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Abstract
Cone beam CT systems are being deployed in large numbers for small animal imaging, dental
imaging, and other specialty applications. A new high-precision method for cone beam CT system
calibration is presented in this paper. It uses multiple projection images acquired from rotating point-
like objects (metal ball bearings) and the angle information generated from the rotating gantry system
is also used. It is assumed that the whole system has a mechanically stable rotation center and that
the detector does not have severe out-of-plane rotation (< 2°). Simple geometrical relationships
between the orbital paths of individual BBs and five system parameters were derived. Computer
simulations were employed to validate the accuracy of this method in the presence of noise. Equal
or higher accuracy was achieved compared with previous methods. This method was implemented
for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed
tomographic images demonstrated that the proposed method is robust and easy to implement with
high precision.
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I. INTRODUCTION
Flat panel detector-based cone beam CT systems acquire projection images during the rotation
of either the object itself, or the x-ray and detector systems around the object on a mechanically
stable axis. The axis of rotation is referred to as the rotation center. A three-dimensional volume
data set consisting of a number of tomographic images of the object is reconstructed from the
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projection data. Precise assessment of the CT system’s geometric parameters is crucial to
achieve successful reconstruction with good spatial resolution and low artifact content in the
reconstructed tomographic images. In this study, a method for estimating system geometric
parameters necessary for cone beam reconstruction is discussed. An accurate determination of
system geometric parameters results from the proposed method. The cone beam CT system
calibration method utilizes a ball-bearing phantom (BB phantom) and angle information
generated from the gantry encoder electronics. Because this method does not require precise
information about the phantom (only a rough measurement of distance between two BBs is
required), it is robust and easy to implement.

II. CONE BEAM GEOMETRY AND PREVIOUS CALIBRATION METHODS
A. Geometry definition and system parameters

To describe the cone beam CT geometry, it is convenient to assume that the x-ray source and
detector system are stationary and that the object rotates around the rotation center. As shown
in Fig. 1, the rotation axis is defined as the z axis of the system. The axis which passes through
the cone vertex (x-ray tube focal spot) and which is also perpendicular to the z axis is defined
as the x axis. The axis perpendicular to the x-z plane which passes through the intersection of
the x axis and z axis is defined as the y axis. In the detector plane, two more axes are defined
along the detector, (u,υ) for horizontal and vertical, respectively. Thus, (u,υ)=(0,0) represents
the top left (viewed from the x-ray source) detector pixel.

If the detector is aligned such that the υ axis is parallel to z axis and the u axis is parallel to y
axis, the system geometric parameters include:

1. Source to isocenter distance, RFI, distance from the cone vertex to the rotation center,
and thus the coordinate of the cone vertex (x-ray tube focal spot) is (−RFI,0,0).

2. Source to detector distance, RFD, distance from the cone vertex to the detector plane,
so the detector plane is located at x=RFD−RFI.

3. u0, horizontal location of the intersection of the x axis and detector plane.

4. υ0, vertical location of the intersection of the x axis and detector plane.

The detector rotation is defined in three parameters, as shown in Fig. 2. ϕ and σ are
out-of-plane rotation angles and η is the in-plane rotation angle.

5. ϕ, the rotation angle of the detector plane along the axis of u=u0, which is also the
axis determined by y=0 and x=RFD−RFI.

6. σ, the rotation angle of the detector plane along the axis of υ= υ0, which is also the
axis determined by z=0 and x=RFD−RFI.

7. η, the rotation angle of the detector plane along the point of (u0,υ0), which is also the
point of (RFD−RFI,0,0).

For a position (xi,yi,zi) to be reconstructed in the volume data set which defines the object, the
corresponding projection position on the ideally aligned detector plane (without any in-plane
or out-of-plane rotation) is determined by

(1)

Yang et al. Page 2

Med Phys. Author manuscript; available in PMC 2010 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For a non-ideally aligned detector with three rotation angles known as (ϕ,σ,η), a transform
matrix T can be used to define the ideally aligned detector position. We use (u′,υ′,w′) to
represent a point on the nonideal detector plane, and (u,υ,w) to represent the corresponding
position on the ideal detector plane. The origin of the rotation in (u,υ,w) system is located at
position (u0·Δu,υ0·Δυ,RFD−RFI) under the (x,y,z) coordinate system, where Δu and Δυ are pixel
dimensions in the units of mm/pixel in the horizontal and vertical directions, respectively.

