questions: Do protein-RNA interfaces differ from non-
interfaces in terms of their structural features? Do the structural features vary with the type
of bound RNA? How useful can structural features be to reliably predicting protein-RNA
interface residues?

3.1 CX Protrusion Index
Figure 3 shows the relative CX score propensities of the interface residues, based on three
different calculations of CX score for each residue: the average of the CX scores for all atoms
(averagecx); use the average of the CX scores atoms in the R-group only (rgroup); or the CX
score for the alpha carbon atom as the score for the corresponding residue (alphacarbon). The
figure shows that averaging the CX score across all atoms in the residue produces similar results
to averaging across the R-group atoms alone.

Figures 4, 5 and 6 (respectively) show the residue propensities based on the types of the bound
RNA using the averagecx, alphacarbon and rgroup methods respectively. The observed CX
value residue propensities of interfaces involving different types of RNA appear to be sensitive
to the method used to calculate the CX values.

ANOVA analysis for the alphacarbon method (ANOVA p-value = 0.056, cutoff = 0.05) shows
that tRNA and mRNA cluster together with variances around 0.2. SnRNA, rRNA, dsRNA and
“other” cluster together with variances around 0.3. Finally, siRNA, SRP RNA and Viral RNA
cluster together with variances around 0.65. ANOVA analysis for the averagecx method
(ANOVA p-value = 0.00001, cutoff = 0.05) shows that Viral RNA, mRNA, “other”, and
snRNA cluster together with variances around 0.2. DsRNA, rRNA siRNA and SRP RNA
cluster together with variance around 0.35 and tRNA is the only RNA type with variance around
0.5. The results of ANOVA analysis for the rgroup method (ANOVA p-value = 0.0002, cutoff
= 0.05) are similar to those of averagecx with mRNA, snRNA and “other” clustering together
with variances around 0.13, whereas dsRNA, SRP RNA, siRNA, rRNA and Viral RNA cluster
together with variances around 0.37. Finally, the tRNA group is isolated with a variance of
0.5.

Regardless of the method used to calculate the CX scores, we can observe some general trends:
The rRNA and tRNA propensities are always negative at CX score range [0,1) and have an
increasing propensity as the CX scores increase. However, all other types of RNA (mRNA,
snRNA...etc) tend to have low (negative) propensity values from [0,4), and the propensities
for all types then tend to rise after CX range [4,5). One interesting exception is the score range
[0,1), which tends to have slightly positive (albeit very small) interface propensities in the case
of RNAs other than tRNA and rRNA, suggesting that in protein-RNA interfaces containing
such RNAs non-protruding residues can be interface residues. The CX value residue
propensities of interface residues bound to Viral RNAs and rRNAs appear to differ significantly
from that of residues that bind to other types of RNAs figures 4, 5 and 6.
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3.2 Roughness Value
Figure 7 shows the propensities for the roughness score. Residues with rough surfaces are
preferred in protein-RNA interfaces. Figure 8 shows the distribution of the propensities for
each roughness score range classified by the type of RNA. The figure indicates that, unlike the
CX scores, the roughness scores do not vary significantly among the different types of RNA
at each score range as all RNA types behave almost identically for each roughness score range
(ANOVA p-value = 0.32 with cutoff 0.05). Using the variances calculated by ANOVA, tRNA,
SRP RNA, snRNA, rRNA and dsRNA seem to cluster well with each other (all have variances
close to 0.2). The remaining RNA types (Viral RNA, siRNA, mRNA and “other”) have
variances around 0.1.

3.3 Protein-RNA Interface Prediction using Struct-NB
The main result of our study using machine learning approaches is that the Struct-NB classifiers
described here outperform sequence-based Naïve Bayes and structural-based Gaussian Naïve
Bayes classifiers on the problem of predicting RNA-binding sites in protein sequences.

We trained Struct-NB classifiers, that take into account structural information, using sequence
and structural features, Naïve Bayes using sequence features, and Gaussian Naïve Bayes using
structural features. We compared the ROC curves of sequence-based Naïve Bayes and
structural-based Gaussian Naïve Bayes with those of Struct-NB classifiers on the 147 protein-
RNA dataset. The ROC curves show the tradeoff between true positive rate and false positive
rate over their entire range of possible values. Hence, it is more informative to compare the
ROC curves than to compare the performance of the classifiers for a particular choice of the
tradeoff (which corresponds to a specific point θ on the ROC curve). We found that the ROC
curve for Struct-NB dominates the ROC curve for sequence-based Naïve Bayes and structural-
based Gaussian Naïve Bayes. That is, for any choice of false positive rate, Struct-NB offers a
higher true positive rate than both sequence-based Naïve Bayes and structural-based Gaussian
Naïve Bayes (Figures 10a,10b,11a,11b and 11c). In Figure 11d we compare the performance
of the ensemble of Struct-NB classifiers, that combines the predictions of individual Struct-
NB classifiers trained using sequence and structural features, with that of the Naïve Bayes using
sequence features. As can be seen, for values of the false positive rate higher than 0.2, the
ensemble of Struct-NB has a higher Sensitivity than that of the sequence-based Naïve Bayes.

