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Abstract
The influx of Ca2+ ions through voltage-dependent calcium (CaV) channels links electrical signals
to physiological responses in all excitable cells. Not surprisingly, blocking CaV channel activity is
a powerful method to regulate the function of excitable cells, and this is exploited for both
physiological and therapeutic benefit. Nevertheless, the full potential for CaV channel inhibition is
not being realized by currently available small molecule blockers or second messenger modulators
due to limitations in targeting them either to defined groups of cells in an organism or to distinct sub-
cellular regions within a single cell. Here, we review early efforts to engineer protein molecule
blockers of CaV channels to fill this crucial niche. This technology would greatly expand the toolbox
available to physiologists studying the biology of excitable cells at the cellular and systems level.

Electrical signals, or action potentials, generated by ionic fluxes through ion channel proteins
residing in the plasma membranes of cells, constitute one of the most prevalent and important
cell signaling mechanisms in biology. Electrical signals co-ordinate the activity of the millions
of cells required to generate the heartbeat; underlie the orchestrated firing of neurons that enable
sight, speech, movement, and formation of memories; and regulate the release of hormones
that control glucose homeostasis, growth, and development. Although the spectrum of
biological responses dependent on electrical signals is impressively diverse, they all utilize a
similar signal transduction paradigm: membrane depolarization leads to the opening of voltage-
dependent Ca2+ (CaV) channels, permitting a Ca2+ influx that triggers the appropriate cell
biological response. The central role CaV channels play in transducing electrical signals into
biological responses position them as attractive targets for potentially regulating a wide range
of physiological processes. Indeed, modulation of CaV channels by a variety of second
messenger pathways and small molecules is widely exploited as a means to regulate physiology
and as a therapy for various diseases. In this review, we will discuss nascent efforts to engineer
protein molecules for custom inhibition of CaV channels. As a prelude to in-depth discussion
of this topic, we will first briefly review the structure-function of CaV channels, traditional
CaV channel blockers, and the rationale for developing such novel protein inhibitors of CaV
channels.

Structure-function of CaV channels
CaV channels are divided into two main families depending on their threshold for activation.
There are three types of low-voltage-activated (CaV,LVA), or T-type, Ca2+ channels (CaV3.1
– CaV3.3) encoded by distinct genes (CACNA1G, CACNA1H, and CACNA1I), each with
multiple splice variants (93). Functionally, CaV,LVA channels activate at a relatively negative
threshold of around −60 mV, have a small conductance, and rapidly inactivate (111).
CaV,LVA channels are found in many excitable cell types including sinoatrial node cells, smooth
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muscle, and neurons, where they contribute to pacemaking (91). CaV,LVA channels will not be
discussed any further in this review.

High-voltage-activated calcium (CaV,HVA) channels currently include seven members
(CaV1.1–CaV1.4, CaV2.1–CaV2.3) encoded by distinct genes each with multiple splice variants
(19). CaV,HVA channels typically have an activation threshold of around −30 mV, the exception
being CaV1.3 which activates at a threshold of around −50 mV (75,123). Structurally,
CaV,HVA channels are hetero-multimeric proteins comprised of a main α1 subunit assembled
with auxiliary β and α2δ subunits, calmodulin, and sometimes a γ subunit (Figure 1).

α1 subunits
CaV,HVA channel α1 subunits are the pore-forming proteins and define the identity of the
channel complex. All CaV,HVA channel α1 subunits have a similar architecture, comprised of
four homologous domains (I–IV), each with six membrane spanning segments (S1–S6). The
four domains are connected by intracellular loops of varying lengths, along with cytosolic N-
and C-termini. The S4 segment of each domain contains positively charged residues that are
an integral part of the voltage sensor. The S5–S6 pore loops from each domain collaborate to
form the selectivity filter, and the S6 segments line the channel pore (19).

