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Aberrant methylation of promoter CpG islands in cancer is associated with silencing of tumor-suppressor genes, and age-
dependent hypermethylation in normal appearing mucosa may be a risk factor for human colon cancer. It is not known
whether this age-related DNA methylation phenomenon is specific to human tissues. We performed comprehensive DNA
methylation profiling of promoter regions in aging mouse intestine using methylated CpG island amplification in
combination with microarray analysis. By comparing C57BL/6 mice at 3-mo-old versus 35-mo-old for 3627 detectable
autosomal genes, we found 774 (21%) that showed increased methylation and 466 (13%) that showed decreased meth-
ylation. We used pyrosequencing to quantitatively validate the microarray data and confirmed linear age-related
methylation changes for all 12 genomic regions examined. We then examined 11 changed genomic loci for age-related
methylation in other tissues. Of these, three of 11 showed similar changes in lung, seven of 11 changed in liver, and six of 11
changed in spleen, though to a lower degree than the changes seen in colon. There was partial conservation between age-
related hypermethylation in human and mouse intestines, and Polycomb targets in embryonic stem cells were enriched
among the hypermethylated genes. Our findings demonstrate a surprisingly high rate of hyper- and hypomethylation as
a function of age in normal mouse small intestine tissues and a strong tissue-specificity to the process. We conclude that
epigenetic deregulation is a common feature of aging in mammals.

[Supplemental material is available online at http://www.genome.org.]

In mammals, DNA methylation occurs almost exclusively within

the context of CpG dinucleotides and an estimated 80% of all CpG

sites are methylated. CpG islands are clusters of CpG dinucleotides

that are often located near the 59 end of genes (Bird 1986; Cross and

Bird 1995). Methylation of promoter CpG islands is rare in normal

tissues, frequent in cancer, and is usually associated with a closed

chromatin structure and transcriptional silencing of the gene

(Toyota and Issa 2005; Jones and Baylin 2007). DNA methylation

profiles represent a more chemically and biologically stable source

of molecular diagnostic information than mRNA or proteins.

Therefore, CpG island hypermethylation has been suggested to be

a good biomarker for tumorigenesis. A number of tumor suppressor

genes are silenced by promoter CpG island methylation in co-

lorectal cancer (Herman and Baylin 2003). In parallel, genome-wide

DNA hypomethylation is also thought to play an important role in

genomic instability and carcinogenesis (Ehrlich 2002; Estecio et al.

2007). Focal DNA hypomethylation is associated with activation of

genes, for example, S100A4 gene in colorectal carcinoma and cyclin

D2 in gastric carcinoma (Rosty et al. 2002; Oshimo et al. 2003).

Although most CpG islands are unmethylated in normal hu-

man tissues, methylation changes of a small subset of genes can be

seen in normal healthy individuals in aging colon mucosa. This

methylation involves tumor suppressor genes, which often become

more substantially methylated in neoplastic cells (Issa et al. 1994,

2001; Ahuja et al. 1998; Ahuja and Issa 2000). The causes of initi-

ation and spreading of age-related methylation remain to be elu-

cidated. Because cancer is, for the most part, a disease of aging, it

has been proposed that age-related epigenetic changes initiate tu-

morigenesis, and mouse studies of over/under expression of DNA

methyltransferases are supportive of this concept (Laird et al. 1995;

Linhart et al. 2007). It is not known whether age-related methylation

is a phenomenon restricted to humans where life span is relatively

long, or whether it is a common feature of physiologic aging.

Here, we studied age as a parameter that could potentially

influence DNA methylation, and compared differential methyla-

tion by genome-wide CpG island methylation profiling in mouse

small intestine. We find a surprisingly high rate of epigenetic de-

regulation with age (hypermethylation and hypomethylation),

along with tissue specificity to the process.

