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Abstract
Objective—To examine α7 nicotinic acetylcholine receptor (nAChR) binding and β-amyloid
(Aβ) peptide load in superior frontal cortex (SFC) across clinical and neuropathological stages of
Alzheimer’s disease (AD).

Design—Quantitative measures of α7 nAChR by [3H]methyllycaconitine binding and Aβ
concentration by enzyme-linked immunosorbent assay in SFC were compared across subjects with
antemortem clinical classification of no cognitive impairment (NCI), mild cognitive impairment
(MCI), or mild-moderate AD (mAD), and with post-mortem neuropathological diagnoses.

Setting—Academic medical center.

Subjects—Twenty-nine elderly retired clergy.

Results—Higher concentrations of total Aβ peptide in SFC were associated with clinical diagnosis
of mAD (p=0.015), lower Mini Mental State Examination scores (p=0.0033), presence of cortical
Aβ plaques (p=0.015), and likelihood of AD diagnosis by the NIA-Reagan criteria (p=0.0015).
Increased α7 nAChR binding was associated with NIA-Reagan diagnosis (p=0.021) and, albeit
weakly, the presence of cortical Aβ plaques (p=0.079). There was no correlation between the two
biochemical measures.

Conclusions—These observations suggest that during the clinical progression from normal
cognition to neurodegenerative disease state, total Aβ peptide concentration increases, while α7
nAChRs remain relatively stable in SFC. Regardless of subjects’ clinical status, however, elevated
α7 nAChR binding is associated with increased Aβ plaque pathology, supporting the hypothesis that
cellular expression of these receptors may be up-regulated selectively in Aβ plaque-burdened brain
areas.
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Introduction
Cholinergic synaptic dysfunction contributes to cognitive impairment in Alzheimer’s disease
(AD). These changes may be due, in part, to increased concentrations of β-amyloid (Aβ)
peptides1 and their interactions with nicotinic acetylcholine receptors (nAChRs), which are
essential for normal cognitive function2, 3. Aβ binds to nAChRs, particularly the α7
subclass4, 5; this may alter receptor function6–10 and also result in Aβ internalization,
fibrillization, and deposition into plaques and cerebral vasculature4, 11–13. The status of α7
nAChRs in AD is controversial as there are reports of increases, decreases, or stability in
AD14–18. While non-α7 nAChR binding in frontal cortex declines early in AD19, quantitative
biochemical studies specific for α7 nAChRs in subjects with preclinical and early AD remain
to be performed. The current study quantified α7 nAChR binding and total Aβ peptide
concentration in the superior frontal cortex (SFC) from subjects who participated in the
Religious Orders Study20, 21. The status of these two biochemical measures was examined
across subjects’ groups defined by clinical diagnoses of no cognitive impairment (NCI), mild
cognitive impairment (MCI), and early AD stage (mild-moderate AD, mAD), or
neuropathological diagnosis.

Materials and Methods
Subjects

This study included 29 participants in the Religious Orders Study, a longitudinal clinical-
pathological study of aging and AD in retired Catholic nuns, priests, and brothers20. Inclusion
criteria and a description of the clinical evaluation have been published20, 21. At the last clinical
evaluation (<12 months prior to death), subjects were classified as NCI, MCI, or mild-moderate
AD (see Table 1). Diagnosis of AD dementia was made using standard criteria22. MCI was
defined as impairment on neuropsychological testing, but without a diagnosis of dementia by
the examining neurologist23, criteria similar to those describing patients who were not
cognitively intact, but nonetheless did not meet the criteria for dementia24–27. A consensus
conference of neurologists and neuropsychologists reviewed all the clinical and neuroimaging
data, medical records and interviews with family members, and assigned a final diagnosis.

