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The various organogenic programs deployed during embryonic development rely on the precise expression of a multi-
tude of genes in time and space. Identifying the cis-regulatory elements responsible for this tightly orchestrated regulation
of gene expression is an essential step in understanding the genetic pathways involved in development. We describe
a strategy to systematically identify tissue-specific cis-regulatory elements that share combinations of sequence motifs.
Using heart development as an experimental framework, we employed a combination of Gibbs sampling and linear re-
gression to build a classifier that identifies heart enhancers based on the presence and/or absence of various sequence
features, including known and putative transcription factor (TF) binding specificities. In distinguishing heart enhancers
from a large pool of random noncoding sequences, the performance of our classifier is vastly superior to four commonly
used methods, with an accuracy reaching 92% in cross-validation. Furthermore, most of the binding specificities learned
by our method resemble the specificities of TFs widely recognized as key players in heart development and differentiation,
such as SRF, MEF2, ETS1, SMAD, and GATA. Using our classifier as a predictor, a genome-wide scan identified over 40,000
novel human heart enhancers. Although the classifier used no gene expression information, these novel enhancers are
strongly associated with genes expressed in the heart. Finally, in vivo tests of our predictions in mouse and zebrafish
achieved a validation rate of 62%, significantly higher than what is expected by chance. These results support the existence
of underlying cis-regulatory codes dictating tissue-specific transcription in mammalian genomes and validate our enhancer
classifier strategy as a method to uncover these regulatory codes.

[Supplemental material is available online at http://www.genome.org.]

The regulatory apparatus of a vertebrate gene typically consists of

a proximal promoter and multiple transcriptional regulatory ele-

ments (enhancers and silencers) (Maston et al. 2006). These regu-

latory elements are often distant from the promoter, with the

separation reaching millions of nucleotides (Lettice et al. 2003;

Nobrega et al. 2003) and sometimes acting over intermediate genes

(Loots et al. 2000; Tschopp et al. 2009). Cases of trans-acting reg-

ulatory elements capable of activating promoters on adjacent

chromosomes have also been previously described (Lomvardas

et al. 2006).

Identification of regulatory elements has always been a chal-

lenge, as it implies locating a small (typically a few hundred base

pair) segment embedded in a large segment of otherwise anony-

mous sequence. Comparative sequence analysis has been in-

strumental in facilitating identification of regulatory elements that

have been deeply conserved through evolution, with many deeply

conserved noncoding sequences shown to act as enhancers in

experimental models (Woolfe et al. 2005; Pennacchio et al. 2006).

Enhancers identified using solely the increased degree of evolu-

tionary conservation display notable variation in spatial expres-

sion patterns (Woolfe et al. 2005; Pennacchio et al. 2006), as

conservation is blind to the functional identity of enhancers.

Furthermore, the complex expression patterns of genes are often

achieved through the concerted action of multiple enhancers in

a single locus (Nobrega et al. 2003; de la Calle-Mustienes et al.

2005). As a result, predicting the precise temporal and spatial

pattern regulated by each enhancer in a locus becomes a signifi-

cant challenge.

With the recent advances in various high-throughput exper-

imental platforms, genome-wide profiling of activation and re-

pression signatures of proximal and distant regulatory elements

has become feasible (Robertson et al. 2007). For example, using

chromatin immunoprecipitation with massively parallel sequenc-

ing (ChIP-seq) technology, 55,000 tissue-specific putative en-

hancers have been reported in the human genome for different

cell types, with only 5400 of them overlapping across different

cell lines (Heintzman et al. 2009). ChIP-seq experiments targeting

EP300 (also known as p300), a transcriptional coactivator com-

mon to enhancers and promoters, have been very accurate in lo-

calizing developmental enhancers in mice, displaying a remark-

able 80% specificity in in vivo validation assays (Visel et al. 2009).

Microarray gene expression data have also been essential in vali-

dating predicted enhancers by matching enhancer tissue-speci-

ficity with the expression pattern of closely positioned genes

(Pennacchio et al. 2007; De Val et al. 2008; Visel et al. 2009) and

have served as a template of tissue-specific signals extracted from

the promoters of coexpressed genes (Sharan et al. 2004; Waleev

et al. 2006).

Another strategy of identifying regulatory elements is the

use of computational tools that scan DNA in search of certain

sequence-based signatures. The computational identification of

tissue-specific enhancers has mainly relied on detection of clusters

of binding sites specific to activator proteins for which appropriate

tissue specificity has been previously reported (Thompson et al.

2004; Segal et al. 2008). In Drosophila, the homotypic structure of

enhancers, with multiple transcription factor binding sites (TFBSs)
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of the same transcription factor (TF), has been especially helpful in

locating enhancers (Lifanov et al. 2003). In humans, heterotypic

clusters of binding sites have been successfully used to scan the

genome sequence to predict tissue-specific enhancers using a pre-

viously characterized TFBS enhancer structure (Hallikas et al. 2006;

De Val et al. 2008).

Identification of the enhancers partaking in the heart de-

velopmental program has always been of particular interest. Heart

development proceeds during embryogenesis through a series of

intertwined genetic programs, which are precisely orchestrated in

time and space by transcriptional factors and chromatin regulators

that activate and/or suppress downstream gene targets. Deviations

from these finely tuned events lead to congenital heart diseases

(CHD), afflicting almost 1% of live births and considered the

number one cause of neonatal deaths (Bruneau 2008).

Identifying the cis-regulatory motifs that dictate the expres-

sion of genes involved in heart development would provide

a substantial contribution to the appreciation of what genetic

pathways partake in this process. It would also provide the geno-

mic coordinates of functional noncoding sequences that, if mu-

tated, might lead to abnormal gene expression and result in CHDs.