Results

Methylation analysis of candidate genes

We first examined a total of 21 CpG genomic regions including

Apc, Cdh13, Dok5, Egfr, Esr1, Hic1, Igf2-differentially methylated

region (DMR) 1 and DMR2, Mgmt, Mlh1, Myod1, Nkx2-5, Cdkn2a

(also known as p16), Cdkn1c (also known as p57Kip2), Pgr, Rarb,

Rassf1, Timp3, Tmeff2, Tusc3, and Vcan, which had all previously

been reported to be hypermethylated in human aging normal

colon tissues (Kondo and Issa 2004) or hypermethylated in colon

cancer (Kikuchi et al. 2002; Xu et al. 2004; Woodson et al. 2005;

5Corresponding author.
E-mail jpissa@mdanderson.org; fax (713) 796-0318.
Article published online before print. Article and publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.096826.109.

332 Genome Research
www.genome.org

20:332–340 � 2010 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/10; www.genome.org



Kakar et al. 2008). To investigate DNA

methylation as a function of age in nor-

mal mouse small intestine, we used PCR-

pyrosequencing of bisulfite modified ge-

nomic DNA. Figure 1A and Supplemental

Figure 1a show CpG maps of the genes

analyzed, along with the location of the

regions amplified. As a positive control,

we used SssI methyltransferase treated

DNA in each case. Nine out of 21 genomic

regions (Cdh13, Dok5, Esr1, Igf2-DMR2,

Myod1, Nkx2-5, Cdkn2a, Pgr, and Tmeff2)

showed linear age-related hypermethyla-

tion in normal small intestine, in the

age range from 3-mo-old to 35-mo-old mice

(Fig. 1B). Three additional loci (Cdkn1c

[CpG island edge], Tusc3, and Hic1) showed

similar trends that did not reach statistical

significance. In addition to hypermethyla-

tion in DMR2, we also detected hypo-

methylation in DMR1 of Igf2, an imprinted

gene. The methylation levels of eight of 21

genes were not significantly different be-

tween young and aged mouse small in-

testine (Supplemental Fig. 1b; Supplemen-

tal Table 1).

Genome-wide methylation analysis

To study age-related methylation on a

genome-wide scale, we performed DNA

methylation profiling of promoter regions

by methylated CpG island amplification

microarrays (MCAM), a restriction enzyme,

ligation, and a PCR-based method that has

high sensitivity and specificity for DNA

methylation analysis (Shen et al. 2007). We

cohybridized MCA DNA from 3-mo-old

and 35-mo-old small intestines on a pro-

moter oligonucleotide array (Agilent). In

this analysis, a high Cy5 (old tissue) to Cy3

(young tissue) normalized signal intensity

ratio indicates hypermethylation, while a

low ratio indicates hypomethylation. We

observed that most probes that have in-

formative signal intensity were located

within SmaI-digested DNA fragments that

were <2 kb in length (Supplemental Fig. 2),

which is consistent with a high rate of true

positives.

To analyze the microarray data, we

first used Lowess normalization, then a

beta-uniform mixture (BUM) model to fit

the P-values and estimate the false discov-

ery rate (FDR). We selected significant genes

by controlling the FDR at 5%, and the fold

change greater than two (based on our

prior validation studies in other models).

Quality control included ratio–intensity

(R–I) plots that suggested technically ade-

quate arrays (Fig. 2A; Supplemental Fig. 3a).

To demonstrate, accurately measure, and

Figure 1. Methylation profiles by pyrosequencing analysis. (A) Gene structure and CpG sites ana-
lyzed. Maps represent 3.5 kb of sequence around CpG islands (hatched boxes) and exons (black boxes)
of genes analyzed in this study. Short vertical bars represent CpG sites. Arrows point to transcriptional
start sites. Gray boxes represent amplified regions for pyrosequencing (py). (B) Association of the
percentages of methylated cytosines in the samples as obtained from pyrosequencing (y-axis) with
age (x-axis) for 12 genes. The Spearman test was used to determine correlations, with significance
set at P < 0.05. R represents a measure of the linear relationship between two variables, and varies
from �1 to +1.
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Figure 2. (Legend on next page)
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compensate for methylation-dependent dye bias, we performed dye-

swap experiments and found that the correlation between the two

arrays was high (r =�0.95, P < 0.0001), indicating that the technique

is reliable (Supplemental Fig. 3b).

