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Error Effects in Anterior Cingulate Cortex Reverse when
Error Likelihood Is High
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Strong error-related activity in medial prefrontal cortex (mPFC) has been shown repeatedly with neuroimaging and event-related
potential studies for the last several decades. Multiple theories have been proposed to account for error effects, including comparator
models and conflict detection models, but the neural mechanisms that generate error signals remain in dispute. Typical studies use
relatively low error rates, confounding the expectedness and the desirability of an error. Here we show with a gambling task and
functional magnetic resonance imaging that when losses are more frequent than wins, the mPFC error effect disappears, and moreover,
exhibits the opposite pattern by responding more strongly to unexpected wins than losses. These findings provide perspective on recent
ERP studies and suggest that mPFC error effects result from a comparison between actual and expected outcomes.

Introduction
Medial prefrontal cortex (mPFC), and especially the anterior cin-
gulate cortex (ACC) subregion of mPFC, is critically involved in
performance monitoring and cognitive control, as revealed by
ERP and functional magnetic resonance imaging (fMRI) studies
(Carter et al., 1998; Botvinick et al., 1999; Gehring and Knight,
2000; MacDonald et al., 2000; Scheffers and Coles, 2000). Perfor-
mance monitoring is essential to executive control wherein a
central executive or supervisory attentional system takes control
when detecting that automated processes (or schema) may lead
to undesirable outcomes (Norman and Shallice, 1986). Perhaps
the most obvious signals for the need to exert greater control are
errors, which strongly activate mPFC (Gemba et al., 1986). Var-
ious theories have been proposed to account for error effects, and
these can be roughly classified into categories of monitoring and
detecting discrepancies (Scheffers and Coles, 2000; Oliveira et al.,
2007), response conflict (Yeung et al., 2004), response sequences
(Steinhauser et al., 2008), and conjunctions of events (Holroyd et
al., 2005).

Theories of discrepancy detection can be further divided into
error detection based on outcomes that are unintended (Scheffers
and Coles, 2000) versus outcomes that are unexpected (Luu and
Pederson, 2004; Holroyd and Krigolson, 2007; Oliveira et al.,
2007). The distinction is subtle but leads to starkly divergent

predictions. In most fMRI studies, errors are relatively infre-
quent, occurring on well under half of the trials (Carter et al.,
1998; Kiehl et al., 2000; but see Paulus et al., 2002, 2005). Conse-
quently, errors are both infrequent and unintended, so the two
effects are confounded. Nonetheless, fMRI results show that ex-
pected errors yield smaller error effects (Brown and Braver,
2005). A recent ERP study deconfounded errors and expectancies
(Oliveira et al., 2007). That study showed evidence that the ERN
might reverse; i.e., the source of the ERN increased activity when
an unexpected correct message was received rather than an error
message; however, a similar study observed opposing results
(Holroyd and Krigolson, 2007). Another fMRI study with error
rates �50% used blockwise analysis, hence, the event-related re-
sponses for correct versus error trials within a block were not
analyzed (Paulus et al., 2002). So it is not yet clear whether error
effects seen in neuroimaging studies of mPFC will reverse when
errors are more common than correct responses.

In the present study, we sought to directly discriminate among
potential mechanisms for feedback error detection using fMRI
and a gambling task. Crucially, subjects are motivated to choose a
gamble with a low probability (LP) of winning instead of choos-
ing a sure win, because the gamble payoff is large if won. In this
way, subjects frequently chose a gamble that they intend but do
not expect to win. If mPFC compares actual versus intended
outcomes, then mPFC activity should be greater for losses than
wins, even when losses are more likely. In contrast, if mPFC
activity reflects actual versus expected outcomes, then mPFC ac-
tivity should show a striking reversal effect—it should be greater
for wins than losses when wins are unlikely.