Then we have

(2)

where

(3)

Thus, the seven geometric parameters RFD, RFI, u0, υ0, ϕ, σ, and η are required to completely
describe the cone beam CT geometry, which means that with precise measurement of these
seven parameters, the exact three-dimensional geometric structure of the object can be
reconstructed from the projection data.

B. Literature report on previous methods
Many methods have been proposed for CT, PET, or SPECT system calibration, for both fan
beam and cone beam geometries.1–8 Many of these methods used the coordinate information
acquired from projections of “point-like” objects (small ball-bearings with higher or lower
density compared to the background) to calculate the system geometric parameters.4,5,7,8 For
early investigations, simultaneous nonlinear equations of these system parameters were
constructed from the projection locations of point objects. To solve these equations, iterative
methods, such as Levenberg-Marquard algorithm, were often applied.2 These methods required
either precise knowledge of the point locations, using a special manufactured calibration
phantom,8 or good initial values for the system parameters, which in some situations were
difficult to assess. Problems involving parameter count restrictions, nonlinear optimization
issues, algorithm convergence, and uniqueness of the solution, limited the effectiveness of
these methods. To avoid those difficulties in solving the nonlinear equations, Noo et al.4
proposed a method by introducing intermediate parameters from fitting an ellipse to the
projection-orbit data. This method only requires a small set of measurements of a simple
phantom consisting of two BBs. This method assumes that one out-of-plane rotation angle
σ=0. Also two BBs used in the calibration phantom need to be on the opposite side of the central
plane, as an extra requirement for phantom placement. Recently, von Smekal et al.7 proposed
an analytical method to solve six system parameters, except for the source to isocenter distance
RFI, based on Fourier analysis of the projection-orbit data. This method can explicitly solve
these six parameters by canceling out RFI in those nonlinear equations and it does not require
any prior knowledge for the phantom. It has up to 50% error in the estimation of out-of-plane
rotation angles ϕ and σ. The authors observed a minor distortion of the reconstructed image
even with a 20° out-of-plane rotation of the detector. These authors also observed that these
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two out-of-plane rotation angles have a very small effect on the reconstructed images compared
with the in-plane rotation angle.

Based upon the results of previously reported methods and our own investigation, the following
observations can be made:

1. These two out-of-plane rotation angles, ϕ and σ, are quite difficult to determine with
reasonable accuracy.

2. These two angles have only a small influence on the image quality compared with
other parameters.

3. In practical implementation, these two angles can be kept small (less than 1°) by good
mechanical design (CAD), high accuracy machining, and careful alignment of
phantom.

In this paper, we present a simple method to estimate five system parameters with angle
information from the rotation system. We assume that the two out-of-plane rotation angles,
ϕ and σ, are zero, based on the observation of von Smekal et al.,7 the analytic validation in
Sec. III A, and computer simulation results in Sec. IV. In addition, only linear regression
techniques are used for data fitting, making the proposed method less sensitive to noise and
relatively simple to implement.

III. THEORY
A. Validation of the assumption

In this calibration method, we assume that ϕ=0 and σ=0. To validate this assumption, the
introduced errors in the calculation of the projected coordinates of the point-like object in the
detector plane were calculated. As shown in Fig. 3, for an ideal point object with coordinates
of (xobj,yobj,zobj), if the detector is ideally aligned (i.e., ϕ=0 and σ=0), the point will be projected
onto the detector plane at (uideal,υideal) and

(4)

We first consider out-of-plane rotation in one direction only, e.g., ϕ≠0 and σ=0. We can also
assume −90° < ϕ < 90°. Then the position of this object on the detector plane with out-of-plane
rotation is (uwr,υwr), and

(5)

The relationship between the coordinates with and without rotation can be expressed as

(6)
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If we define 2α as the fan angle, then

(7)

The percentage errors in υ and u (for uideal≠0,υideal≠0) will be a function of α and ϕ as

(8)

If we consider the effect of the other out-of-plane rotation angle σ, the results will be identical
to those discussed earlier due to symmetry, which means the effect of ϕ on u will be exactly
the same as the effect of σ on υ. Therefore, Fig. 4 only shows the results of ϕ.