The normalized hybridization ratio is listed in the Supple-

mental Table 2 and Supplemental File 1. The P-value is listed in the

Supplemental File 2 as score, which is defined as�10log10(P-value).

Using both a FDR of 5% and a fold change of larger than twofold as

the criteria for significant feature identification, there are 1958 probes

(out of 8389) that are significantly changed. These changed probes

mapped to 1206 unique genes. Overall, out of 3627 detectable

autosomal genes, 774 (21%) showed age-related hypermethylation

and 466 (13%) showed age-related hypomethylation. Autosomal

genes without a CpG island in their respective 59 untranslated

regions (UTRs) were also detected as candidates for age-related

hypermethylation (7%) and hypomethylation (11%). Among the

list of differentially methylated genes, we found Myod1, Cdkn2a,

and Tmeff2, all of which were found to be hypermethylated with

age using bisulfite pyrosequencing (Fig. 1), thus confirming that

the technique is sensitive enough to detect age-related methyla-

tion. Thirty-four genes (0.9% of the total) had mixed results in that

one probe showed hypermethylation, while another showed

hypomethylation category with age. This low number of probable

false positives is consistent with our stringent criteria and FDR.

Distribution of age-related methylation
on autosomal chromosomes

We mapped the distribution of hypermethylated and hypo-

methylated genes on autosomal chromosomes and show the re-

sults in Figure 2B and Supplemental Figure 4. When controlling for

CpG island density, none of the chromosomes seemed to be

preferentially affected by the process. To examine regional meth-

ylation in more detail, we divided each autosomal chromosome

equally into three parts using the total number of nucleotides, and

calculated the percentages of hyper- or hypomethylated genes in

the different regions. Interestingly, there was a greater number of

detectable genes (and hence CpG islands) in telomeric regions

(43.4%), compared to centromeric (25.7%) and middle regions

(30.9%). However, propensity to methylation was the same in each

region. Thus, the average percent of hypermethylated genes was

20.7%, 21.5%, and 22.5%, while hypomethylated genes consti-

tuted 13.4%, 11.5%, and 11.8% in centromeric, middle, or telo-

meric regions, respectively.

Functional pathways affected

We examined the potential function of genes that showed

hypermethylation, hypomethylation, and unchanged methyla-

tion with age by MCAM. Transcriptional network and pathway

analysis was performed on pairwise comparisons between hyper-

methylated genes and unchanged genes, hypomethylated genes

and unchanged genes, hypermethylated genes and hypomethyl-

ated genes, detectable genes and the rest of genome, respectively

(Supplemental Table 3).

Functional class scoring analysis was performed on differen-

tially methylated genes with age by using the Gene Ontology

Tree Machine (GOTM) (Zhang et al. 2004). GOTM uses the hy-

pergeometric test for enrichment analysis, and the method pro-

posed by Benjamini and Hochberg is used for multiple test

adjustment (Yoav and Yosef 1995). We analyzed biological pro-

cesses, molecular functions, and cellular components that were

relatively enriched by the gene lists of interest using the entire

mouse genome as reference set. Supplemental Table 4 shows

the top 10 enriched categories for hyper- and hypomethylated

genes. Hypermethylated genes showed significant enrichment for

various development and differentiation processes, while hypo-

methylated genes were not significantly enriched in any biological

process.

Validation of age-related methylation

The surprisingly high rate of epigenetic variation detected by

microarrays raised the possibility of artifacts, despite the demon-

strated reproducibility. We therefore validated selected array data

using pyrosequencing analysis. We examined 12 loci showing

more than a twofold methylation ratio between old and young

colon including Cdh4, Fbn1, Gpr37, Hand2, Hoxa11, Lrrtm1, Nptx2,

P2rx7, Pcdh10, Prdm5, Trip6, and Wt1. We detected highly signif-

icant differences in percentage of methylation by age for all genes

(Fig. 2D,E; Supplemental Table 1).

To validate the Pcdh10 and P2rx7 data further, we used bisulfite

genomic sequencing of cloned PCR products, which provided de-

tailed information on the pattern of CpG methylation of each CpG

site along a single individual DNA strand. This approach confirmed

extensive differences in DNA methylation by age (Fig. 2C).