Materials and Methods
Participants. Data from 21 participants were collected; however, one in-
dividual had also participated in a behavioral-only version of the task for
a previous study (Jessup et al., 2008), and consequently that participant’s
data were not analyzed; mean (SD) age of the remaining 20 subjects was
21.6 (3.94), of whom 10 were female. A $10 payment was provided for
each hour of the experimental participation, as well as a bonus, equal to
the sum of the amount that the participant won over all trials.
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Procedure. The repeated trial descriptive choice task described previ-
ously (Jessup et al., 2008) was used, in which choices were made with and
without feedback, with two probability conditions— high (HP) and low
(LP)— using fMRI. More details concerning the task can be found in the
earlier behavioral study. Briefly, in the HP condition, subjects performed
a two-alternative forced choice (2AFC) task between a certain win (sure
thing) of 3 cents and a risky alternative (gamble) that paid a mean of 4
cents with probability 0.8, otherwise nothing, for an expected value of 3.2
cents per trial. In the LP condition (Fig. 1), subjects again chose between
a certain win of 3 cents and a risky alternative, but the alternative now
paid a mean of 64 cents with probability 0.05, otherwise nothing, for an
expected value of 3.2 cents per trial. Thus, the expected values for the
risky options in the HP and LP conditions were the same, but in the HP
condition, subjects usually won the gamble if chosen, whereas in the LP
condition, subjects usually lost the gamble if chosen. They were nonethe-
less motivated to choose the gamble often in both situations due to the
relatively high payoff of a winning gamble in the LP condition.

Each participant completed one 60 trial block for each of the two
different feedback conditions (feedback or none) crossed with the two
probability conditions (LP or HP). On each trial participants were in-
formed how much they could win from each option as well as the prob-
ability of winning. In this paper we are only reporting data from the
feedback conditions. Each participant gave informed consent and the
study was approved by the Indiana University Institutional Review
Board.

Figure 1 presents the trial timing. The gamble display was shown for a
variable time length (3.5–9.5 s) using a quasi-exponential distribution
with a mean of 4.5 s, to allow optimal event-related estimation of the
fMRI BOLD response to the gamble cue and decision (Dale, 1999). This
was followed by 0.5 s of blank screen and then outcome feedback for 1 s.

Last, a blank screen was presented for 0.5 s followed by a variable inter-
trial interval (ITI) using a quasi-exponential distribution (ITI; 0.5– 6.5 s)
with fixation cross resulting in a mean 1.5 s fixation (2 s mean ITI includ-
ing the blank screen). The stimulus onset was timelocked to the scanner
pulse. Each of the four runs lasted 9.5 min, with 30 s of fixation time at the
run onset and a variable amount of fixation at the end of the run.

fMRI acquisition and data preprocessing. The experiment was con-
ducted with a 3 tesla Siemens Trio scanner using a phased-array eight-
channel head coil and the imaging data acquired at a 30° angle from the
anterior commissure–posterior commissure line to maximize orbital
and ventral sensitivity (Deichmann et al., 2003), using a gradient echo
T2* weighted echo planar imaging sequence, [33 � 4 mm interleaved
slices; TE � 25 ms; TR � 2000 ms; matrix, 64 � 64 voxels; field of view,
192 � 192 mm]. 285 images were collected in each run for a total of 1140
functional scans. High resolution T1 weighted images for anatomical
data were collected at the end of each session.

SPM5 (Wellcome Department of Imaging Neuroscience, London,
UK; www.fil.ion.ucl.ac.uk/spm) was used for preprocessing and data
analysis. The data for each participant was slice-time corrected, realigned
using a 6 parameter rigid body spatial transformation, coregistered to
their structural image, the structural was normalized to the standard
Montreal Neurological Institute (MNI) space and the warps were applied
to the functional images, and then the functional images were spatially
smoothed using a 8 mm Gaussian kernel.

fMRI analysis. We examined regional differences in the blood oxygen-
ation level-dependent (BOLD) response across conditions using a gen-
eral linear model (GLM) with random effects. Each estimated model
included a baseline regressor applied to every scan as well as 6 movement-
based regressors generated from the realignment preprocessing step. Ad-
ditionally, a high pass filter cutoff of 128 and a correction for serial
correlation were applied to each model estimate.

Analysis was built around the notion that two key phases existed in the
neurophysiological data: a decision phase and an outcome phase. The
decision phase should reflect neural activity associated with deciding on
and enacting a decision whereas the outcome phase should reflect neural
activity associated with observing the outcome of a choice.