Therefore, strategies to map cis-regulatory modules (CRMs) of

genes involved in heart development and dissecting their com-

ponents has become the focus of major efforts in genomics. Several

previous computational studies have addressed the regulatory

code of aspects of cardiovascular development, but most of them

relied heavily on the previous knowledge of associated TFBS con-

figurations in cardiovascular enhancers (Sun et al. 2006; De Val

et al. 2008). Each study targeted a different enhancer structure

as bait in the genome scan, probably mimicking different de-

velopmental processes in such an approach. To establish a gener-

alized classification mechanism capable of highlighting heart en-

hancers within the pool of noncoding DNA in the human genome,

we propose combining footprints of multiple regulatory pathways

into a model that selects key discriminatory TF binding sites within

heart enhancers and scores their combinatorial occurrence.

In this study, we utilized the largest available data set of heart

enhancers with expression validated in vivo using either mouse or

zebrafish embryos to train a discriminatory computational model.

We identified 41 TF binding specificities from the TRANSFAC and

JASPAR databases and five additional binding specificities retrieved

using a modified Gibbs sampling approach to be strongly associ-

ated with heart enhancers. The analysis of sequence composition

of heart enhancers displayed evidence for 50 of them having

similar sequence composition, thus being amenable to classifica-

tion using a single set of classification rules with 92% accuracy,

which is significantly higher than using other currently available

methods. We identified 41,930 potential heart enhancers across

the human genome using the developed classification rules. Using

an in vivo transgenic zebrafish reporter assay, we tested 26 pre-

dicted elements, and validated 62% as heart enhancers.

Results

Building the heart enhancer classifier

A large set of experimentally validated heart enhancers is necessary

to build an accurate sequence-based classifier of sequence signa-

tures that discriminate heart enhancers from the remaining vast

amount of noncoding DNA in the human genome. Being in-

terested in the heart regulatory program at embryonic devel-

opment, we focused our search exclusively on heart enhancers

active during heart development and differentiation. First, we

compiled a data set of 30 enhancers from the literature, for which

heart activity has been recorded in vivo using reporter assays in

various vertebrate model organisms (Supplemental Table S1). Next,

we added 14 heart enhancers identified through the random scan

of enhancer activity of deeply conserved regions in the human

genome (Pennacchio et al. 2006). Finally, we performed an en-

hancer screen of noncoding elements from several selected heart

gene loci using zebrafish enhancer assays (see Methods) that pro-

duced an additional 33 heart enhancers (M Nobrega, unpubl.). In

the input set of 77 embryonic heart enhancers, 35% of the se-

quences were proximal to the transcription start site (within 2 kb),

27% were intronic, and the remaining 38% were distal intergenic.

All these elements are conserved between human and mouse ge-

nomes; 42% are also conserved between human and chicken ge-

nomes (with >70% identity, the default option of the ECR Browser;

Ovcharenko et al. 2004).

We used a multi-tiered approach consisting of de novo motif

discovery, Markov sequence feature characterization, known motif

mapping, and feature selection based on regression to build

a classifier that distinguishes heart enhancers from other non-

coding regions. The classifier was based on three different sets of

features derived from the sequences. The first set of features was

drawn from binding specificities of vertebrate TFs compiled from

the TRANSFAC (Wingender et al. 2001) and JASPAR (Sandelin et al.

2004) databases. To account for the binding of TFs for which

binding specificity has not been recorded in TRANSFAC/JASPAR,

we employed PRIORITY (Narlikar et al. 2007)—a tool based on

Gibbs sampling—to search for de novo motifs enriched in the set

of heart enhancers. Putative binding site occurrences derived from

these motifs made up the second set of features. Finally, we note

that different functional genomic regions often have specific se-

quence features that could be captured using Markov models. For

example, a first-order Markov model, which models the probabil-

ity of observing a nucleotide based on the previous nucleotide, has

been used successfully to detect splice sites (Zhang and Marr 1993;

Salzberg 1997), third-order Markov models have been used to de-

tect protein-coding genes (DeCaprio et al. 2007), and higher-order

Markov models have been used to model intergenic regions of

different organisms (Thijs et al. 2001) and in meta-genome anal-

yses (McHardy et al. 2007). To detect whether heart enhancers

display Markovian sequence signatures, our third set of features

contained Markov models of all orders between zero and five.

We had a total of 727 features and expected many of these

features to have a minor impact on classification, since not all TFs

are presumably active during heart development. Moreover, TFs

are likely to differ in relative contribution to the heart regulatory

program, with only a subset causing a major impact. We built the

classifier using LASSO (Tibshirani 1996), which learns a linear

formula comprising a small subset of relevant features with ap-

propriate weights. LASSO has previously been used in genomic

contexts to distinguish nucleosomal DNA from nucleosome-

depleted DNA while simultaneously learning relevant sequence

features (Lee et al. 2007) and to select biomarkers based on gene

expression data (Ghosh and Chinnaiyan 2005). We assumed no

prior knowledge of TFs active in the heart, with the goal being to

discover them using the feature weights learned by the classifier.

It is important to note that not all motifs in TRANSFAC,

JASPAR, and the de novo set are equivalent in terms of their in-

formation content. In other words, some motifs in our set of fea-

tures are more ‘‘stringent’’ (they match few DNA regions) while

others are more ‘‘relaxed’’ (they match many DNA regions). This
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can be explained by the varying specificities of TFs, and also be-

cause some of these motifs are built from limited TF binding sites.

While the stringent motifs can result in identification of fewer true

binding sites, the relaxed motifs can result in many false positives.