In addition, we compared the ROC curves of Naïve Bayes using sequence features with that
of Gaussian Naïve Bayes using structural features. We found that while the ROC curves for
sequence-based Naïve Bayes dominates the ROC curves for structural-based Gaussian Naïve
Bayes (see Figures 12a,12b,12c,12d), the structural-based Gaussian Naïve Bayes has a higher
sensitivity than sequence-based Naïve Bayes and sequence-based Naïve Bayes has a higher
specificity than structural-based Gaussian Naïve Bayes.

In Table 2, we show a comparison of the performance statistics for the Gaussian Naïve
Bayes using alphacarbon, averagecx, rgroup, roughness features respectively, the Naïve
Bayes using sequence features, and the ensemble of Struct-NB. The statistics are reported for
the same threshold θ = 0.5 on the ROC curves. As can be seen, sequence-based Naïve Bayes
achieves Sensitivity+ = 0.246, Specificity+ = 0.65, and AUC = 0.736, structural-based
Gaussian Naïve Bayes using roughness features achieves Sensitivity+ = 0.349, Specificity+ =
0.469, and AUC = 0.696, and the ensemble of Struct-NB achieves Sensitivity+ = 0.359,
Specificity+ = 0.443, and AUC = 0.752. Therefore, in applications that require a higher
sensitivity, a better choice is to use structural feature as input to the Naïve Bayes classifiers.
This is visually shown in Figure 9.
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4 Summary and Discussion
We have analyzed a non-redundant dataset of protein-RNA interfaces in terms of two structural
properties of amino acid residues, namely, CX score and roughness. The results of our analysis
show that:

• Amino acid residues in protein-RNA interfaces tend to be more protruding (as
measured by CX values) compared with surface residues.

• Amino acid residues in protein-RNA interface tend to have more rough surfaces
compared with surface residues.

• Considering the location of the residue in the protein structure (surface vs non-surface)
improves the performance of both sequence-based and structure-based classifiers.

• The structural features (CX and roughness values) can be used to classify protein-
RNA interfaces using an ensemble approach. The resulting classifier is able to identify
protein-RNA interfaces at a higher sensitivity compared to a sequence-based classifier
at the same θ threshold.

It is possible that the general trends observed across all RNA types is biased by rRNA-binding
proteins, which make up over half of the protein-RNA complexes in PDB. One way to
determine whether this is indeed the case is to repeat the protein-RNA interface analysis
separately for each RNA-type. Also of concern is the relatively small size of the RB147 dataset
protein-RNA dataset. Terribilini et al. [Terribilini et al., 2007] have noted that PDB included
only 198 proteinnucleic acid complexes in 1996, but by April 2007, this number had grown to
1,734, of which 529 were proteinRNA complexes. The resulting availability of larger and more
diverse datasets can be expected to significantly improve the quality and quantity of data
available for performing the analysis of the sort reported here. Work in progress is aimed at:

• Assembling a comprehensive of protein-RNA interface database (PRIDB), and
associated services for querying, analysis, and visualization of protein-RNA
interfaces.

• Developing machine learning approaches for reliable identification of putative RNA-
binding residues in proteins that improve upon the state-of-the-art sequence-based
methods [Terribilini et al., 2006b] by taking advantage of structural and molecular
dynamics simulations.

• Analysis of sequence and structural properties of protein-binding residues in RNA
and the development of machine learning approaches for reliable identification of
putative protein-binding RNA residues.

• Characterization of the sequence and structural correlates of protein-RNA interfaces
and the similarities and differences among different types of protein-RNA interfaces,
and between protein-protein, protein-DNA, and protein-RNA interfaces.
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Figure 1.
Struct-NB: a two-stage classifier that integrates domain knowledge (i.e., structural
information) to improve classification performance. In the first stage, the windows
corresponding to each residue are split according to their surface/non-surface label. In the
second stage, if the current residue is a surface residue, the classifier returns a probability that
this residue is an interface residue; otherwise, the classifier assigns this residue to be a non-
interface residue.
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Figure 2.
A schematic of the Ensemble classifier used for combining information from the multiple
feature representations. As can be seen from the figure, a classifier is trained using sequence
and structural features. The prediction of the ensemble is then obtained from the predictions
of individual classifiers.
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Figure 3.
Comparison of various methods to obtain CX values for residues on the protein surface. The
figure shows that averaging the CX score across all atoms in the residue produces similar results
to averaging across the R-group atoms alone.
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Figure 4.
Propensity scores for CX values (Y-axis) calculated using the averagecx for different ranges
of CX values (X-axis). Propensities for CX values 0–4 tend to vary across different RNA types
as compared to propensities for higher CX scores. Different colors correspond to different RNA
types.
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Figure 5.
Propensity scores for CX values (Y-axis) calculated using the alphacarbon for different ranges
of CX values (X-axis). Different colors correspond to different RNA types.
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Figure 6.
Propensity scores for CX values (Y-axis) calculated using the rgroup for different ranges of
CX values (X-axis). Different colors correspond to different RNA types.
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Figure 7.
The propensity values for various roughness scores on the surface residues.
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Figure 8.
Propensity scores for roughness values classified by RNA type. Roughness propensity is
similar across different types of RNA interfaces
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Figure 9.
Comparison of predictions on 2AW4 chain 0 from the Struct-NB using roughness features,
Gaussian Naïve Bayes using roughness features, and Naïve Bayes using sequence features.
The second line shows the actual labels.
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Figure 10.
Comparison of Struct-NB and Gaussian Naïve Bayes classifiers utilizing sequence (10a) and
Alphacarbon (10b) as input to the classifiers.
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Figure 11.
Comparison of Struct-NB and Gaussian Naïve Bayes classifiers utilizing averagecx (11a),
rgroup (11b) and roughness (11c) as input to the classifiers. Figure 11d shows a comparison
of the ensemble Struct-NB classifier trained using sequence and structural features with a Naïve
Bayes classifier using sequence features.
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Figure 12.
Comparison of Gaussian Naïve Bayes classifiers utilizing alphacarbon (12a), averagecx (12b),
rgroup (12c) and roughness (12d) as input to the classifiers with a Naïve Bayes classifier trained
using sequence features.
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Table 1