For the decision phase, the model included a separate regressor for
each of the 4 combinations of the Feedback and Probability factors when
a choice was enacted as well as a separate regressor for each of the same 4
combinations applied to trials on which individuals did not make a
choice. On trials when individuals made a choice, each of the regressors
had 2 parametric modulators, one which parametrically modulated the
decision regressor by the objective value of the larger outcome from the
risky gamble and a second which modulated the decision regressor by
the response time. This added 2 � 4 � 8 regressors. Further, a temporal
modulator which allowed for a linear change in activation across all trials
within a block was added to each of the 4 decision regressors, adding
1 � 4 � 4 regressors.

For the outcome phase, 3 separate regressors were applied to each of
the 2 (LP and HP) feedback blocks, one for when individuals received the
sure thing feedback, one for when individuals received the risky option
small outcome (i.e., the “loss”) and one for when individuals received the
risky option large outcome (i.e., the “win”). This last regressor was para-
metrically modulated by the amount won, adding 1 � 2 � 2 regressors.

Consequently, the maximum number of regressors was 20 for the
decision phase and 8 during the outcome phase resulting in 28 event-
based regressors, in addition to the baseline regressor which was applied
to every scan and the 6 regressors representing the realignment estimates.
The event-based regressors were then convolved with a canonical hemo-
dynamic response function and then entered into the GLM matrix.

Results
Behavioral analyses
Behaviorally, individuals showed a slight preference for the sure
thing option in the LP condition P(sure thing) � 0.54 and a slight
preference for the risky option in the HP condition P(sure
thing) � 0.48, conforming to the typical pattern for experiential
choice and feedback-based decisions (Barron and Erev, 2003;

Figure 1. Onset and length of each trial and intertrial interval. An example choice from the
LP condition is shown. After selecting an option, participants wait until the gamble display
disappears and a blank screen is shown. This is followed by feedback indicating the outcome of
the choice. Here, the participant chose the sure thing of 3 cents. This feedback is followed by
another blank screen and then a fixation cross during the intertrial interval. The means for the
pseudo-exponentially distributed gamble display and intertrial interval were 4.5 and 1.5 s,
respectively.

3468 • J. Neurosci., March 3, 2010 • 30(9):3467–3472 Jessup et al. • ACC Responds to Unexpected Events



Hertwig et al., 2004; Weber et al., 2004; Jessup et al., 2008) how-
ever the difference in sure thing preference between conditions
was not significant.

Neuroimaging analyses
All significant regions were identified by a whole brain analysis
using a Bonferroni corrected cluster threshold of p � 0.05 as
calculated with SPM5, with each individual voxel within these
clusters surpassing an uncorrected threshold of p � 0.001. For the
sake of clarity, the presented t statistics refer to uncorrected acti-
vation values for the specified contrast on the relevant region of
interest (ROI). ROIs were defined as the region of contiguous
voxels (i.e., a cluster) showing a significant activation. (See Table
1 for a complete list of regions significant at the corrected cluster
level.)

We began by examining the interaction between probability
of winning (LP or HP) and outcome (won or lost) when partici-
pants chose the risky option. Because rewards were given proba-
bilistically, it was possible for subjects to never win when
choosing the risky option. In the rare win situation, this possibil-
ity of never winning increased because the likelihood of winning
was lower than in the frequent win situation. Hence, only partic-
ipants who won in both conditions were included in the analysis,
14 in total. The modal number of win events in the LP condition
was 2, ranging from 1 to 6 (mean � 2.36, median � 2). A signif-
icant interaction of activity was observed in ACC (cluster size k �
1100, p � 5.97 * 10�15, contrast of activation for the cluster:
t(13) � 6.06, p � 4.02 * 10�5, uncorrected; peak voxel MNI co-
ordinates: [10,14,34]). Figure 2 shows the significant cluster of
activity in the ACC. The mean peak activation for the four regres-

sors in the interaction contrast as well as
their time courses of activation are shown
in Figure 3. Examination of the regressor
magnitudes in Figure 3 revealed that this
was a crossover interaction, as Lost �
Won in the HP condition (t(13) � 3.35,
p � 0.0052), but Won � Lost in
the LP condition (t(13) � 5.96, p �
4.70 * 10�5). This finding is consistent
with a comparison of actual versus ex-
pected outcomes but not with a compari-
son of actual versus intended outcomes.