Since LASSO is based on the discriminatory power of the features,

both these kind of motifs are expected not to be selected and hence

not affect the performance of the classifier.

The overall generality of a classifier can be best assessed when

tested on an independent set. For this purpose, we conducted

a standard fivefold cross-validation (CV) procedure where the

classifier is trained on four-fifths of the training data and tested

independently on the remaining one-fifth of the training data. As

our control set, we drew a random sample of 1000 noncoding

human sequences with a similar sequence-length distribution as

the enhancers. The classifier achieved an average sensitivity of

77% at a false-positive rate of 50% on the five distinct test sets.

While this implies that the classifier can distinguish signal from

noise (a noninformative classifier would have achieved only 50%

sensitivity), it does so at the cost of many false predictions.

Extracting a homogeneous heart enhancer set

Our set of heart enhancers is largely heterogeneous, comprising

data from experiments conducted at different laboratories em-

ploying various animal models and experimental conditions, in-

cluding different developmental stages. Furthermore, the heart

itself contains several distinct cell types, including cardiac myo-

cytes, smooth muscle, endothelial cells, and fibroblasts that are

most probably controlled by different genetic pathways. In other

words, heart enhancers are not likely to be bound by the same set

of TFs or have sequence similarities if they are active in different

cellular contexts. Therefore, learning a common ‘‘heart enhancer

formula’’ from enhancers acting under such broad contexts based

solely on sequence features is difficult, if at all possible.

In an effort to reduce the sequence heterogeneity of the 77

heart enhancers, we focused on selecting a large subset of these

sequences sharing homogeneous sequence features. Toward this

end, we repeated the fivefold CV procedure 20 times using differ-

ent random splits of both positive and negative sequence sets into

training and test sets, and tested the validation of the classifier on

each individual element 20 times separately. From the results of

these CVs, we assessed the number of times each sequence was

predicted as positive: This frequency effectively measured the

similarity of each element to the rest of the sequence set according

to the classifier (Fig. 1A). As seen from the shift toward higher

frequencies, the majority of the sequences were consistently pre-

dicted correctly. We grouped these sequences, predicted as posi-

tives more than half the time, as our new positive set. This new set,

which contains 50 sequences, represents a cluster of homogeneous

sequences within our data set. This homogeneity is based on the

sequence features considered in the classification. Upon further

analysis of this subset, other features such as conservation and GC

content did not show up as significantly different from the rest of

the 27 sequences.

All further computations and analyses were performed on

this homogeneous set. It is critical to note that reducing the size

of our positive set might hurt the sensitivity of our classifier, but

our objective was to make fewer false predictions.

Accurate classification of heart enhancers

We retrained the classifier with the selected homogeneous set as

our positive set and used a separate randomly generated control set

of 1000 sequences with matching GC content and length distri-

bution as the negative set. This different control set was used to

ensure that the selection of the homogeneous set described in the

earlier section was not biased toward any specific features of the

previous control set. We conducted a similar CV analysis, but with

10 folds to account for the reduction in the size of the data set, to

judge the performance of the new classifier. We compared its per-

formance with four state-of-the-art methods that detect CRMs:

CisModule (Zhou and Wong 2004), Cluster-Buster (Frith et al.

2003), MSCAN (Frith et al. 2003; Alkema et al. 2004), and Stubb

(Sinha et al. 2006) (Fig. 1B). Our method outperformed all others in

terms of both sensitivity and specificity. For example, at 0% false-

positive rate, our method achieved a sensitivity of 30%, while all

other methods achieved a sensitivity of at most 8%. The area under

the receiver operating characteristic (ROC) curve—often used as

a measure of performance or prediction accuracy, with 1.0 and 0.5

values depicting ideal and random classification, respectively—

was 0.92 for our method, 0.72 for Cluster-Buster, 0.71 for Stubb,

0.64 for MSCAN, and 0.52 for CisModule.

To confirm that our method was not at an advantage due to

the positive set being chosen based on results of our classifier (as

described in the earlier section), we repeated the multiple fivefold

CV and selection procedure using Cluster-Buster (the closest com-

petitor to our method). Cluster-Buster produced an area under the

ROC curve of only 0.77 for its newly selected homogeneous set.

This number is only slightly higher than the 0.72 it achieved when

the selection was done using our classifier, and much lower than

0.92 obtained with our classifier.

Selected features have been previously implicated in heart
development

In LASSO linear regression implementation, features irrelevant to

the classification receive zero weight, while those associated with

the signal and control set receive positive and negative weights,

respectively. Out of the original 727 features, only 45 (6.2%) were

assigned nonzero weights, suggesting their relevance to predicting

heart enhancers. They contained 30 known TF binding specific-

ities from TRANSFAC/JASPAR (excluding redundant binding defi-

nitions; these correspond to four TFs), five de novo motifs, and two

Markov features (Supplemental Table S2). Binding specificities of

MEF2 and SRF obtained the maximum positive weight: Both of

these TFs are known to play an important role in heart de-

velopment (Edmondson et al. 1994; Sepulveda et al. 2002), with

their knockout in mouse displaying severe cardiovascular abnor-

malities (Bi et al. 1999; Miano et al. 2004). Additionally, 18 out of

the total 26 TFs with a positive weight have been previously shown

to be active in the heart (Fig. 2A; Supplemental Table S2). These 18

features contribute to >65% of the total positive weight. Four

motif-based features were selected with a negative weight, imply-

ing that the presence of these features in a DNA sequence reduces

the likelihood of them acting as a heart enhancer. For three of

them, IRF, FREAC2, and ZF5, TFs believed to recognize these motifs

have been reported to act as repressors or are not implicated in

heart development (Yokoro et al. 1998; Aitola et al. 2000; Sherry

2002), supporting the notion that their negative weights are in-

dicative of their absence from gene regulation in the heart. It is

important to note that the classifier learns motifs or sequence

patterns that are either over- or underrepresented in the heart

enhancer set. One must be cautious in ascribing specific TFs that

bind these motifs since some motifs are known to be recognized by

multiple TFs. Further experimental work confirming the identities

of TFs binding these regions is warranted.