Tissue specificity

The process of age-related methylation shows tissue specificity

in humans (Issa et al. 1994; Tsuchiya et al. 2000; Eads et al. 2001;

Shen et al. 2002; Kang et al. 2003; Waki et al. 2003). Here, we

identified considerable methylation changes with aging by ana-

lyzing young and old small intestine samples. To investigate

whether this pattern is also tissue specific in mice, we examined

samples obtained from aging lung, liver, and spleen (Fig. 3; Sup-

plemental Fig. 5). The results are summarized in Supplemental

Figure 2. MCAM analysis of age-related methylation. (A) R–I plot of the significant probes with FDR at 5% and fold change greater than two for MCAM.
An R–I plot displays the log2(R/G) ratio for each element on the array as a function of the log10(R3G) product intensities and can reveal systematic
intensity-dependent effects in the measured log2 (ratio) values. The red and blue spots indicate probes hypermethylated and hypomethylated in aged
small intestine, respectively. (B) Chromosomal regions of age-related methylation. (Black vertical bars) Detectable regions by MCAM (DNA fragments
< 2 kb); (blue vertical bars) regions showing hypomethylation with age (ratio < 2.0); (red vertical bars) regions showing hypermethylation with age (ratio >
2.0). (C ) Bisulfite sequencing analysis in small intestine. Methylation profiles of Pcdh10 and P2rx7 in young and old small intestines. Each circle represents
an individual CpG dinucleotide. (Filled circles) Methylated CpG; (open circles) unmethylated CpG; (gray circles) incomplete sequence. Orders of CpGs
follow the direction of genomic DNA sequence shown in Fig. 1A. The drawing is not to scale. Each block of lines represents methylation data from
sequencing of cloned PCR products. Each single line indicates the methylation profile detected by direct sequencing analysis from one clone. Horizontal
bars represent the CpG sites used for pyrosequencing analysis. (D) Gene structure and CpG sites analyzed. Maps represent 3.5 kb of sequence around CpG
islands (green boxes) and exons (black boxes) of genes analyzed in this study. Short vertical bars represent CpG sites. Arrows point to transcriptional start
sites. Red boxes represent amplified regions for pyrosequencing. (E ) Association of the percentages of methylated cytosines in the samples as obtained
from pyrosequencing (y-axis) with age (x-axis) for 12 genes. The Spearman test was used to determine correlations, with significance set at P < 0.05. R
represents a measure of the linear relationship between two variables, and varies from �1 to +1.
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Tables 5 and 6 with statistical analysis. We studied 11 genomic

regions that show clear age-related methylation in small intestine.

Of these, three of 11 showed similar changes in lung, seven of 11

changed in liver, and six of 11 changed in spleen, though to a lower

degree than the changes seen in colon (Fig. 3; Supplemental Fig. 5).

We also examined variation in methylation across the gastroin-

testinal tract. As shown in Figure 4, age-related increase and de-

crease in methylation was evident from the esophagus to the rec-

tum, with the largest differences (for the genes analyzed) being

seen in small intestine and cecum.

Repetitive element methylation

DNA hypomethylation in cancer typically occurs at repetitive se-

quences residing in satellite or pericentromeric regions, and can

result in the reactivation of retrotransposons, leading to disruption

of normal gene structure and function (Jones and Baylin 2002; Issa

2004). We studied global DNA methylation using bisulfite treat-

ment of DNA and PCR of multiple DNA repetitive elements, such

as long interspersed nuclear elements (LINE-1), major satellite re-

peats, and short interspersed nuclear elements (SINE B1). We did

not find any statistically significant differential methylation of

these repeats associated with age in small intestine (Supplemental

Fig. 6; Supplemental Table 1).