As shown in Fig. 4, errors increase with increasing fan angle and rotation angle. For α⩽ 15°,
−2° ⩽ϕ⩽ 2°, the maximal errors in both υ and u are less than 1%, and this 1% error only occurs
to the pixels at the edge of the detector with a 15° fan angle. Pixels corresponding to smaller
fan angles have errors smaller than 1%. As shown in Fig. 5, the maximal percentage error in
both u and υ drops to 0.68% for α=10° and 0.37% for α=5°, with ϕ=2°.

From the above discussion, we can assume that these two out-of-plane rotation angles ϕ=0 and
σ=0, because they only have minor (normally less than 1% for the worst case on the edge of
the detector) effects on system calibration if the detector does not have severe out-of-plane
rotations (<2°). Normally with the advantage of computer aided design (CAD), less than 1°
out-of-plane rotations can be achieved, which means the maximal error in pixel position will
be even smaller than 0.5% on the edge. For example, careful measurement of the detector
rotation angle, ϕ, on the breast CT system in our laboratory demonstrated that ϕ < 0.5°.
Therefore, with the assumptions that the detector can be physically mounted to yield negligible
errors, coupled with the observation that small alignment errors have minimal effect on
calibration performance, the system calibration is simplified to a problem of estimating the
remaining five system parameters, RFD, RFI, u0, υ0, and η.

B. Projection orbit and benchmark points
For a cone beam CT system, if we assume that only the object rotates and the x-ray tube and
detector remain stationary, the orbit of a point in the object (such as a BB) during the scan is
a circle in a plane parallel to x-y plane. The projection of this circle on the detector plane will
be an ellipse. Individual points on this ellipse correspond to the BB’s angular position on the
circle, relative to an initial reference position. We refer to two points on the circular orbit that
are exactly 180° out of phase as a “radial pair,” as illustrated in Fig. 6(a). We can calculate ρ,
the distance between a radial pair of points on the detector plane as described in Appendix A.

In Appendix A, we prove that ρ will have its maximum and minimum values when the point
object is on the x axis or y axis (respectively) for cone beam CT systems with a fan angle less
than 60° and a cone angle less than 30°.

As illustrated in Fig. 6(b), after the maximum and minimum distances ρ between a radial pair
are determined, four corresponding benchmark points can be defined on the detector plane as
Aij(uij,υij), where i is the index number of individual BBs, and j is the index number for four
benchmark points on each BB orbit, j=1,2,3,4. We will carry out the following calibration with
the coordinates of these benchmark points.
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C. Calculation of RFD and v0
For every individual BB indexed by i, we define

(9)

As proven in Appendix B, a linear function X=a1 + b1Y can fit all the (Yi,Xi) pairs, and the
values of the parameters υ0 and RFD can be determined from two coefficients, a1 and b1, by

(10)

D. Calculation of η and u0
To locate the projection line of the rotation center, we first need to locate the projection center
of each ellipse Ai0(ui0,υi0), which can be determined by four benchmark points and every other
four points (positions) which are 90° apart from each other, as shown in Fig. 7. For any group
of four points, we have

(11)

We can go through all the different four-point groups and average the results to get a more
accurate estimation of the projection center of an individual ellipse. All these projection centers
of the different BB trajectories will form the projection line of the rotation center, and we can
use a linear function U=a2 + b2V to fit all the coordinates (ui0,υi0). Since we already have the
value of υ0:

(12)

E. Calculation of RFI
To calculate the last parameter RFI, we need the distance between two BBs, l, which can be
measured before the phantom scan. This requirement is equivalent to the assumption in
Smekal’s paper7 where source to isocenter distance RFI should be known. For a normal CT
system, it is physically difficult to locate the exact position of the x-ray focal spot because it
is internal to the x-ray tube housing. It is also very difficult to find the location of the isocenter.
Consequently, it is much more difficult to accurately measure the source to isocenter distance
directly than to measure the distance between two BBs embedded on a phantom.
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If we label these two BBs as i=1 and i=2, as shown in Fig. 8, h is defined as the vertical distance
between two orbits, r1 and r2 are radius for each orbit, and we have