Computational prediction of cardiac enhancers
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In addition to known motifs, five of the 20 de novo motifs—

WRATAASG, TWTAAMNAGS, ARRGNNWKCG, GYTYMCWNTT,

and CCNKCCCCYS4—were considered important by the classifier.

As these motifs represent binding specificities not profiled in either

the TRANSFAC or JASPAR databases, we investigated their simi-

larity to binding similarities of families of TFs using the STAMP tool

(Mahony and Benos 2007) (Fig. 2B). These motifs resemble the

binding specificity of TFs in the families of LMO2, MEF2, ETS, and

SP1—transcription factors known to play roles in heart de-

velopment (Iida et al. 1999; Flesch 2001; Zhu et al. 2005; Pham

et al. 2007; Gratzinger et al. 2009). The fact that these novel motifs

were chosen in addition to the database motifs can be explained by

one of the three scenarios: (1) specificities of the TFs binding the

database motifs may not have been characterized precisely; (2)

these motifs could be recognized by novel TFs, the specificities of

which have not been characterized so far; or (3) the database TFs,

specificities of which are characterized using in vitro methods, may

have slightly different specificities in the heart due to various co-

factors in vivo. Indeed, studies have shown examples of the same

TF having slight differences in binding preferences in different

tissues (Andres et al. 1995). In conclusion, our analysis predicted

these motifs to be characteristic to heart enhancers, but follow-up

studies are necessary to identify TFs that bind these sequences.

To assess the importance of the Markov features and their

contribution to the classifier performance, we retrained the clas-

sifier without them, which yielded an area under the ROC curve of

0.86, a nonnegligible 7% reduction in accuracy. Additionally, only

one Markov model, the fifth order, was chosen with a high positive

weight. As fifth-order Markov models are based on 6-mers, which is

the typical length of a TF binding site, it is likely that these Markov

models capture certain dependencies within binding sites that

other motif related features cannot.

Figure 1. (A) Overview of the methodology. The yellow box shows the main classifier that takes as input two sets of sequences: enhancers and controls.
The classifier is used first to select a homogenous set of enhancers and then used again to classify between the selected set and control sequences.
(B) Distribution of positive sequences predicted correctly. Almost one-third of the sequences are predicted consistently (>50% of the time) as positives (red
dotted line). Sequences to the right of the line were considered homogenous. (C ) ROC curve for five different methods on selected homogeneous sets.
Performance details of our method and of four state-of-the-art methods are shown here. The maximum area under the ROC curve is achieved by our
method (0.92) (shaded in gray).

4IUPAC codes are used to depict degenerate positions.
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Figure 2. (A) Feature weights. (Green) Positive weights learned by the classifier; (brown) negative weights. Motif features of the same TF are clubbed
together. The names of the features are listed near the baseline of the graph. (*) Features known previously to be implicated in heart activity or heart
development; (?) de novo motifs A–E. (B) The five de novo motifs with positive weights. STAMP (Mahony and Benos 2007) was used to predict de novo
motif associations with binding specificities of TF families from TRANSFAC and JASPAR. The top match with its P-value is shown. The last column indicates
the fraction of sequences in the enhancer and the control set containing a match to each de novo motif.

Computational prediction of cardiac enhancers
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Heart enhancers in the human genome

We next used the classifier as a genome-wide predictor of human

heart enhancers. We selected conserved noncoding elements

(CNEs) with at least 70% identity across the human and mouse

genomes (Ovcharenko et al. 2004) and fragmented them into

overlapping windows of size 150 bp, a length consistent with

previously known enhancer elements (Sinha and Fuchs 2001; de

Souza et al. 2005). A total of 730,000 CNEs were longer than 150

bp, with an average distance of 4463 bp between neighboring

CNEs. Each CNE was assigned the score of the highest scoring

fragment within it. The higher the score, the more likely the CNE

will act as a heart enhancer according to the developed classifier.

A total of 42,000 sequences were assigned a positive score

by the classifier, and these sequences were selected as putative

heart enhancers (for a complete list of predictions, refer to http://

www.dcode.org/echo). Not surprisingly, the scores of the known

heart enhancers used in training were skewed toward the top-

scoring CNEs (Fig. 3A). While the putative heart enhancers appear

to be scattered across the human genome, they are slightly

enriched near transcription start sites (TSSs) (6.0% vs. 5.5% in

length-matched controls, P-value = 0.01). This is not unexpected

since our classifier was trained on several promoter elements in

addition to distant sequences. However, 95% of putative heart

enhancers were found to reside distantly (at least 2 kb away) from

the nearest TSS, suggesting that our classifier is not biased toward

proximal elements. A negative score was reported for 688,000

CNEs, and these were used as controls for all further analyses.