β subunits
There are four auxiliary CaVβ subunits (β1–β4) encoded by different genes, each with multiple
splice variants (17,18,31,92,98,101,110). At the primary sequence level the different CaVβs
display two conserved domains separated by an alternatively spliced linker region, and variable
N- and C-termini. Crystal structures revealed the conserved core of CaVβs contain src
homology 3 (SH3) and guanylate kinase-like (GK) motifs that interact intramolecularly (23,
88,117). This functional signature suggests a kinship to the membrane-associated guanylate
kinase (MAGUK) super-family of scaffold proteins, which all contain an SH3-GK module,
and organize intracellular signaling pathways by co-localizing diverse proteins (2,48).
Functionally, CaVβs: are necessary for trafficking pore-forming α1 subunits to the plasma
membrane; produce depolarizing shifts in the voltage-dependence of channel activation;
elevate single-channel open probability (Po); and impart characteristic inactivation properties
to CaV,HVA channels (24,29,63,70,86,92,105). CaVβs bind with high affinity to α1 subunits
using an `α binding pocket' (ABP) formed by non-contiguous residues in the GK motif, and a
conserved 18-residue sequence, the `α interaction domain' (AID), located in the intracellular
loop connecting α1-subunit domains I and II (23,88,97,117). Binding of CaVβ to α1 increases
the helical propensity of the region from the AID to the end of IS6, suggesting formation of a
rigid helix that spans the AID and IS6 (89). This rigid IS6-AID helix is important for the ability
of CaVβs to modulate activation and inactivation gating (42,118).

α2δ subunits
There are currently four α2δ subunit types (α2δ-1 – α2δ-4) encoded by different genes (34,49,
68,99). The α2δ subunit is generated in cells as a single gene product which is post-
translationally cleaved to generate separate α2 and δ proteins that are held together by disulfide
bonds (61). Both the α2 and δ subunits are heavily glycosylated. Topologically, the α2
component is entirely extracellular, while the distal part of the δ peptide spans the plasma
membrane. Functionally, α2δ subunits typically increase current amplitude by increasing the
surface density of α1 subunits, and also influence channel activation and inactivation gating
(40,104).
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Calmodulin
CaV,HVA channels are subject to rich positive and negative feedback regulation by Ca2+ (37).
The Ca2+ sensor for the effects of intracellular Ca2+ on CaV,HVA channels is calmodulin (71,
94,126), which associates in the basal state with an IQ motif in the cytoplasmic C-terminus of
CaV,HVA channel α1 subunits (66,82,116). There is also evidence that calmodulin binding is
important for trafficking CaV,HVA channel α1 subunits (119).

γ subunits
The first γ subunit identified (γ1) was originally isolated as one of the component subunits of
CaV,HVA channel purified from skeletal muscle (14). Currently, there are eight members of
this protein family, but only a subset has been shown to interact with some CaV,HVA channel
α1 subunits (64). Topologically, γ subunits are predicted to have four transmembrane with
cytoplasmic N- and C-termini. Functionally, they appear to have inhibitory effects on some
CaV,HVA channels (64).

Traditional CaV,HVA channel blockers
Small molecules that block CaV,HVA channels have historically played a critical role in
advancing understanding of the different CaV,HVA channel subtypes and their respective
biological functions. Furthermore, small molecule CaV,HVA channel blockers are used
pharmacologically as an important therapy for various cardiovascular and neurological
diseases (69,114).

CaV1 channels
CaV1.1–CaV1.4 channels, also referred to as L-type channels, are inhibited by three classes of
drugs— dihydropyridines, phenylalkylamines, and benzothiazepines— in a state-dependent
manner (108). Pharmacological blockade of L-type channels is an important therapy for
cardiovascular diseases such as hypertension, angina, and some cardiac arrhythmias (114). The
three drug classes inhibit CaV1 channels by binding to partially overlapping residues localized
in domains III and IV of the respective pore-forming α1 subunits (53,57,95,102,108). Drug
binding to the CaV1 α1 subunits is believed to couple allosterically to the channel pore and
gating machinery (108).

CaV2 channels
Unlike CaV1 channels, there is a dearth of small organic blockers for CaV2.1–CaV2.3 channels.
However, CaV2 channel family members are potently blocked by various peptide toxins
isolated from predatory marine snails or spider venom (115). Specifically, CaV2.1 (P/Q-type)
channels are selectively blocked by ω-agatoxin IVA (80,120); CaV2.2 channels are inhibited
by ω-conotoxin GVIA (3,96); and CaV2.3 channels repressed by SNX-482 (85,113). These
toxins act by binding the respective pore-forming α1 subunit, and either physically occluding
the pore or modifying channel gating. Blockade of CaV2 channels is an effective or potential
therapy for an assortment of disorders including neuropathic pain, epilepsy, stroke, and
neurodegenerative conditions (114).