Neuropathological evaluation
Neuropathological diagnosis of AD (possible, probable, or definite AD) or Not AD (Table 1)
was based on modified criteria by the Consortium to Establish a Registry for AD (CERAD)
28 which applied semi-quantitative estimates of neuritic plaque density by a board-certified
neuropathologist blinded to the clinical diagnosis29. Subjects were also assigned an NIA
Reagan neuropathological diagnosis30 and a Braak score based on the presence of
neurofibrillary tangles (NFTs)31. Subjects with pathology other than AD were excluded from
the study.

[3H]MLA binding assay
Fresh frozen SFC (Brodmann area 9) gray matter was divided into aliquots for nAChR binding
and Aβ peptide enzyme linked immunoadsorbent assay (ELISA). For α7 nAChR binding,
samples were homogenized in 10 volumes of 50 mM Tris HCl buffer (pH=7.0), centrifuged
twice at 40,000 × g for 10 minutes, re-suspended in Tris buffer and stored at −80°C. Samples
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were thawed and re-suspended in an equal volume of Tris buffer containing 0.1% bovine serum
albumin (BSA)32, 33. Samples, 0.5 mg protein each, were combined with 9.5 nM [3H]MLA
(43 Ci/mmol, Tocris Cookson Ltd., Bristol, UK) in Tris HCl buffer containing 0.1% BSA.
Non-specific binding was measured in the presence of 1 mM nicotine. After a 2 hr incubation
on ice, bound ligand was separated from free ligand using Whatman GF/B filters, presoaked
in 0.3% polyethyleneimine. Filters were rinsed with Tris HCl buffer, placed in scintillation
vials, and shaken in scintillation fluid for 1 hour before radioactivity was determined. Specific
binding was calculated as the difference between total and non-specific binding. Results were
expressed as femtomoles/mg protein.

Aβ ELISA Assay
The Aβ assay was performed using a previously reported protocol34. Frozen SFC samples were
homogenized (150mg tissue wet weight/ml PBS buffer, pH = 7.4) and 30 mg of homogenized
tissue were sonicated in 70% formic acid (FA), and centrifuged at 109,000 × g at 4°C for 1
hour, resulting in samples containing both soluble and FA-extracted insoluble Aβ peptides.
The supernatant was neutralized with 1M Tris and 0.5M sodium phosphate, and the samples
assayed using a fluorescent-based ELISA (BioSource, Carlsbad, CA) following the kit’s
instructions, with a capture antibody specific for the NH2-terminus of Aβ(amino acids 1–16),
and detection antibodies specific for Aβ40 and Aβ42 peptides. Values were determined from
standard curves using synthetic Aβ1–40 and Aβ1–42 peptides (BioSource) and expressed as
pmoles/gram wet brain tissue. “Total” Aβvalues represent a sum of Aβ1–40 and Aβ1–42 peptide
values.

Statistical analysis
Aβ levels were log-transformed due to data skewness. Comparisons of demographic
characteristics, MLA binding and Aβ levels between clinically- or neuropathologically-defined
groups were performed using the Wilcoxon rank-sum test, Kruskal Wallis test, or the Fisher’s
exact test, as appropriate. The association between demographic characteristics and MLA
binding or Aβ levels was assessed by Spearman rank correlation or Wilcoxon rank-sum test.
Partial correlation was used for additional analyses adjusting for age. The correlation between
MLA binding and Aβ levels was assessed by Spearman correlation. The level of statistical
significance was set at 0.05 (two-sided).

Results
Clinical and Pathological Analyses

The three clinical groups differed in MMSE scores (p<0.0001), with the mAD group
performing worse than both the NCI and MCI groups (Table 1). Clinical diagnostic groups
also differed in CERAD diagnosis (p=0.040), Braak staging (p=0.036), and the NIA-Reagan
diagnosis (p=0.018), with the mAD subjects being more advanced neuropathologically
compared to both the MCI and NCI groups (Table 1).

Subjects with a CERAD diagnosis of AD (CERAD < 4, possible, probable or definite AD;
positive for cortical plaques) had lower MMSE scores (p=0.055), and more advanced Braak
stages and NIA-Reagan neuropathologic diagnoses (p=0.004 and p < 0.0001; Table 1) than the
Not AD group (CERAD = 4; no cortical plaques).