(13)

From previous steps, we already have

(14)

If we define the original angular positions (before the system starts rotating) of BBs 1 and 2
as θ10 and θ20, respectively, then

(15)

We thus solve RFI using

(16)

IV. COMPUTER SIMULATION
To validate the accuracy of the calibration method described in Sec. III, the projection
coordinates of BBs on the detector plane were simulated. The calibration method was then
applied on the simulated data and the calculated system parameters were compared with their
known values. Gaussian noise of different standard deviation was added to the projection
coordinates to simulate the effect of noise in the practical measurement environment and to
evaluate the consistency of this method in the presence of noise.

In this simulation, the detector matrix size was set to 2048 × 1024 with a pixel size of 48 µm
× 48 µm, similar to the mouse CT scanner assembled in our laboratory. The five system
parameters were set as: RFD=400.0000 mm, RFI=150.0000 mm, u0=1005.0000 pixel,
υ0=480.0000 pixel, η=−1.0000°.

Eight BBs were simulated and the distance between the first and the last BB was l=14.39 mm.
Five hundred points were simulated for each projection orbit, corresponding to a 500-view CT
scan in 360°. One example of the simulation is shown in Fig. 9.

Simulations were performed in three different groups:

1. No preset out-of-plane rotation, with different noise levels, results are shown in Table
I and Table II;

2. With different out-of-plane rotation angles, without noise, results are shown in Table
III;
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3. With specific preset out-of-plane rotations (ϕ=1.5000°,σ=1.2000°), with different
noise levels, results are shown in Table IV and Table V.

Linear regression was used in two steps of the calibration method, and the R-square value or
the coefficient of determination, which is the indicator of how well the fitting works, was shown
in Table I and Table IV. Gaussian noise with standard deviations s of 1%, 20%, 40%, and 100%
of the pixel size were independently added into the horizontal and vertical coordinates of every
projection position. Most R-square values calculated were close to 1.0, corresponding to an
ideal linear fitting. Especially in calculation of RFD and υ0, the R square value was very
consistent even with a noise level of s=1.00 pixel.

The system parameters calibrated from computer simulation are listed in Table II, Table III,
and Table V. Though the results degraded slightly with increasing noise, the calibrated values
were nevertheless accurate in comparison with their true values.

From the results shown in Table III–Table V, when the out-of-plane rotation angles are
relatively small (less than 2°), there will be minor effects caused by neglecting these angles
compared with the effects caused by the noise in the measurement of BB positions. And normal
engineering design and machinery can satisfy this loose requirement by limiting out-of-plane
rotations to within 1°. These results demonstrate that good calibration accuracy can be achieved
assuming ϕ=0 and σ=0.

Computer simulations were performed with various system parameters including the number
of views, number of BBs used, and different combinations of system parameters. All the
calibration results under various conditions validated the accuracy of this calibration method.

To compare with previous results, simulations with same rotation angles and noise level as in
Smekal’s7 work were performed and calibration results are given in Table VI. In Table VI,
relative errors were calculated by the ratio between uncertainties and mean values. The method
presented here has equal or better accuracy as the results reported by Smekal et al.7

V. IMPLEMENTATION
A. Mass center calculation and trajectory tracking

For practical implementation of the calibration method, small ball bearings (with diameters of
0.25 or 2.3 mm in our study for two different scanners) were used as point-like objects to
provide projection coordinates. Because of its finite size and the cone beam system
magnification, the projection of an individual BB covers more than one pixel in the detector
plane, as shown in Fig. 10. The projection images were first processed to reverse the gray scale
and thresholded to reduce the background noise. Then the projection coordinates were
calculated as the mass center of the x-ray shadow area by