By comparison we also performed an
analysis looking for conventional error ef-
fects. We contrasted activation on the out-
come (Lost � Won) in the HP condition
when choosing the risky option, for the
same subjects. Note that this contrast cor-
responds to a more typical test of the dis-
crepancy between actual and intended

outcomes explanation for the role of mPFC function, in that
errors are both less likely and less preferred than correct out-
comes. The contrast revealed a significant activation in the ACC
(k � 121, p � 0.0181; contrast of activation for the cluster: t(13) �
4.89, p � 2.95 * 10�4, uncorrected; peak voxel MNI coordinates:
[4,18,38]). Of note, this region overlapped significantly with the
ACC region found above via the crossover interaction of out-
come and probability factors (Fig. 2). Furthermore, the magni-
tude and pattern of the contrasts and regressor plots support the
expected outcomes over the intended outcomes hypothesis, due
to the fact that the rare event in each condition elicits the larger
response as opposed to the negative event.

Discussion
The results reveal a striking reversal of the error effect in ACC
when losses were more likely than wins. This finding also has
implications for other theories of error monitoring by mPFC.

Discrepancy detection
Work with human ERP (Hohnsbein et al., 1989; Gehring et al.,
1990; Holroyd and Coles, 2002) has suggested that mPFC detects
errors as discrepancies between actual and intended responses or
outcomes (Scheffers and Coles, 2000), consistent with findings in
monkeys (Ito et al., 2003). Nonetheless, mPFC responds to a loss
even when the alternative outcome is a larger loss (Gehring and
Willoughby, 2002), suggesting that mPFC responds to absolute
wins and losses rather than to relative outcomes. However, in that
study, the average outcome across all trials was zero net gain or
loss, meaning that both wins and losses could be expected with

Figure 2. ACC significant clusters. Coronal (left) and sagittal (right) views of significant clusters of activation in the ACC for the
interaction contrast between probability condition and outcome when choosing the risky option (red), the contrast between
outcomes in the HP condition (yellow) which corresponds to the traditional paradigm used for testing the intended outcome
discrepancy hypothesis, and where the two contrasts overlap (orange). X � 6, Y � 18, Z � 36, MNI coordinate space.

Table 1. Significant clusters in the Outcome � Probability interaction and HP (Lost > Won) outcome contrasts

Cluster level Voxel level

Contrast p-corr k PFWE pFDR T Z x, y, z L/R Structure

Int 1.56 * 10 �13 1100 0.003 0.001 11.71 5.55 �10; 14; 34� R ACC
Int 5.33 * 10 �15 1274 0.094 0.003 8.60 4.89 �16; 8; �8� R Ventral striatum
Int 1.40 * 10 �5 322 0.308 0.007 7.60 4.62 ��6; �32; �6� L Midbrain
Int 0.009 132 0.427 0.008 7.20 4.50 ��12; 2; �8� L Ventral striatum
Int 1.12 * 10 �11 892 0.430 0.008 7.19 4.49 ��32; 16; 10� L Insula
HP 0.0118 132 0.6596 0.3175 6.54 4.28 ��30; 22; 0� L Insula
HP 0.0280 110 0.6954 0.3175 6.45 4.25 ��50; 14; 0� L Inferior frontal gyrus
HP 0.0181 121 0.9105 0.3175 5.82 4.02 �4; 18; 38� R ACC

Note. All clusters listed were significant at the p � 0.05 corrected level. p-corr, Corrected cluster p value; k, number of contiguous voxels; pFWE, family-wise error p value; pFDR, false discovery rate p value; Int, interaction.
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equal probability. The present results in the context of this pre-
vious ERP work (Gehring and Willoughby, 2002) suggests that
mPFC responds primarily to the unexpectedness of an event, and
if both outcomes occur equally often, then mPFC activity will
reflect a bias toward expecting wins rather than losses (Oliveira et
al., 2007; Sharot et al., 2007).