Gabapentin
Gabapentin is efficacious in the treatment of neuropathic pain and seizures (106). Though this
drug was originally designed as a γ-aminobutyric acid (GABA) derivative, its analgesic action
stems from a high-affinity interaction with the α2δ-1 (and α2δ-2) subunit of CaV,HVA channels
(13,41,51). Under control physiological conditions, gabapentin has only moderate effects on
ICa. However, during nerve injury there is a marked up-regulation of α2δ-1 subunits in dorsal
root ganglion (DRG) neurons and the spinal dorsal horn (73). Under this condition, gabapentin
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acutely inhibits ICa in DRG neurons, and this effect may underlie the analgesic effect (74).
Chronic exposure to gabapentin suppresses CaV2.1 channel trafficking to the plasma
membrane and this may also be a contributing mechanism to the therapeutic effects of the drug
(54). Overall, gabapentin provides a nice proof-of-concept that it is possible to design
efficacious CaV,HVA channel modulating molecules that target auxiliary subunits rather than
the pore-forming α1 subunit (114).

Rationale for engineering proteins to inactivate CaV channels
There are many potential applications of CaV,HVA channel inhibition that cannot be achieved
using the traditional CaV,HVA channel blockers described above. The limitations arise because
it is difficult to specifically target these inhibitors to either a select group of cells in a tissue or
organ, or to CaV,HVA channels localized in spatially distinct regions within a single cell (Figure
2). By contrast, these limitations may be overcome with engineered intracellular proteins that
block CaV,HVA channels because these have the capacity to be deployed in defined cell types,
and may also be targeted to spatially distinct sub-cellular sites using appropriate addressing
motifs. To illustrate the potential niches that can be uniquely filled by engineered protein
blockers of CaV,HVA channels, we draw on specific examples from neuroscience and cardiac
biology, although the potential applications extend to all excitable cells.

Macroscopic neuroscience applications
An important tool for neurophysiologists studying the intricacies of the mammalian brain, or
the function of neural circuits in model organisms is the ability to functionally eliminate
specific neurons in a living animal and observe the resulting behavioral consequences (Figure
2A) (77). Various tools have been developed to advance this capability, each with its own set
of limitations (77). These include: suppressing neuronal excitability by over-expressing
potassium (62) or chloride ion channels (72), or a light-gated chloride pump (125); and,
inactivating synaptic transmission using small-molecule-mediated cross-linking of synaptic
vesicle fusion proteins (65). In principle, blocking CaV2 channels should be highly effective
in eliminating neurotransmission because synaptic vesicle fusion is steeply dependent on
Ca2+ influx via these channels (transmitter release ∝ ICa

n, where n = 3 – 5) (12, 30). However,
traditional peptide toxin blockers of CaV2 channels cannot be easily targeted to specific neurons
in living animals, thus limiting their utility for this purpose. Genetically encoded intracellular
blockers of CaV,HVA channels have the advantage that they can be expressed in specified
neurons using a number of different approaches that have been developed including utilizing
appropriate cis-regulating elements (77).

Microscopic neuroscience applications
Neurons have a highly compartmentalized architecture. A single neuron usually has multiple
CaV,HVA channel types that are differentially distributed in different sub-cellular
compartments. A single CaV,HVA channel type expressed in a neuron may mediate different
biological responses upon Ca2+ influx depending on its sub-cellular localization within the cell
(Figure 2B). For example, Ca2+ influx through presynaptic terminus-localized CaV2 channels
is the dominant trigger for neurotransmitter release in most neurons (20, 87). However, these
same channels regulate neuronal excitability by coupling to Ca2+-activated K+ channels in
axons and dendrites (39, 79, 122). Having the capacity to selectively inhibit a particular
CaV,HVA channel type located in spatially distinct regions of a neuron would not only advance
fundamental understanding of Ca2+ signaling mechanisms in neurons but also permit a more
fine-tuned regulation of neuronal activity. While such micro-scale targeting of CaV,HVA
channels in single neurons is not possible with the currently available toxin blockers, it may
be possible to achieve this objective using engineered protein inhibitors.
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Macroscopic cardiac applications
In heart, CaV1.2 channels are critical for excitation-contraction (EC) coupling, membrane
excitability, and conduction velocity through the atrio-ventricular (AV) node. Atrial fibrillation
(AF) is a prevalent arrhythmia characterized by rapid and un-coordinated activation of the atria
due to re-entrant excitation or abnormal impulse formation from ectopic foci (84). A significant
portion of the adverse effects associated with AF are due to ventricular tachycardia produced
by abnormal activation of the ventricles as a result of the electrical activity in the atria. A
treatment for AF is ablation of the AV node to electrically uncouple the atria and ventricles.
This treatment is invasive and irreversible, and it has been proposed that inhibiting CaV1.2
channels in the AV node may represent a viable alternative that is reversible (Figure 2C)
(32). Protein inhibitors of CaV1.2 channels have the advantage over the small organic blockers
because they can be focally expressed, and thus specifically targeted, to the AV node (32,83).