(17)

while Image(u,υ) is the gray scale value of detector pixel (u,υ) after processing. The mass center
was calculated iteratively three times for each view (Please refer to Appendix C). Computer
simulation was performed to demonstrate that the calculated mass center has the error of less
than 0.05 pixel from the true projection center of the BB. A computer program was developed
to automatically track BB positions along the trajectory continuously through all the views.
Detailed simulation and tracking procedures are also provided in Appendix C.
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B. A micro CT system
The calibration method was applied to a micro CT system developed in our lab. In this system,
an x-ray tube (XTF5011, Oxford Instruments, Scotts Valley, CA) with a 70 µm focal spot was
used as the x-ray source, and was capable of 4–50 kVp and 0–1.0 mA operation. The CMOS
detector (Shad-o-Box 2048, Rad-icon Imaging Corp., Santa Clara, CA) used in this system has
an active area of 50 × 100 mm2 and pixel size of 48 µm, and produces 1024 × 2048 projection
images. A rotary stage driven by a stepping motor (MDrive 23, Intelligent Motion Systems,
Inc., Marlborough, CT) was used to rotate the object. The whole system is shown in Fig. 11
(a). Eight stainless steel ball bearings with a diameter of 254 µm were taped on the surface of
a 19-mm-diameter test tube to make the BB phantom. The distance between BB 1 and BB 8
was measured as: l=17.2 mm (Fig. 11(b)). Every scan was performed with 30.0 kVp, 0.5 mA,
and 500 views. The system parameters were measured 10 times under exactly the same
conditions. The measured mean and standard deviation values were calculated and shown in
Table VII.

The measured results demonstrated excellent consistency of the proposed calibration method.
Example CT images of a mouse reconstructed with these system parameters are shown in Figs.
12(a)–12(d). These images depict excellent detail and sharp edges of the bone structures,
qualitatively illustrating the performance of the calibration method.

C. A breast CT system
In contrast to the micro CT system, in which the object rotates, a breast CT system constructed
in our lab was designed such that the x-ray tube and detector rotate around the object. This
system uses a 40 × 30 cm amorphous silicon detector (PaxScan 4030CB, Varian Medical
Systems, Salt Lake City, UT) with 194 µm pixel size, corresponding to a 2048 × 1536 image
size. In this study, the detector was working in the mode with 2 × 4 pixel binning, corresponding
to a 1024 × 384 image size. A Pantak HF160 x-ray generator with a 0.4 mm focal spot x-ray
tube (Comet, MXR-160/20), capable of 160 kVp and 6 mA (continuous) operation was used.
The system design is shown in Fig. 13(a). A set of lead ball bearings with a diameter of 2.3
mm was mounted into a foam board to make the BB phantom. The distance between BB 1 and
BB 6 was measured as: l=100.00 mm (Fig. 13(b)). Every scan was performed with 80.0 kVp,
7.0 mA, and 500 views. Ten calibration scans were acquired in a period of about 2 months with
the detector normally positioned (<1° in-plane rotation), and the calibration results are shown
in Table VIII. The results demonstrated excellent reproducibility of the proposed method over
a relative long time period.

To test the performance of this method under a large inplane rotation angle, the detector was
deliberately tilted with an in-plane rotation angle of ~7°. In this configuration, only one
calibration was obtained. The system parameters were measured as: u0=383.5924 pixel,
υ0=49.7066 pixel, η=7.5995°, RFI=465.1768 mm, RFD=892.1971 mm.

The R-square values for the linear fitting were 0.999 920 4 and 0.999 992 9, respectively.

CT images of a bone phantom reconstructed with these system parameters are shown in Fig.
12(e). As compared with Fig. 12(f), excellent details and sharp edges of the bone structures
were demonstrated with correct system parameters. The calibration method works consistently
even with a relative large detector in-plane rotation angle.