MLA binding and Aβ concentrations across clinical and neuropathologic categories
MLA binding levels were slightly higher in mAD subjects, however, the difference was not
statistically significant (Table 2). Clinical groups differed in total Aβ (combined Aβ42 and
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Aβ40; p=0.015; Figure 1) and Aβ42 (p=0.022), but not Aβ40, concentrations, with mAD
subjects having the highest levels.

Subjects with a CERAD diagnosis of AD had higher MLA binding (p = 0.079; Figure 1), and
higher concentrations of Aβ42 (p = 0.021), Aβ40 (p = 0.063), and total Aβ (p = 0.015; Table
2; Figure 1) in the SFC when compared to those with CERAD diagnosis of Not AD.

MLA binding and Aβ concentration: association with clinical-neuropathological factors
There was no association of MLA binding with any of the demographic or clinical variables
examined. Higher MLA binding levels correlated with greater likelihood of AD by the NIA-
Reagan diagnosis (r=-0.47, p=0.021; Table 3), and weakly with Braak staging. There was an
association of higher Aβ concentrations with more advanced age (r=0.48–0.56, p=0.011–
0.032; Table 3), but not with sex, education, the presence of APOEε4 allele, or post-mortem
interval. Higher concentrations of total Aβ and Aβ42, but not Aβ40, correlated with lower
MMSE scores (r=−0.62 for both, p=0.0033 and 0.0038; Table 3). In addition, higher total
Aβ and Aβ42 concentrations correlated with worse neuropathological scores (r=0.62–0.70,
p<0.01), as did Aβ40 concentrations, although to a lesser extent (Table 3). Adjusting for age,
partial correlation showed similar results, although it yielded smaller correlation coefficients.
There was no correlation between MLA binding and Aβ protein concentrations.

Comment
This study examined SFC α7 nAChR binding and Aβ peptide concentrations across the clinical
and neuropathologic categories of AD. Both markers were assayed in the same samples of
cortical tissue from subjects who were clinically characterized within 12 months before death,
and neuropathologically evaluated postmortem. We did not detect significant changes in SFC
α7 nAChR binding across clinical diagnostic groups. However, a trend toward elevated α7
nAChR binding levels was evident in subjects with CERAD diagnoses of AD (possible,
probable or definite) relative to Not AD subjects (without neuritic Aβ plaques). Total (sum of
Aβ42 and Aβ40) and Aβ42 concentrations were elevated in the CERAD-AD group compared
to the CERAD-Not AD group, as well as in the clinical mAD compared to the MCI and NCI
groups. The increase in α7 nAChRs in Aβ plaque-positive subjects, despite the lack of an
association with Aβ concentrations, indicates that cellular expression of this receptor is
influenced, either directly or indirectly, by the presence of senile plaques. This is in agreement
with previous studies in AD patients and animal models35, 36, and is supported further by the
current observation that the correlation between α7 nAChR levels and neuropathological
staging was stronger using NIA-Reagan criteria compared to Braak staging, the latter relying
only on NFTs for stage designation31.

The apparent stability of α7 nAChRs across clinical categories of NCI, MCI and mAD, and
the lack of an association with MMSE scores, could be explained by the presence of plaques
in all clinical groups. Cortical plaques were present in more than half of our NCI cases (Table
1), in agreement with previous reports of a substantial AD pathology in cognitively normal
aged individuals29, 37–41. Although these studies would benefit from examining larger
numbers of cognitively intact subjects free of any Aβ pathology, such individuals are rare, as
Aβ plaques are a common feature in brains of elderly individuals37, 38, 40, 41. Furthermore, the
pathological burden of Aβ includes not only insoluble fibrils in plaques, but also soluble
Aβoligomers42. The impact of these distinct pools of Aβ upon α7 nAChR binding in preclinical,
early/moderate and severe end-stage AD cases will be an important question to answer in future
studies.