Predicted heart enhancers are associated with genes expressed
in the heart

Since our method predicts putative enhancers throughout the

genome, it would be expected that these predicted enhancers map

in the vicinity of genes expressed in the developing heart. To test

this, we used gene expression microarray data from 79 human

tissues (Su et al. 2002), including heart. The top 100 highly ex-

pressed genes, based on the microarray intensities for each tissue

(normalized across the panel of these tissues), were used to com-

pile 79 tissue-specific gene sets. We measured the fraction of

high-scoring CNEs, i.e., putative heart enhancers, within the lo-

cus of each gene and computed the mean fraction within each

gene set. On average, such a gene set should contain 10.1% high-

scoring CNEs in its set of loci. Amongst all 79 tissues, the heart

gene set contained the highest percentage of high-scoring CNEs

(16.0%), resulting in more than a 1.5-fold enrichment over the

expectation (Fig. 3B). This indicates that our method finds en-

hancers that are active specifically in the heart (Fig. 3C). The tissue

with the second highest percentage of high-scoring CNEs was the

skeletal muscle, which displayed a 1.3-fold enrichment over

the expectation. A close examination of the skeletal muscle and

the heart gene sets revealed that almost one-third of the genes are

common in both. Additionally, several TFs are active in both these

tissues during development (Edmondson et al. 1994; Schulz and

Yutzey 2004). Interestingly, as we included less highly expressed

genes to compile our gene sets, the enrichment of the heart gene

set went down (Supplemental Fig. S1), further supporting the as-

sociation of predicted elements with the level of gene expression in

the heart. The significant association of our predictions with heart

genes is notable considering that the classifier was not directly

learned from any kind of gene expression data, but solely from

sequence features within experimentally validated enhancers.

In vivo validation

The ultimate test for the ability of our predictor to accurately reveal

heart enhancers is to experimentally demonstrate, in vivo, their

enhancer properties. Toward that end, we selected 26 elements

predicted to behave as putative heart enhancers and an additional

set of 20 elements that were predicted not to behave as heart en-

hancers and tested them in zebrafish. The putative heart enhancers

had an average score of 0.85, and were scattered across the full

spectrum of predicted enhancers. Importantly, we tried to ensure

that the putative enhancers tested included elements in loci of

genes that were not highly expressed in the heart. In doing so we

decreased the probability of hitting heart enhancers by chance just

because they map in the vicinity of genes expressed in the heart. In

choosing the 20 elements as putative negative controls for our in

vivo validation, we did the opposite, deliberately picking sequences

that flank genes with well-established expression in the heart, thus

enriching our set of negative controls with elements with a higher

likelihood of containing heart enhancer properties. All elements

tested are evolutionarily conserved at least among mammals.

We used a zebrafish-based in vivo reporter assay (Kawakami

et al. 2004) to test the enhancer properties of our selected set

of elements. Zebrafish embryos are transparent, greatly facilitat-

ing the direct visualization of reporter gene expression in vivo

throughout embryonic development, making it a preferred model

system to test putative enhancer sequences of unknown spatial

and temporal specificities.

Each element was PCR-amplified from the human genome

and cloned in a eGFP reporter cassette, driven by a minimal c-fos

promoter (Fisher et al. 2006a,b). This cassette contains two tol2

transposon sites, for the rapid and efficient integration of the

transgene (Kawakami et al. 2004). Each construct was coinjected

with tol2 transposase in 100–200 one-cell stage zebrafish embryos.

Previous reports have demonstrated that the patterns observed in

mosaic G0 fish are reproduced in the germline transmission to G1

(Fisher et al. 2006a); therefore, we evaluated enhancer properties in

G0 fish embryos.

Of the 26 predicted enhancers, 16 (62%) displayed re-

producible and consistent expression in the heart (Table 1; Fig. 4;

Supplemental Fig. S2). Of the set of 20 negative sequences, two

(10%) displayed heart enhancer properties throughout zebrafish

embryogenesis (Table 2). We assayed developing G0 embryos daily,

for 4–7 d, for GFP expression in the heart. For a construct to be

classified as a heart enhancer we required a minimum of 20% of

developing fish expressing GFP in the heart, comparable with rates

previously reported (McGaughey et al. 2009). Though we observe

variability in rates of expressing fish between constructs and var-

iable patterns of expression among embryos transgenic for the

same construct, there is generally a clear distinction between

constructs that are classified as enhancers and ones that are not

(Fig. 4B).

While the in vivo zebrafish enhancer assay is a valuable ex-

perimental model, it can be intrinsically limited in its ability to

read out mammalian regulatory sequences. The large phylogenetic

separation between fish and humans results in lineage-specific

biological properties that may lead to both false-positive and false-

negative results in our transgenic assay. To specifically address the

concern of false-positive results in the zebrafish assay, we cross-

validated, in transgenic mice, enhancers that we uncovered origi-

nally in zebrafish. For these experiments, we selected the four heart

enhancers with the lowest score in our classifier, among the

16 enhancers that we discovered in fish (Table 1). This ensures that

Narlikar et al.
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we cross-validated sequences that were representative of average

predicted heart enhancers by our classifier. Using the Gateway

cloning system, we shuttled the four selected elements tested in

fish into a hsp68-lacZ reporter cassette and injected them in

fertilized mouse pro-nuclei. We generated two to six transgenic

embryos for each construct, each representing an independent

Figure 3. (A) Distribution of heart scores of CNEs. Scores assigned by the classifier for all tested CNEs are shown here. We use zero as a cutoff (Methods)
for putative enhancers (dotted line). (Red) Scores of the training enhancer set. (B) Mean fraction of high-scoring CNEs in loci of genes highly expressed in
each tissue. Tissues are sorted based on the mean fraction of putative heart enhancers in their loci. P-values were computed using a rank sum test; heart
tissue had the most significant P-value of 1.6 3 10�9. (C ) (Black peaks) Snapshots of genome-wide view of predictions near genes. The score returned by
the classifier is transformed to lie between 0 and 1, with numbers >0.5 indicating the occurrence of a putative heart enhancer. The color and shade of the
gene transcript depict the type and level of gene expression, respectively: (red) genes highly expressed in the heart; (green) repressed genes. Genes highly
expressed in the heart have typically more enhancers in their loci (top three genomic regions), while genes repressed or not expressed in the heart have
fewer predictions in their loci. (All elements in the training set are excluded in these figures.)
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random genomic integration event. Embryos were assayed for lacZ

activity at embryonic day (E)11.0–E12.5. All four constructs led to

robust, reproducible reporter expression in mouse hearts (Fig. 4A),

corroborating the results obtained in zebrafish. These results sup-

port the use of zebrafish as an experimental system to test mam-

malian sequences for putative cardiac enhancer function.