Human–mouse comparison

The candidate gene analysis suggests some level of conservation

between aging in human colon and mouse intestine. To study this

more formally, we performed MCAM analysis on normal human

colonic tissues, comparing mixed samples between four young

tissues (29-, 30-, 41-, and 41-yr-old) and four old tissues (61-, 68-,

69-, and 72-yr-old) (Supplemental Table 7). In human colon, the

proportion of autosomal genes showing hypermethylation was

884 out of 8821 (10%), while 1% of genes showed age-related

hypomethylation. Because of a generally poor sequence conser-

vation between mice and humans at promoter CpG islands

(Antequera and Bird 1993; Matsuo et al. 1993), only 2108 genes

could be compared directly (detectable on both human and mouse

arrays). Of 276 genes hypermethylated in human colon and de-

tectable on the mouse arrays, 116 (42%) also showed hyper-

methylation in mice. Of the 99 genes hypomethylated in human

colon, three (3%) showed a similar pattern in mice. Thus, there is

only partial conservation in the age-related methylation gene

subset between mice and humans.

Relation to Polycomb targets

DNA hypermethylation in cancer is more frequent among genes

targeted by Polycomb group (PcG) proteins in embryonic stem

(ES) cells (Boyer et al. 2006; Lee et al. 2006; Ohm et al. 2007; Rauch

et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007).

Given that age-related methylation is a precursor to cancer-related

methylation, we reasoned there could be a relationship between ES

cell PcG occupancy and age-related DNA methylation. There are

reliable databases of PcG occupancy in mouse and human ES cells

(Boyer et al. 2006; Lee et al. 2006); therefore, we evaluated whether

PcG targets in ES cells are enriched in the group of genes showing

age-related methylation in mouse and human, respectively. In-

deed, of 497 SUZ12 targets detectable on the arrays, 45% showed

age-related methylation. Similarly, of 338 EED targets detectable

on the arrays, 48% showed age-related methylation. Finally, of 316

genes targeted by both SUZ12 and EED, 51% showed age-related

methylation in mouse. All these demonstrated substantial en-

richment compared to non-PcG targets. Conversely, of the 466

genes showing age-related hypomethylation, only 41 were targets

of SUZ12, EED, or both. There was no PcG enrichment among

hypomethylated genes (Supplemental Table 8). Similarly, PcG

targets in human are also prone to age-related hypermethylation

compared with all detectable genes (Supplemental Table 9).

Age-related gene expression

To test the impact of DNA methylation changes with age on gene

expression, we performed real-time RT-PCR analysis on RNA iso-

lated from young and old large intestines. We chose four age-related

hypermethylated genes, Gpr37, Hoxa11, Pcdh10, and Prdm5, and

expressed the data as average Z-score for all genes in young versus

old mice. As can be seen in Figure 5, these genes showed on average

significant down-regulation with age (P < 0.05). By contrast, P2rx7,

Figure 3. Tissue specificity of age-related methylation. Comparison of methylation changes in small intestine, lung, kidney, liver, and spleen tissues
with age. Each dot corresponds to one animal, grouped into young (Y, <12 mo) and old (O, >12 mo).
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a gene that showed age-related hypomethylation, was up-regulated

in old tissues, while Tpm2 and Cpe, two genes chosen because they

are expressed in normal colon and showed unchanged methylation

with age, had no significant age-related change in gene expression

(Fig. 5).

Discussion
In this study, we used MCAM for a comprehensive analysis of

DNA methylation patterns in aging mouse small intestine and

detected a remarkable rate of alterations, which were highly tissue-

specific. There was partial conservation between aging events in

human and mouse intestine, and PcG targets in ES cells were

preferentially targeted by this process. The data shed new light on

aging in mammals.

The validity of our microarray findings was confirmed by

pyrosequencing analysis of 12 genes. There was no chromosome

clustering of methylation with age. However, MCAM does not

detect all genes because of its dependence on SmaI sites, and this

clustering analysis is therefore limited. In those genes validated by

pyrosequencing, methylation changes appear linear, and range

from very tight associations (R = 0.95 for Pcdh10) to more variable

associations (R = 0.47 for Esr1) suggesting that, for some genes,

factors other than aging must be involved. Indeed, we have pre-

viously reported on an association between chronic inflammation

and accelerated age-related methylation (Issa et al. 2001), and

a recent mouse model came to a similar conclusion (Hahn et al.