Microscopic cardiac applications
In single ventricular myocytes most CaV1.2 channels are localized in transverse tubules where
they are apposed to nearby clusters of ryanodine receptors (RYR) in the junctional sarcoplasmic
reticulum (SR; Figure 2D) (16, 50, 103, 109). This spatial arrangement of CaV1.2 channels
and RYRs is critical for the calcium-induced calcium release that underlies cardiac EC coupling
(15, 38, 107, 121). However, a portion of ventricular CaV1.2 channels are found localized
within caveolae (5). It has been hypothesized that caveolae CaV1.2 channels in heart locally
activate Ca2+-sensitive molecules that signal to responses other than contraction, including,
potentially, cardiac hypertrophy (52, 81). Testing the function of caveolae-localized CaV1.2
channels in heart requires the selective inactivation of this channel pool in single ventricular
myocytes. This requirement is beyond the capabilities of organic CaV1.2 channel blockers, but
may be achievable with appropriately targeted protein inhibitors.

Engineering proteins for custom inhibition of CaV,HVA channels
Inducible inhibition of CaV1–2 channels is widely exploited as a mechanism to regulate diverse
physiological processes in organisms (37,67). For example, CaV2 channels are inhibited by
many G-protein coupled receptor (GPCR) ligands. In one form of modulation, Gβγ subunits
released from heterotrimeric G-proteins upon GPCR activation, bind CaV2 channel α1 subunits
and shift them into a reluctant gating mode where they require large depolarizations to open
(6,33,35,56,59). Hallmarks of Gβγ-induced inhibition of CaV2 channels include a slowing of
current activation kinetics and relief of inhibition by either large depolarizations or high
frequency action potential waveforms (25,36,76). In another paradigm, binding of GPCR
ligands inhibit ICa by causing the removal of CaV,HVA channels from the cell surface (1,112).
In principle, the myriad physiological mechanisms that exist to inhibit CaV,HVA channels are
potential candidate templates for engineering to create novel derivatives for custom
applications. In one approach, the engineering is performed at the level of the GPCR, to evolve
forms that can be activated by pharmacologically inert ligands (4). In another approach,
membrane-tethered ω-conotoxin MVIIA was used to selectively and potently block co-
expressed CaV2.2 channels in Xenopus oocytes (58). We will, however, focus the rest of the
review on the Rad/Rem/Gem/Kir (RGK) GTPases which have several features that make them
particularly well-suited for this purpose.

RGK GTPases
The RGK protein family currently consists of four members; Rem, Rem2, Rad, and Gem
(mouse homolog also referred to as Kir). These proteins belong to the Ras superfamily of
monomeric GTP binding proteins that function as GTP-regulated switches to regulate a wide
variety of essential biological processes in cells (26). Structurally, RGK proteins have several
unique features that distinguish them from other Ras GTPases including non-conservative
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substitutions in the GTP binding domain of residues involved in nucleotide binding and
hydrolysis, a long N-terminus extension that is variable within the family, and a relatively
conserved C-terminus extension (27,43,47,78,100). The C-terminus extension of RGK
GTPases lack the CAAX prenylation motif found in many Ras-like GTPases (26).
Nevertheless, the distal C-terminus extension effectively targets RGK proteins to the plasma
membrane utilizing a combination of electrostatic and hydrophobic interactions involving
basic and aromatic (or aliphatic) residues with the membrane (55). The C-terminus of RGK
GTPases binds calmodulin and 14-3-3 proteins in vitro, and these interactions may regulate
the sub-cellular localization of these proteins (8,9). Functionally, Gem and Rad regulate
cytoskeleton remodeling via interactions with Rho kinase (27); siRNA knockdown of Rem2
in neurons inhibits synapse development (90); and loss of Rad in heart leads to heart failure
(21).