Generalization of the classifier to other cell types

The methodology of classifying tissue-specific enhancers described

here is by no means restricted to the heart tissue. Indeed, apart

from the training data set, there is no heart-related information

used in the building of the classifier. To evaluate the utility of our

method in other organisms and other cell types, we analyzed the

recently published EP300 ChIP-seq data (Visel et al. 2009). This

data set contains EP300-enriched DNA regions in three mouse cell

types: limb, midbrain, and forebrain. Since EP300 is a transcrip-

tional coactivator, we applied our method on these three tissue

sets. For each tissue, we generated 2500 control sequences by

sampling from the mouse noncoding regions, ensuring the sam-

ples had the same GC content and length distribution as the re-

spective tissue set. The three independent classifiers demonstrate

remarkable accuracy in a fivefold cross-validation: The areas under

the ROC curve for limb, midbrain, and forebrain tissues sets are,

respectively, 0.86, 0.82, and 0.92. These numbers are significantly

better than those produced by other programs, which never cross

the 0.75 mark in any tissue (Supplemental Fig. S3).

Discussion
In this study we developed a sequence classifier that distinguishes

enhancers active in heart development and differentiation using

a combination of binding information of

TFs, overrepresented short sequence mo-

tifs, and Markov models. By using cross-

validation we observed that the classifier

is powerful in revealing the heart-related

functionality of genomic DNA sequences

while making few false-positive calls. The

final features, selected in an automated

manner from a large set of initial fea-

tures, are also substantiated by literature

evidence of TFs active in the heart. Addi-

tionally, the 42,000 predicted heart en-

hancers in the human genome are sup-

ported by an independent large-scale

experiment that profiled gene expres-

sion. Most importantly, the validation of

our predictions containing a set of long-

range intronic and intergenic elements

in a zebrafish in vivo reporter assay

demonstrated a success rate of 62%. Fur-

thermore, our tool was able to correctly

rule out evolutionarily conserved se-

quences bracketing genes expressed in

the developing heart as heart enhancers.

Combined with a high accuracy, this will

likely provide an important prioritization

tool in determining which elements will

be validated in costly, laborious func-

tional assays.

The cardiac enhancers that our clas-

sifier predicts are constrained by the biased data set of cardiac en-

hancers that we used as a training set. It is likely that a number of

heart enhancers in the human genome are not predicted by our

classifier. Furthermore, a large fraction of the 42,000 heart en-

hancers predicted by our classifier likely does not drive gene ex-

pression exclusively in the heart, but also in other tissues and or-

gans. For example, of the four cardiac enhancers that we validated

in mice, three also gave rise to distinct spatial domains of expres-

sion outside the heart (Fig. 4A). This spatial heterogeneity reflects

the modular architecture of enhancers, each of which comprises

a collection of TFBSs that define multiple combinations of spatial

specificities. What our classifier routinely identifies as a heart en-

hancer is a combination of TFBSs that together correspond to but

a fraction of a DNA element that contains other TFBSs with distinct

specificities. Future studies using training sets that correspond to

highly specialized subsets of enhancers will likely uncover a differ-

ent collection of predicted enhancers, with distinct spatial speci-

ficities in the heart.

Variants of linear and logistic regression have been used be-

fore to detect promoters and other regulatory elements. One of the

early works that detected tissue-specific CRMs employed logistic

regression to identify elements active in muscle (Wasserman and

Fickett 1998) and liver (Krivan and Wasserman 2001). However, in

that study, prior knowledge was required of TFs active in the tissue

of interest as well as their binding specificities. A notable aspect

of our approach is that our method is applicable even when no

information regarding active TFs is known. In addition, since we

also look for de novo motifs, we hope to learn motifs of TFs not yet

characterized, but relevant to the tissue of interest. Although we

have applied our method to heart development, the framework is

applicable to any tissue where experimental data are available to

train the model. Indeed, we showed that the learning approach

Table 1. In vivo testing of 26 putative heart enhancer elements in zebrafish transgenics