2008). Presumably, stochastic inflammation events in individual

mice may account for the variation observed in some genes. In fact,

these may be useful markers of epigenetic variation in general

(sometimes referred to as metastable alleles).

The causes of age-related methylation changes remain to be

determined. Modest changes in DNA methyltransferase expres-

sion have been observed in aging tissues (Ray et al. 2006; Ding

et al. 2008; Xiao et al. 2008), but this could relate to proliferative

stimuli, and DNMT levels have not clearly been associated with

hypermethylation in aging or cancer (Eads et al. 1999). The fact

that PcG targets are enriched among hypermethylated genes sug-

gests that baseline, tissue-specific patterns of gene expression may

be a factor in predisposing to methylation. However, the signifi-

cant mouse/human divergence in methylation suggests that other

factors must also be important; indeed, this is consistent with the

hypothesis that methylation changes are highly influenced by

sequences around gene promoters, which are poorly conserved

(Feltus et al. 2003; Shen et al. 2007). Because 3 yr of time is enough

for similar age-related methylation changes in mice, as humans do

over 80 yr of time, the age rather than time dependence of the

process (along with published data on microdissected crypts)

suggests that stem cell proliferation is an important factor as well

(Yatabe et al. 2001; Kim and Shibata 2002; Siegmund et al. 2009),

which could also account for the effects of inflammation. The

tissue-specificity of age-dependent methylation remains mysteri-

ous. It may relate to tissue-specific exposures, stem cell prolifera-

tion patterns, or even the nature of the stem cells themselves. The

tissue specificity may also explain why other investigators failed to

find an effect of age on DNA methylation (Tra et al. 2002; Eckhardt

et al. 2006).

Figure 4. Methylation profiles of young and aged gastrointestinal tract
(esophagus, stomach, small intestine, cecum, and large intestine). (A–D)
Methylation profiles of Nkx2-5, Hand2, Igf2-py5, and P2rx7, respectively.
(X-axis) The percentage of methylation; (y-axis) regions analyzed in the GI
tract from esophagus to large intestine; (dotted lines) young tissues (3
mo); (solid lines) aged tissues (35 mo). (E ) Methylation profiles of
hypermethylated genes with age. Average percentages of methylation of
Hand2, Pgr, Nptx2, Prdm5, and Dok5. (F ) Methylation profiles of hypo-
methylated genes with age. Average percentages of methylation of P2rx7
and Igf2-py5.

Figure 5. Age-related changes in mRNA expression in large intestine.
Expression was measured for four genes showing age-related hyper-
methylation (Gpr37, Hoxa11, Pcdh10, and Prdm5), one showing age-
related hypomethylation (P2rx7) and two (Tmp2 and Cpe) showing un-
changed methylation with age. The expression data for each gene was
Z-score transformed, and we averaged values for hyper/hypo/unchanged
methylation. Black and gray solid bars represent the expression level of
hypermethylated and hypomethylated genes with age. (Y) Young tissues;
(O) old tissues. Bars represent standard error. *P < 0.05

Age-related DNA methylation in mice

Genome Research 337
www.genome.org



There is an extensive body of literature demonstrating that

the type of methylation observed (promoter CpG island) would

be associated with an altered chromatin structure and silencing

of gene expression. Indeed, we have demonstrated for a few selected

genes that DNA methylation changes are associated with altered

gene expression in aging colon. Across the genome, some of the

genes affected are likely not expressed to start with, and methyl-

ation of those is function-neutral. Others, however, play roles in

cellular physiology including growth, differentiation, apoptosis,

etc. Mosaic methylation of these genes then creates gene expres-

sion diversity in the tissues which, in turn, may fuel the devel-

opment of selection-dependent events, such as tumor growth.

Indeed, it has been extensively documented that genes hyper-

methylated in aging tissues are very often also hypermethylated in

cancer (Shen and Issa 2002). Recently, overexpression of DNMT3B

in a mouse model has been shown to increase methylation in

normal tissues and to accelerate tumorigenesis (Linhart et al.