Conflict detection
Some human fMRI and ERP studies argue that conflict effects can
encompass error effects (Carter et al., 1998; Botvinick et al., 1999;
MacDonald et al., 2000; Yeung et al., 2004). According to the
conflict model, error effects result from the simultaneous coacti-
vation of the conflicting error and correct responses (Yeung et al.,
2004; but see Burle et al., 2005, 2008). Here it is unclear how a
conflict detection mechanism could account for the findings, be-
cause the error feedback occurs well after the response has been
made (Holroyd and Coles, 2002). The stimuli cueing the decision
did not differ between subsequent win and loss outcomes so it is
unclear how a conflict model could account for any error effects
seen later at the time of outcome.

Conjunction detection
Error effects have also been attributed to a conjunction detection
for events consisting of a cue followed by an incorrect response
conditioned on the cue. In this case, an error signal trains mPFC
to respond to conjunctions of an incorrect response to the cue

(Holroyd et al., 2005). Of note, this theory should predict that as
error frequency increases, so should training of conjunctive error
representations. This in turn would predict that error effects
should be stronger when error likelihood is higher, whereas the
opposite has been found in the current study and previously
(Brown and Braver, 2005; Oliveira et al., 2007).

Sequence detection
Errors in a 2AFC task are often followed by a corrective response.
Lesion studies of human mPFC argue that mPFC regions show-
ing error effects drive error correction (Modirrousta and Fellows,
2008). Thus, a recent response monitoring theory proposes that
errors are detected by the correction process, in that when two
actions follow in rapid succession, the first may be an error while
the second is a correction response (Steinhauser et al., 2008).
Therefore the occurrence of two successive actions in a trial of a
2AFC task suggests that the initial response was an error. It is not
clear how the sequence detection explanation can account for the
present results. We included a delay between the response cue
and feedback, so it is unlikely that any rapid corrective response
would account for error effects as predicted by the sequence de-
tection theory (Steinhauser et al., 2008), although error effects
based on internal detection rather than external feedback might
still be accounted for by such a mechanism.

Relationship to ERP components
Evidence suggests that the ERN may originate from the ACC
(Dehaene et al., 1994), in the same region where we find both
error and unexpected correct effects here. While we cannot say
for certain that the effects we report originate from the same
neural mechanisms as the source of the ERN, there are nonethe-
less many points of contact between the properties of the ERN
and our current findings. In particular, several ERP studies have
investigated relatively high error rates, in which correct trials may
be less expected. Some have found an ERN even when wins and
losses were equiprobable (Gehring and Willoughby, 2002; Yeung
et al., 2005), potentially reflecting an optimism bias (Oliveira et
al., 2007), the basis of which has been localized in part to the ACC
(Sharot et al., 2007).

While one previous ERP study has found greater negativities
for unexpected correct trials consistent with the present results
(Oliveira et al., 2007), other studies have contrasted wins and
losses when the probabilities of each were low, �25%, and have
found inconsistent results. Furthermore, the base-to-peak ap-
proach reported by Oliveira et al. has been criticized as potentially
confounding the feedback ERN (fERN) with the P300 (Holroyd
and Krigolson, 2007). Two such studies of error rates around
75% argued that unexpected errors led to a larger fERN relative to
expected errors (Holroyd et al., 2003; Holroyd and Krigolson,
2007), consistent with the present findings, but without a cross-
over interaction of error by error probability as found here. A
similar study at odds with those findings concluded that although
the P300 was greater for unexpected outcomes, there was no
effect of win probability on the fERN (Hajcak et al., 2005) when
trial-by-trial probability cues were given. Nonetheless, a block-
wise implicit manipulation of probabilities yielded a greater neg-
ativity for unexpected than expected errors (Hajcak et al., 2005),
consistent with other findings from implicit blockwise manipu-
lations of error rate (Holroyd et al., 2003; Holroyd and Krigolson,
2007). One possible reconciliation of the existing literature with
our stronger finding of reversed error effects may be our use of a
lower correct trial probability, which is only 5% here compared
with 25% in other studies (Hajcak et al., 2005; Holroyd and