Crosstalk of RGK GTPases with CaV,HVA channels
A yeast two-hybrid screen using CaVβ3 as bait fished out Gem GTPase as an interaction partner
(10). Electrophysiological experiments on recombinant channels reconstituted in Xenopus
oocytes revealed that Gem effectively eliminated CaV1.2 and CaV1.3 channel currents (10).
Subsequently, the property of dramatically inhibiting CaV,HVA channels was found to extend
to all members of the RGK GTPase protein family (45). The mechanism of RGK proteins
inhibition of CaV,HVA channels was initially believed to involve disruption of the α1-β subunit
interaction (10). However, there is an emerging consensus that this does not occur and that
RGK GTPases rather form a ternary complex with α1 and β subunits to inhibit ICa (11,44).
RGK GTPases inhibit ICa by different mechanisms. In some studies, RGK proteins reduce the
surface density of CaV,HVA channels (7–10), although this is not universally found (22,46). A
significant portion of inhibition involves channels that remain on the cell surface but are either
held in a low open probability mode or else display immobilized voltage sensors.

Engineering RGK proteins for custom applications
RGK proteins are promising candidates for engineering custom CaV,HVA channel blockers
given their extreme potency in inhibiting all CaV,HVA channel types. Indeed, over-expression
of wild-type RGK GTPases in tissues can be used to achieve a constitutive block of native
CaV,HVA channels. In a nice demonstration of this, viral-mediated expression of Gem in adult
heart cells ablated native CaV1.2 channel currents, and its focal delivery to the AV node slowed
AV nodal conduction and heart rate in an animal model of atrial fibrillation (83). One limitation
of using wild-type RGK GTPases is that the inhibition is constitutive, with no facile way for
temporal control of channel block. A second disadvantage is that the magnitude of channel
block cannot be easily regulated. Whether these capabilities could be engineered into RGK
GTPases provided a crucial initial test of the feasibility of exploiting these proteins for custom
applications. An important finding that advanced this possibility is that deleting the distal C-
terminus of RGK GTPases eliminates their ability to block ICa (22,45,124). For both Rem and
Rem2, deleting the distal C-terminus results in a redistribution of the GTPase from the plasma
membrane to the cytosol. Moreover, constitutively targeting the inactive truncated RGK
GTPases to the plasma membrane, using generic membrane-targeting modules, recapitulated
their capacity to inhibit ICa (22,124). This suggested that membrane targeting is essential for
the ability of RGK GTPases to inhibit ICa. We took advantage of this feature of RGK GTPases
to develop a chemical genetic hybrid approach where Rem derivatives are cytosolic and
inactive in the basal state but can be acutely activated to block ICa by induced translocation to
the plasma membrane using a small molecule (124). These engineered proteins were termed
genetically encoded molecules for inactivating CaV channels (GEMIICCs). The first
generation GEMIICC featured the C1 domain from protein kinase Cγ fused to the N-terminus
of a C-terminus-truncated Rem, termed Rem265. When expressed in HEK293 cells, C1PKCγ-
YFP-Rem265 was predominantly cytosolic. Application of 1 μM phorbol-12,13-dibutyrate
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(PdBu) resulted in a rapid translocation of C1PKCγ-YFP-Rem265 to the plasma membrane. In
cells co-expressing recombinant CaV2.2 channels and C1PKCγ-YFP-Rem265, ICa was high in
the basal state reflecting the inability of a cytosol-localized truncated Rem derivative to block
CaV,HVA channels. Upon adding PdBu, ICa decreased concomitantly with translocation of
C1PKCγ-YFP-Rem265 to the plasma membrane. Moreover, the magnitude of CaV2.2 channel
inhibition was easily regulated simply by varying the concentration of PdBu (IC50 = 56 nM).
One surprise with the C1PKCγ-YFP-Rem265 GEMIICC was that it showed selectivity in
inhibition. Both CaV2.2 and CaV1.2 channels were significantly inhibited by C1PKCγ-YFP-
Rem265 in a PdBu-inducible manner. However, CaV2.1 and CaV2.3 channels were
unresponsive. This contrasts to wild-type Rem, which effectively inhibits all CaV,HVA
channels. The reason for the selectivity of the GEMIICC is unknown, but could reflect different
geometric constraints for the distinct channel types. Ultimately, the selectivity of C1PKCγ-YFP-
Rem265 may prove fortuitous as it suggests that it may be possible to develop GEMIICCs that
are specific for individual CaV,HVA channels.