No. Human element tested (hg18) Closest gene Score
Heart expression

of element

1 chr1:198308267–198308840 NR5A2 1.48 Positive
2 chr6:98988308–98988882 POU3F2 1.43 Negative
3 chr14-104259460–104259664 ADSSL1 1.35 Negative
4 chr12:88227744–88228315 DUSP6 1.31 Negative
5 chr20-31474451–31474982 SNTA1 1.15 Negative
6 chr6:99009085–99010799 POU3F2 1.13 Negative
7 chr15:65850899–65851174 MAP2K5 1.12 Positive
8 chr17:2064996–2065844 SMG6 1.10 Positive
9 chr4:85393274–85393635 NKX6-1 1.09 Positive
10 chr1:26922178–26923419 ARID1A 1.01 Positive
11 chr15:66780022–66780209 CORO2B 1.00 Positive
12 chr16:52908154–52909087 IRX3 0.94 Negative
13 chr9:99303863-99304144 TDRD7 0.92 Negative
14 chr13:108905001–108905276 MYO16 0.92 Positive
15 chr2:119239216–119239469 EN1 0.92 Negative
16 chr12:123569012–123569279 NCOR2 0.91 Negative
17 chr12:25430328–25430548 IFLTD1 0.90 Negative
18 chr1:50349222–50349402 ELAVL4 0.79 Positive
19 chr4:7835327–7835487 AFAP1 0.75 Positive
20 chr7:90761390–90763395 FZD1 0.59 Positive
21 chr7:69313052–69313811 AUTS2 0.56 Positive
22 chr19-50518697–50518939 CKM 0.31 Positive
23a chr10-29208945–29209165 BAMBI 0.30 Positive
24a chr8-30389248–30389688 RBPMS 0.13 Positive
25a chr5-172109493–172109842 LOC54492-DUSP1 0.06 Positive
26a chr15-32876189–32876660 ACTC1 0.03 Positive

Elements are ranked according to their enhancer predictive score in our classifier.
aElements also tested in mouse transgenic embryos (shown in Fig. 4).
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can be successfully applied to ChIP-seq data to accurately classify

enhancers active in limb, midbrain, and forebrain.

Our method is inherently generalizable to handle additional

features during the learning process. For example, specific histone

modifications have been shown to be enriched or depleted at en-

hancers (Heintzman et al. 2009). Such data, if available for heart

tissues, may be added to the model to further improve the pre-

cision of the predictions. Other sources of information such as

nucleosome occupancy and TF concentration can also be inserted

as features when such data become available. Large-scale efforts to

annotate the noncoding fraction of the human genome, such as

the ENCODE project, rely on a multiplicity of corroborating lines

of evidence to discern a biologically active sequence from an in-

active one. Our study outlines a feature-based approach for the

annotation of functional, tissue-specific,

cis-regulatory sequences.

Methods

Heart enhancers and control
sequences
From a literature search, 30 human,
mouse, and rat sequences shown to drive
expression in the embryonic heart were
compiled and their human orthologs
were identified. Another 14 sequences
that were listed as positive in the heart in
the VISTA enhancer browser were added
to the list (Visel et al. 2007). An additional

33 sequences that were shown to drive

heart expression in our lab based on ran-

dom scans of heart gene loci and predic-

tions from our earlier method (Pennacchio

et al. 2007) resulted in a total of 77 se-

quences referred to as the heart enhancer

set. These sequences range in length from

120 to 1985 bp (average length 570 bp)

and in GC content from 31% to 74%

Table 2. In vivo testing of negatively scoring regions

No. Human element tested (hg18) Closest gene Score
Heart expression

of element

1 chr14:20554707–20555594 NRG2 �0.10 Negative
2 chr18:3210192–3210342 MYOM1 �0.11 Negative
3 chr1:234869454–234870011 HEATR1 �0.13 Positive
4 chrX:15243649–15243826 ASB11 �0.30 Negative
5 chr1:234915291–234915491 ACTN2 �0.32 Negative
6 chr19:50003308-50003625 BCAM �0.51 Negative
7 chr15:83146046–83146997 ZNF592 �0.55 Negative
8 chr19:41334392–41334619 COX7A1 �0.62 Negative
9 chr11:19186361–19186843 CSRP3 �0.62 Negative
10 chr8:67243189–67243557 TRIM55 �0.68 Negative
11 chr1:204753459–204754124 RASSF5 �0.68 Negative
12 chr22:49354295–49354799 CHKB �0.70 Negative
13 chr6:30956511–30956971 DDR1 �0.74 Negative
14 chr3:8762554–8762850 CAV3 �0.77 Negative
15 chr6:118975818–118976308 PLN �0.78 Negative
16 chr1:158425305–158425516 CASQ1 �0.82 Negative
17 chr2:26767583–26768078 KCNK3 �0.85 Negative
18 chr15:88448268–88448421 IDH2 �0.88 Negative
19 chr17:34138517–34138739 MLLT6 �0.92 Positive
20 chr11:246852–247079 PSMD13 �1.00 Negative

All elements were found to be inactive in the heart.

Figure 4. Experimental validation of predicted heart enhancers. (A) Four predicted heart enhancers driving expression of the reporter genes GFP in
transgenic zebrafish (first column) and lacZ in transgenic mouse embryos (second column). (Red arrows) Expression of the reporter genes in the heart.
(Third column) Reporter expression in dissected hearts for each of the constructs shown. Coordinates are hg18. (B) Positive and negative predicted heart
enhancers identified in zebrafish transgenics. (Top image) Transgenic zebrafish displaying GFP expression in the heart driven by a predicted heart enhancer
(positive). (Bottom image) Another predicted heart enhancer that did not drive reporter gene expression in the heart (negative).
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(average GC content 50%). The control set was compiled by
drawing 1000 sequences with a similar GC content as the enhancer
set to avoid any GC-related bias (35% of our enhancers were from
the promoter regions that are known to be GC-rich). We also en-
sured that the lengths of the control sequences were similar to
the sequences in the enhancer set. This was done in the follow-
ing manner: For each sequence in the enhancer set, a region of
the same length was drawn from the noncoding regions of the
human genome and selected if the GC content of that region
was within a 2% difference from the GC content of the original
enhancer sequence. This was repeated several times for each en-
hancer sequence until 1000 control sequences were generated. All
analyses were done using the NCBI Build 36.1 assembly of the
human genome.