Figure 3. Bar plots of regressors and their time courses of activation. Upper image, Bar plots
for the four regressors in the ACC ROI identified using the interaction contrast: LP Condition Won
and Lost (left side) and HP Condition Won and Lost. Bars representing Won are shown in red. The
right side of the image corresponds with the traditional paradigm used for testing the intended
outcome hypothesis. Error bars denote 95% confidence intervals. Lower image, Fitted activa-
tion time courses for the four regressors in the ACC ROI identified using the interaction contrast:
LP Lost (blue), LP Won (green), HP Lost (red), HP Won (cyan). Error bars denote 95% confidence
intervals.
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Krigolson, 2007). Our lower correct trial probability may thus
have induced a stronger expectation of losing, sufficient to over-
come the otherwise relatively strong optimism bias.

Potential limitations
One potential limitation of our findings is the small number of
wins in the LP condition. This was intentional as it was necessary
to have as few LP wins as possible to make them extremely unex-
pected. Nonetheless, it may be argued that the small number of
LP win trials may render the BOLD estimates unreliable. We
suggest that the effect is robust for two reasons. First, the unex-
pected correct effect in the LP condition was statistically stronger
than the error effects, even though the exploratory analysis only
searched for regions showing an interaction of error by error
probability. Typically, conditions with fewer events should have a
weaker rather than stronger signal because of noisy estimates.
Second, the identified region strongly overlapped with a region
that showed main effects of error, consistent with a more general
role in detecting unexpected outcomes.

Implications for theories of cognitive control
Taken together, the previous and current results suggest that
ACC may compute an index of outcome unexpectedness. This
informs a larger discussion about whether mPFC activity signals
an anticipated (proactive) versus an actual (reactive) need for
greater cognitive control. Our results are consistent with both
possibilities (Braver et al., 2007). Reactive control signals may
derive from mPFC signals reporting deviation of an actual from
predicted outcome (i.e., feedback about winning or losing a gam-
ble), and they are consistent with previous results in monkeys (Ito
et al., 2003; Matsumoto et al., 2003) and humans (Holroyd and
Coles, 2002). Proactive control signals may derive from mPFC
signals of an anticipated outcome, as suggested by work in mon-
keys (Amador et al., 2000; Shidara and Richmond, 2002) and
humans (Brown and Braver, 2005, 2007; Sohn et al., 2007; Aarts
et al., 2008; Brown, 2009).

Our current modeling work suggests a theoretical role for
these prediction and comparison signals as computed by the ACC
(Alexander and Brown, 2008), and how they may contribute to
cognitive processes of decision-making. ACC signals the unex-
pectedness of the outcomes of an action, both good and bad,
similar to the prediction error observed in dopamine-mediated
systems (Schultz et al., 1997; Holroyd and Coles, 2002;
O’Doherty et al., 2003; Behrens et al., 2007). Of note, the expect-
edness of an outcome may be learned from experience of its
actual probability of occurrence, but expectedness and probabil-
ity are not necessarily identical, as seen in the optimism bias
(Sharot et al., 2007) which may reflect greater reward sensitivity
(Torrubia et al., 2001). Theoretically, signals representing ex-
pected outcomes could serve both as a basis for comparison with
actual outcomes and as a forward model for cognitive and
decision-making processes, analogous with motor control
(Shadmehr and Wise, 2004). This would allow for taking into
account the expected outcome of a planned action before execu-
tion (Haggard, 2008). Then, if an error is predicted, control may
be implemented proactively (Braver et al., 2007) to avoid the risk
of an error (Magno et al., 2006; Brown and Braver, 2007). Unex-
pected outcome signals as found here provide exactly the kind of
training signal that would be needed to continually update the
learned expectancies of the possible outcomes of an action, as
well as drive control signals to correct errors (Modirrousta and
Fellows, 2008) or avoid them in the future (Braver et al., 2007).
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