Many of the potential applications of GEMIICCs may rely on their inducible targeting to
spatially distinct plasma membrane sites within a single cell. This level of spatial precision is
not possible with the C1PKCγ-YFP-Rem265 GEMIICC. As a prelude to developing GEMIICCs
that can be targeted with specificity to defined regions of the plasma membrane, we evaluated
the feasibility of using a rapamycin-mediated heterodimerization strategy to facilitate
membrane translocation of a Rem265 derivative (28). Rapamycin is an immunosuppressant
drug that acts by heterodimerizing two proteins, FKBP and the kinase mTOR. To implement
the approach, FKBP was fused to the N-terminus of Rem265, and the rapamycin binding domain
of mTOR (FRB) was fused constitutively to the plasma membrane using the membrane-
targeting module from Lyn kinase (60) (Figure 3). In the basal state, cells co-expressing YFP-
FKBP-Rem265 (YFR) and Lyn-FRB (LDR) displayed YFP fluorescence in the cytosol.
Addition of 1 μM rapamycin caused a rapid translocation of YFR to the plasma membrane,
with a concomitant inhibition of co-expressed CaV2.2 channels (Figure 3B). The successful
implementation of the heterodimerization approach greatly advances the prospect of
developing GEMIICCs that target CaV,HVA channels with sub-cellular precision in single
excitable cells.

In summary, we have described recent ongoing efforts to develop technologies that permit
spatially restricted and temporally regulated inactivation of CaV channels in vitro and in
vivo. It is anticipated that this capability would significantly expand the toolkit available to
physiologists to probe and manipulate the biology of excitable cells at the cellular and systems
level. Potential uses of the technology include: (1) manipulating neuronal excitability in vivo
to evaluate the function of specific neural circuits, or as a treatment for neurological disorders
such as epilepsy and stroke that are characterized by excessive neural activity and
excitotoxicity; (2) selectively inactivating spatially distinct pools of CaV channels within single
heart and neuronal cells to discover novel functional paradigms of CaV channel signaling in
these cells; and (3) developing inducible animal models of diseases, such as atrial fibrillation,
in which a diminished ICa is an important factor.
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Figure 1. Multi-subunit structure of CaV1–2 channels
CaV1–2 channels are comprised of a main pore-forming α1 subunit together with accessory
proteins that include β and α2δ subunits, and calmodulin. Some channel complexes also include
a γ subunit.
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Figure 2. Potential applications for genetically encoded CaV channel inhibitors
(A) Disruption of specific neural circuits in a living organism. (B) Targeting functionally
distinct CaV,HVA channels in localized in different compartments within a single neuron. (C)
Focal inhibition CaV1.2 channels in defined region of the heart in living animals. (D) Targeting
CaV1.2 channels in a single myocyte with sub-cellular specificity.
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Figure 3. Engineering Rem for acutely inducible inhibition of CaV channels
(A) Concept for generating inducible inhibition of CaV,HVA channels using a small molecule
dimerizer-mediated recruitment of a Rem265 derivative to the plasma membrane. (B) Confocal
images showing rapamycin-induced translocation of YFP-FKBP-Rem265 to the plasma
membrane in a HEK 293 cell. (C) Whole-cell CaV2.2 currents from a cell co-expressing LDR
and YFR before (▲) and after ( ) exposure to 1 μM rapamycin. (D) Time course of rapamycin-
mediated inhibition of ICa. (E) Population current density (J) versus voltage (V) plots before
(▲) and after ( ) rapamycin in cells co-expressing LDR and YFR. (Figure adapted from Yang
et al., 2007).
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