VI. DISCUSSION
In this work, a new and simple method for cone beam CT calibration was presented. The
previous seven-parameter problem was simplified to a five-parameter problem. The maximal
error introduced by this assumption was found to be less than 1% for typical cone beam CT
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systems. High resolution angle information from the rotation system, basic information for CT
systems, is leveraged to achieve higher precision than with previous methods. Linear regression
performance validated the accuracy and consistency of this method in the presence of noise.
Only a rough measurement of the distance between two BBs was required to calculate the
source to isocenter distance RFI. The error in RFI was due both from this measurement and the
error in the calculation of the source to detector distance RFD. However, cone beam CT
reconstruction is more dependent on the ratio of RFI to RFD than on their absolute values.2,4,
9,10 Thus the accuracy in RFI is acceptable and the methodology produces reconstructed images
with good spatial resolution and without major artifacts.

VII. CONCLUSIONS
From the results of computer simulation and practical system implementation in a micro-CT
scanner and a breast CT scanner, equal or higher accuracy was achieved with a simpler
implementation. The proposed method can be applied to any cone beam CT system with a
mechanically stable rotation center and without severe detector out-of-plane rotations (<2°).
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APPENDIX A: RADIAL PAIR CALCULATION
As shown in Fig. 14, the distance between a radial pair of points on the detector plane, ρ, will
be a function of θ(0° ⩽ θ ⩽ 90°). This distance does not depend on the in-plane rotation of the
detector, so we can assume η=0. For a circular trajectory located at plane z=zi, with radius r,
we have

(A1)

(A2)

Let

then ρ2 will be a quadratic function of x,

(A3)

Because 0° ⩽ θ ⩽ 90°, then
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Case 1: If .

, ρ2 will be a linear function of x and have its maximum value when
θ=90° and minimum value when θ=0°.

Case 2: If .

 will be a quadratic equation and have maximum
value at,

(A4)

We can easily prove that if , then

as shown in Fig. 15(a).

So ρ2 will have its maximum value when θ=0° and minimum value when θ=90°.

Case 3: If .

 wil1 be another quadratic equation. From Figs. 15(b)
and 15(c), we can see that, in either situation, ρ2 will have its maximum value when θ=90° and
minimum value when θ=0°.

In summary, we only need  or (zi/RFI)2 + 2(r/RFI)2<1 to ensure that ρ (as well as
ρ2) will have its maximum or minimum values when θ=90° or θ=0°. Actually if we define the
maximum fan angle and cone angle as 2α and β, then

(A5)

If a system has a cone angle less than 30° and a fan angle less than 60°. (tan β)2+2(tan α)2<1.
This limit is relatively loose for a practical system. For example, our micro-CT system has a
RFI=200 mm, with a detector active area of 10 × 5 cm2 and the maximum z and r values for
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our BB phantom will be 50 and 50 mm (on the detector plane, will be even smaller on the iso-
center), corresponding to a fan angle of 28.07° and a cone angle of 14.04°. So this limit can be
easily satisfied for normal cone beam CT systems.

APPENDIX B: CALCULATION OF RFD AND V0
As shown in Fig. 16,

(B1)

Then

(B2)

So

(B3)

And we also have

(B4)

Insert these into Eq. (B3), and we have

(B5)

Define:

(B6)

Then use a linear function X=a1 + b1Y to fit all the (Yi,Xi) pairs, we can get υ0 and RFD from
these two coefficients, a1 and b1, by
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(B7)

APPENDIX C: MASS CENTER CALCULATION
The cone beam projection image of a spherical object was simulated by analytical calculation
of the attenuation of an x-ray beam. In this simulation, monoenergetic photons were emitted
from an isotropic point source. Output photons were uniformly distributed in 4π space.
Gaussian noise was added to the incident photons and an example of the simulated projection
image is shown in Fig. 17. This image was then processed to reverse the gray scale and
thresholded to reduce the interference of background noise. A initial position  and a
window size k were set manually from observation. Thus the mass center for individual view
with index n was calculated within the window . This calculation was repeated
iteratively as

(C1)

I(u,υ) is gray scale value of the projection image at (u,υ) after processing. Ni is the total number
of iterations.

Once the projection center position was determined, it was used as the initial position for the
next view and the same procedure was repeated for the next projection image. The complete
trajectory was determined through all the views over 360°. The trajectory tracking diagram is
shown in Fig. 18.

Computer simulation was performed to validate the accuracy of the mass center calculation
and determine the optimal iteration numbers. For a properly chosen window size, the results
were always convergent in less than three iterations, even when the initial position was set at
the edge of the x-ray shadow area.