2007), which is consistent with our model. Whether DNA meth-

ylation changes can account for the pathophysiology of other age-

related phenotypes remains to be determined. It is attractive to

consider the possibility that common aging events, such as insulin

resistance and neuron degeneration, may have an epigenetic

component, and this needs to be explored experimentally. An

important feature of DNA methylation changes is potential re-

versibility by pharmacologic manipulation (Issa 2007), which

might be worth exploring in diseases of aging if an important

epigenetic component was demonstrated.

Our results will be useful to study the interactions between

genetic variation, exposures, and epigenetic variation. For example,

it might be of interest to compare different mouse strains with

different disease susceptibilities to see if any variation there can be

accounted for by DNA methylation. Similarly, it appears reasonable

to test whether genetic, dietary, or pharmacologic interventions that

modify life span in mice are associated with measurable differences

in age-related methylation. A similar gene discovery approach could

also be used to probe the possibility of an epigenetic component to

various age-related diseases, as discussed above.

In summary, we have found a remarkable degree of epigenetic

instability marked by DNA methylation changes in aging mouse

intestine. This adds a new dimension to studying the molecular

mechanisms of aging and associated diseases.

Methods

Mouse tissue samples
All normal tissues were obtained from C57BL/6 mice. We collected
a total of 36 normal small intestine samples (age range, 3.1–35.2
mo old), 24 lung tissues (age range, 4–28-mo-old), 19 liver tissues
(age range, 2.9–35.2-mo-old), and 16 spleen tissues (age range,
2.9–35.2-mo-old). In addition, we collected entire gastrointestinal
tracts from 3-mo-old and 32-mo-old mice. We separated two pieces
for esophagus, three pieces for stomach, 10 pieces for small in-
testine, three pieces for cecum, and six pieces for large intestine.
All tissues were digested with proteinase K and SDS to extract ge-
nomic DNA.

MCAM

MCAM from young mouse small intestine (3.1-mo-old, female)
and aged small intestine (35.2-mo-old, male) was performed as
described previously (Shen et al. 2007). Mouse promoter arrays
were purchased from Agilent Technologies. Microarray protocols,

including labeling, hybridization, and washing procedures, can
be found on the Agilent website (http://www.chem.agilent.com).
After washing, arrays were scanned on an Agilent scanner and
analyzed using Agilent Feature Extraction software at the M.D.
Anderson Microarray Core Facility.

Computational analysis

We built a database to facilitate the performance of MCAM in
detecting DNA methylation status using the SmaI/XmaI iso-
schizomers. Mouse genome sequences were downloaded from the
UCSC Genome Database (http://genome.ucsc.edu/). The SmaI/XmaI
site ‘‘CCCGGG’’ was searched along each chromosome in a case
insensitive fashion. Fragments between two SmaI/XmaI sites were
extracted. If the fragment length was between 20 b and 10 kb, the
fragment was saved in FASTA format with the first line indicating
chromosome number, the starting point of the fragment along
chromosome (counting from CCCGGG), and the length of the
fragment (including starting and ending CCCGGG).

Microarray hybridization analysis

We used normalized signal intensity based on Agilent software and
verified the normalization using R–I plots. We then used probes
located outside of SmaI/XmaI fragments (length up to 10 kb) for
background calculation. The signal intensity for the probes within
the SmaI/XmaI fragments was adjusted for background and ana-
lyzed for the ratio between Cy3 and Cy5 signals. The ratios of
hybridization intensities were adjusted by using Lowess normali-
zation (Cleveland 1979). In this method, the logarithm of hy-
bridization ratio is plotted versus the sum of the logarithm of hy-
bridization intensities (A) and the ratios of the majority of probes
are assumed to be unchanged. The Lowess algorithm is used to fit
a curve through the points in the R–I plot. This curve defines the
zero for the logarithm of methylation ratio and is used to correct
the methylation ratio for each probe.