There are several possible explanations for the observed association between Aβ plaques and
increased α7 nAChR binding. Plaques may serve as reservoirs of soluble Aβ species1, which
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can bind with high affinity to neuronal α7 receptors4,5 into a complex that is subsequently
internalized12. This may result in a compensatory increase in expression of α7 nAChR on the
cell surface. Additionally, excessive intracellular accumulation of Aβ42 and subsequent
neuronal lysis may contribute to plaque pathology12, potentially creating a cycle of neuronal
degeneration and Aβ plaque deposition in AD. High concentrations of fibrillar Aβ in plaques,
or soluble Aβ in the vicinity of these structures, may also influence the up-regulation of α7
nAChR by reactive astrocytes. Astrocytes proliferate and display increased α7 nAChR density
in the presence of Aβ plaques36, 43, 44, and up-regulate nAChR mRNA expression and protein
levels when exposed to Aβ in vitro45. Receptor binding assays cannot differentiate the relative
contribution of different cell types to the overall regional expression of α7 nAChRs detected
in tissue homogenates. Adding to this complexity are the post- and pre-synaptic sites of
expression of α7 nAChRs, involving both local neuronal circuitry and afferent projections from
distant neuronal cell populations. In this regard, a recent single-cell expression profiling study
demonstrated up-regulation of α7 nAChR mRNA in cortical-projecting basal forebrain
cholinergic neurons in mAD subjects46, suggesting that changes in cortical α7 protein levels
involve presynaptic elements on an important cholinergic afferent system. Collectively, these
studies suggest that in the SFC, α7 nAChRs levels reported here reflect changes both in cortical-
projecting cholinergic basal forebrain neurons and regional cell-specific expression of these
receptors in response to Aβ pathology.

In conclusion, the present findings demonstrate that cognitive decline in mAD is not associated
with detectable changes in cortical α7 nAChR binding levels. In contrast, Aβ concentrations
increased in mAD and correlated with cognitive impairment, in accord with reported
associations of increased Aβ load with cognitive decline in AD47, 48. The observed trend for
increased SFC α7 in subjects with plaques is in agreement with a previously reported positive
correlation between α-bungarotoxin binding and Aβ plaque density35, and warrants further
investigation. These changes are in contrast with reports of reduced cortical α4 nAChR
immunoreactivity with increased Aβ plaque densities, and a loss of epibatidine binding with
increased Aβ42 concentrations35. Thus, α7 and non-α7 nAChRs may be differentially affected
by Aβ pathology. In vivo PET imaging techniques using radiolabeled probes for early detection
of Aβ plaques49, 50 and changes in select nAChRs51 may act as early biomarkers for AD and
will enable the timely implementation of appropriate therapies.
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Figure 1.
α7 binding (A,B) and total Aβ peptide concentrations (C,D) in the frontal cortex from subjects
categorized into clinical diagnostic groups of NCI, MCI and AD (A,C), or into
neuropathological groups of Not AD and AD (possible, probable, definite) by modified
CERAD criteria (B,D).
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Table 3

Association between clinical/neuropathological variables and superior frontal cortex MLA binding and Aβ
ELISA levels

Variable MLA (N=24) Aβ40 (N=20) Aβ42 (N=20) Total Aβ (N=20)

Age -- r = 0.48, p = 0.032 r = 0.56, p = 0.011 r = 0.55, p = 0.012

Sex -- -- -- --

Education -- -- -- --

APOE ε4 -- -- -- --

MMSE (r = −0.25, p = 0.26) (r = −0.36, p = 0.12) r = −0.62, p = 0.0038 r = −0.62, p = 0.0033

PMI -- -- -- --

Braak stage (r = 0.40, p = 0.053) (r = 0.36, p = 0.12) r = 0.70, p = 0.0005 r = 0.62, p = 0.0035

NIA Reagan Dx r = −0.47, p = 0.021 r = −0.52, p = 0.020 r = −0.63, p = 0.0031 r = −0.66, p = 0.0015

r: Spearman rank correlation coefficient

--: Not statistically significant
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