Classification for each of the 147 protein chains in the dataset. The four letter PDB ids are subscripted by the
chain. As can be seen from the table, over half (55.7%) of the RNAs are rRNAs.

RNA Type PDBIDs

dsRNA 1DI2A; 1UV JA; 1Y Z9A

mRNA 1AV 6A; 1G2EA; 1GTFQ; 1KNZA
1KQ2A; 1M 8XA; 1WPUA; 1WSUA
2A1RA; 2ASBA

rRNA 1APGA; 1DFUP ; 1FEUA; 1FJGB
1FJGC; 1FJGD; 1FJGE; 1FJGG
1FJGI; 1FJGJ; 1FJGK; 1FJGL
1FJGM ; 1FJGN ; 1FJGP ; 1FJGQ
1FJGS; 1FJGT ; 1FJGV ; 1G1XA
1HROW ; 1I6UA; 1JBRA; 1MZPA
1SDSA; 1T 0KB; 1UN 6B; 1V QO1
1V QO2; 1V QO3; 1V QOA; 1V QOB
1V QOC; 1V QOD; 1V QOE; 1V QOG
1V QOH; 1V QOI; 1V QOJ; 1V QOK
1V QOL; 1V QOM ; 1V QON ; 1V QOP
1V QOQ; 1V QOR; 1V QOS; 1V QOT
1V QOU ; 1V QOV ; 1V QOW ; 1V QOX
1V QOY ; 1V QOZ; 1W 2B5; 1Y 698
1Y 69K; 1Y 69U ; 2AV YF ; 2AV YU
2AW40; 2AW 41; 2AW 42; 2AW 43
2AW4D; 2AW 4E; 2AW 4G; 2AW 4H
2AW4J; 2AW 4L; 2AW 4N ; 2AW 4P
2AW4Q; 2AW 4R; 2AW 4S; 2AW 4Y
2AW4Z; 2BH2A; 2D3O1; 2D3OS
1G1XB; 1G1XC

siRNA 1RPUA; 1SI3A; 2BGGA

snRNA 1A9NA; 1EC6A; 1LNGA; 1M 8VA
1OOAA

SRP RNA 1E8OA; 1HQ1A

tRNA 1ASYA; 1B23P ; 1C0AA; 1EIYB
1F7UA; 1FFYA; 1H3EA; 1H4SA
1J1UA; 1J2BA; 1K8WA; 1N 78A
1Q2SA; 1QF 6A; 1QTQA; 1R3EA
1SERA; 1TFWA; 1U 0BB; 1V FGA
1WZ2A; 2BTEA; 2CT 8A; 2FMTA

Viral RNA 1A34A; 1DDLA; 1H2CA; 1LAJA
1N35A; 1NB7A; 1PGL2; 1RMVA
1WNEA;2AZ0A; 2BU 1A

Other 1B2MA; 1JIDA; 1M 5OC; 1Y V PA
1ZH5A; 2A8VA; 2BX2L
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Table 2

A comparison of AUC, Sensitivity+, and Specificity+ for Gaussian Naïve Bayes classifier using alphacarbon,
averagecx, rgroup, and roughness features respectively, Naïve Bayes using sequence features, and Struct-NB-
Ensemble that combines sequence and structural features. The values are reported for the same threshold θ = 0.5
on the ROC curve.

Name AUC Sens+ Spec+

NB-AC 0.658 0.368 0.36

NB-ACX 0.672 0.397 0.366

NB-RG 0.679 0.403 0.367

NB-RN 0.696 0.469 0.349

NB-Seq 0.736 0.246 0.65

Struct-NB-Ensemble 0.752 0.359 0.443

Int J Data Min Bioinform. Author manuscript; available in PMC 2010 March 17.