To determine significantly altered probes, we compute
P-values from Z-scores by assuming that the logarithm of the ratio
of the two channels in the background follows a Gaussian distri-
bution. Based on empirical observations, the width of the distri-
bution, s, depends on the signal intensity. We estimate the width s

using an iterative procedure.

s2
t + 1 = 2 3

+id
2
i e�d2

i =2s2
t

+ie
�d2

i =2s2
t

;

where di is the log ratio and is assumed to be properly centered by
the normalization procedure. The sum is over all probes. The
purpose of weighting is to downgrade the influence of the outliers
(in this case the signal) outside of s, so that the contribution to s is
dominated by the background. The formula becomes exact if di

follows the Gaussian distribution with standard deviation s. The
noise in the background depends on A, the average of log intensity
of red and green channels. Therefore, it is justified to compute
standard deviation of the background by binning A. In each bin of
A, a Z-score can be computed for each probe by the formula zi =

di/s(Ai), where s(Ai) is the standard deviation of the background
for the bin the probe i is in. After computing the P-values from
the Z-scores, we use the BUM model (Pounds and Morris 2003)
to account for multiple testing and compute the FDR.

Bisulfite pyrosequencing for promoter and global DNA
methylation analysis

Bisulfite treatment using the EpiTect Bisulfite Kit was performed
according to the manufacturer’s instructions (Qiagen). We used
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a quantitative bisulfite pyrosequencing method for all DNA
methylation analyses. Repetitive element DNA methylation was
measured for the long interspersed nucleotide element-1 (LINE-1),
the B1 element (one of the short SINEs), and major satellite DNA.
Primer sequences and PCR conditions for bisulfite pyrosequencing
assays are listed in Supplemental Table 10. The methylation levels
at different C sites measured by pyrosequencing were averaged to
represent the degree of methylation in each sample for each gene.
For each assay, we used fully methylated DNA prepared by treating
genomic DNA with SssI methylase (New England BioLabs) as a
positive control. Pyrosequencing was done using the PSQ HS96
Gold SNP Reagents on a PSQ 96HS machine (Biotage). Each
pyrosequencing reaction was done at least twice, and the values
averaged.

Bisulfite sequencing

Bisulfite sequencing of cloned PCR products was used to confirm
methylation of CpG sites. The oligonucleotide primers used for
the amplification of the promoter region of Pcdh10 and P2rx7 were
as follows; Pcdh10-bs1-F, ATTTGTTGATGTAAATAGGGGAATTT
TT; Pcdh10-bs1-R, CTCTCAATCCATCCTACCTCCTACTTCA; and
P2rx7-bs1-F, GTTTTGTTTAGGTTGGATTTGGGTTAGA; P2rx7-bs1-R,
CCCTTTTCTCTCAAATAAAATAAATTCCA. Sequencing was per-
formed at the M.D. Anderson Core Sequencing Facility. We cloned
the PCR products into the TA vector pCR2.1 (Invitrogen) and
extracted plasmid DNA from the resulting clones with the use of
a QIAprep Spin Miniprep kit (Qiagen). Sequencing was performed
at the M.D. Anderson Core Sequencing Facility.

Real-time RT-PCR assay for age-related gene expression

Total RNA from young and old gastrointestinal tracts was prepared
by using the TRIzol reagent (Invitrogen) and reverse transcribed
into cDNA using the high capacity cDNA reverse transcription kit
(Applied Biosystems) according to the manufacturer’s directions.
The expression of Gpr37, Hoxa11, P2rx7, Pcdh10, Prdm5, Cpe, and
Tpm2 was quantified using a TaqMan gene expression assay and an
ABI Prism 7300 sequence detection system (Applied Biosystems).
Gapdh was used as an internal control. Gene expression was nor-
malized to Gapdh using the formula 2�DCt.

Statistics

Correlation between age and methylation was calculated using
Spearman’s correlation analysis for all tissues except lung, where
only two points were available and a t-test was used instead. For gene
expression analysis, we combined data on the genes in each cate-
gory by deriving a Z-score for each sample/time-point. The Z-score
was calculated as follows: Z-score = (expression level of each sample�
mean value of expression levels)/standard deviation of expression
levels. When analyzing multiple genes at a single time-point, we
used the average of the Z-scores for that sample. In this analysis,
a Z-score greater than zero means expression greater than the
population mean. All calculations were done using GraphPad
Prism 4.0 (GraphPad Software Inc.). All P-values are two-sided.
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