In the computer simulation, 1 × 106 photons with a noise level of 1 × 104 were incident into
each detector pixel. The x-ray shadow covered an area of 25 × 25 pixel2. True values of the
projection center coordinates were calculated as: u0=415.7407 pixel, υ0=242.1296 pixel.

With three iterations for each simulation, a 30 × 30 window, initial position at u0=402 pixel,
υ0=230 pixel, the results of 10 runs were: u0=415.75±0.05 pixel, υ0=242.12±0.03 pixel.

Simulations using different shadow areas (BB size), noise levels, and initial positions were
studied and the calculated results all had an error less than 0.05 pixel from the true values.
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FIG 1.
Cone beam geometry.
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FIG 2.
Detector rotation.
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FIG 3.
Out-of-plane rotation in one direction.
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FIG 4.
Percentage error in (a) u, (b) υ, as a function of out-of-plane rotation angle ϕ, and fan angle
α. Fan angle α=5°, 10°, 15°, 20°, to avoid redundant curves, only positive fan angle curves are
shown.
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FIG 5.
Percentage error as a function of fan angle α.
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FIG 6.
(a) Projection orbit and radial pair. (b) Benchmark points.
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FIG 7.
Calculation of η and u0.
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FIG 8.
Calculation of RFI.
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FIG 9.
Simulated projection orbits with Gaussian noise. RFD=400 mm, RFI=150 mm, u0=1005 pixel,
v0=480 pixel, η=−1.0°, standard deviation of Gaussian noise=0.4 pixel.
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FIG 10.
Projection image of BB phantom and mass center calculation.
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FIG 11.
Micro CT system. (a) System overview; (b) Ball bearing phantom.
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FIG 12.
Example CT images. (a)–(d) micro CT images, (e)–(f) bone phantom images from a breast CT
scanner. (a) Sagittal view; (b) Coronal view; (c) Axial view; (d) Axial view, with u0 and v0 off
by 1 pixel; (e) Axial view; (f) Axial view, with η off by 0.2°.
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FIG 13.
Breast CT system. (a) System overview; (b) Ball bearing phantom.
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FIG 14.
Appendix A.
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FIG 15.
ρ2 as a function of x in different cases.
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FIG 16.
Appendix B. Calculation of υ0 and RFD.
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FIG 17.
Computer simulation on mass center calculation.
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FIG 18.
Diagram of trajectory tracking. In(u,υ) is the gray scale value of position (u,υ) in view # n, after
processing. N is the total number of views, k is the window size set from observation so that a
2k*2k window completely covers one BB and the adjacent BB is also located with this window.
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TABLE VI

Comparison with Smekal’s method (ϕ=1.5000°, σ=1.2000°).

Standard deviation of Gaussian noise s=0.4 pixels

System parameters This method Smekal’s et al.

u0(pixel) 1005.9±0.3 0.005 367±2.2 × 10−6

Relative error 0.000 298 2 0.000 409 9

υ0(pixel) 480±1 0.004 564±0.000 655

Relative error 0.002 083 3 0.143 514 4

η(°) −0.99±0.03 −1.005±0.017

Relative error 0.030 303 0 0.016 915 4

RFD(mm) 401±1 2.489±0.020

Relative error 0.002 493 8 0.008 035 4
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TABLE VII

Micro-CT system calibration results.

Mean Standard deviation Coefficient of variation

u0(pixel) 1014.93 0.02 0.0018%

υ0(pixel) 529.7 0.1 0.0248%

η(°) 0.190 0.009 4.5254%

RFI(mm) 225.04 0.05 0.0209%

RFD(mm) 401.52 0.08 0.0199%
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TABLE VIII

Breast CT system calibration results.

Mean Standard deviation Coefficient of variation

u0(pixel) 514.0 0.2 0.0292%

υ0(pixel) 53.0 0.3 0.5442%

η(°) 0.22 0.01 6.5713%

RFI(mm) 459.9 0.4 0.0874%

RFD(mm) 860.3 0.7 0.0855%
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