Identification of CNEs

Human–mouse alignments generated by the ECR Browser
(Ovcharenko et al. 2004) that are at least 150 bp long with >70%
identity were compiled. These alignments were subsequently fil-
tered out for overlapping coding exons of RefSeq genes, resulting in
a data set of 729,781 CNEs. These CNEs were fragmented into
windows of 150 bp with an overlap of 10 bp. Each CNE was assigned
the score of its highest-scoring fragment. A total of 41,930 CNEs
with a positive score was demarcated as putative heart enhancers.

Gene expression data

GNF Novartis Atlas2 tissue-specific gene expression (Su et al. 2002)
was extracted from the gnfAtlas2 table from the UCSC genome
browser and mapped to its respective RefSeq genes. This included
expression profiles of 16,047 genes in at least one of 79 human
tissues. 15,118 of these genes had at least one CNE in their loci,
where a locus of a gene was defined as the noncoding region be-
tween the 39 end of the gene immediately upstream of it and the 59

end of the gene immediately downstream of it. For each gene, the
fraction of high-scoring CNEs in its locus was computed. For each
tissue, genes were sorted based on their normalized expression
value. The mean fraction of high-scoring CNEs was computed for
the top 100 highly expressed genes for each tissue and used to plot
Figure 3B.

Classifier training

From each sequence in the enhancer set E and the control set C,
three distinct sets of sequence features were extracted:

Set I. Number of matches to known vertebrate transcription factor
binding specificities. Motifs of all vertebrate TFs characterized in
TRANSFAC and JASPAR were compiled to get a total of 701
motifs. MAST (Bailey and Gribskov 1998) was used to compute
the number of matches per base pair to each motif in the se-
quence, giving 701 features.

Set II. Number of matches to novel PWMs. PRIORITY (Narlikar et al.
2007), a motif discovery program, was used to learn the top 20
overrepresented motifs in the enhancer set. MAST was used to
compute the number of matches per base pair to each novel
motif in the sequence, giving 20 more features.

Set III. Log likelihoods from Markov models. Markov models of orders
0–5 from the enhancer set were learned based on its nucleotide
frequencies. Similar models were also learned from the control
set. The sequence under consideration was scored by the likeli-
hood ratio of the two models for each order, giving six additional
features.

The LASSO linear regression method (Tibshirani 1996) was
used to find features relevant for distinguishing between the two

classes E and C. This method models the class (+1 for E and �1 for
C) of each sequence as a linear combination of features, and learns
the optimal weights associated with each feature. It imposes a
constraint on the absolute norm of the weights during the esti-
mation, thereby producing a sparse solution in the feature space.
This reduces the possibility of the model being overfitted to the
training data, especially since it is expected that most features will
be irrelevant for classification. The constraint bound on the weights
was estimated using cross-validation within the training data.

A standard fivefold CV procedure was used to assess the ac-
curacy of the classifier when applied to the original set of 77
enhancers, while a 10-fold CV procedure was used to assess the
accuracy of the classifier when applied to the smaller homogenous
enhancer set. Note that while the first set of features is inde-
pendent of sequences in the training set, other features are not:
Features based on de novo motifs are learned from the enhancer
set, while Markov features are learned from both the enhancer and
the control set. In each fold of the CV procedure, the motifs and
the Markov models were computed based only on the training
data, thereby ensuring that the test data were completely unseen
before the predictions were made.

The source code of the classifier, the list of CNEs and heart
enhancer predictions, along with ECR Browser and UCSC Genome
Browser tracks are available at http://www.dcode.org/echo.

Comparison with other methods

Four freely available state-of-the-art methods that detect CRMs,
CisModule (Zhou and Wong 2004), Cluster-Buster (Frith et al.
2003), MSCAN (Alkema et al. 2004), and Stubb (Sinha et al. 2006),
were used for comparison. Each program was run with its default
settings. For each CV fold, the free parameters of CisModule,
Cluster-Buster, and Stubb were fitted using the training set. Since
MSCAN uses its precomputed parameter values, it was run as is on
the test sets in each fold.

EP300 data

Genomic regions enriched for EP300 in mouse forebrain, mid-
brain, and limb tissues were extracted from Supplemental Tables
2–4 of Visel et al. (2009). Sequences unique to each tissue were
retained resulting in a total of 2052 forebrain sequences, 278
midbrain sequences, and 1949 limb sequences. A control set for
each tissue was compiled by randomly sampling 2500 sequences
from noncoding, nonrepetitive regions as in the case of the heart
sequences. A fivefold cross-validation was performed for each of
the three classifiers; the same folds were also assessed using the
four state-of-the-art CRM detectors mentioned earlier.

In vivo validation

Zebrafish were raised and bred in accordance with standard con-
ditions (Kimmel et al. 1995; Whitlock and Westerfield 2000).
Embryos were obtained from natural crosses, incubated at 28.5°C,
and staged (Warga and Kimmel 1990). Sequences of interest were
amplified with specific attB-containing primers and cloned into
a donor vector (pDONR 221) of the Gateway cloning system
(Invitrogen). Plasmid DNAs for microinjection were purified on
QIAprep Mini-prep (Qiagen) spin columns. Transposase RNA
was transcribed in vitro using the mMessage mMachine Sp6 kit
(Ambion). Injection solutions were made with 25 ng/mL trans-
posase RNA and 15–25 ng/mL circular plasmid in water. DNA was
injected into the yolk of wild-type embryos at the two-cell stage. At
least 100 embryos were injected for each element.

The DNA fragments tested in mouse were cloned in to a lacZ
reporter construct and injected in mouse fertilized pro-nuclei
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nuclei as previously described (Pennacchio et al. 2006). Six in-
dependent mouse transgenic lines harboring this construct were
obtained. Embryos were examined at E11.0 and E12.5 for heart
enhancer properties.
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