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Abstract
An influential theoretical perspective differentiates in humans an explicit, rule-based system of
category learning from an implicit system that slowly associates different regions of perceptual space
with different response outputs. This perspective was extended for the first time to the category
learning of nonhuman primates. Humans and macaques learned categories composed of sine-wave
gratings that varied across trials in bar width and bar orientation. The categories had either a single-
dimensional, rule-based solution or a two-dimensional, information-integration solution. Humans
strongly dimensionalized the stimuli and learned the rule-based task far more quickly. Six macaques
showed the same performance advantage in the rule-based task. In humans, rule-based category
learning is linked to explicit cognition, consciousness, and to declarative reports about the contents
of cognition. The present results demonstrate an empirical continuity between human and nonhuman
primate cognition, suggesting that nonhuman primates may have some structural components of
humans’ capacity for explicit cognition.
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Learning and using categories is a basic cognitive function for humans and animals.
Consequently, categorization is a focus of research involving humans (Ashby & Maddox,
2005; Brooks, 1978; Murphy, 2003; Nosofsky, 1987; Rosch & Mervis, 1975; Smith & Minda,
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1998) and animals (Cerella, 1979; Herrnstein, Loveland, & Cable, 1976; Jitsumori, 1994; Lea
& Ryan, 1990; Smith, Redford, & Haas, 2008; Vauclair, 2002; Wasserman, Kiedinger, & Bhatt,
1988).

Early categorization theories assumed that organisms apply a single category-learning system
to all category problems. Different descriptions were offered for this system (e.g., Medin &
Schaffer, 1978; Reed, 1972). In hindsight, it was predictable that categorization would not be
so simple and unitary. Categorization is an important enough capacity that it might deserve
(and receive) distributed and varied expression in cognition. Fortunately, many researchers
transcended the “single system” claim and described the interactions and tradeoffs among
different representational systems in categorization. For example, Cook and Smith (2006),
Reed (1978), Smith and Minda (1998), and Wasserman et al. (1988) showed that different
processes dominate categorization at different stages of category learning. For another
example, Ashby and his colleagues showed in numerous studies that different processes
dominate category learning depending on whether or not the correct categorization rule is easy
to describe verbally (review in Ashby & Maddox, 2005).

Consequently, a multiple-systems theoretical perspective has become an important part of the
human categorization literature (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby &
Ell, 2001; Erickson & Kruschke, 1998; Homa, Sterling, & Trepel, 1981; Minda & Smith,
2001; Rosseel, 2002; Smith & Minda, 1998). The idea is that organisms have multiple
categorization utilities that learn different statistical features of the repeating and differentiating
environment. The multiple-systems perspective has profoundly enriched the human literature,
but it has barely been extended to comparative categorization research (see Herbranson,
Fremouw, & Shimp, 1999). The overarching goal of the present research is to encourage this
extension.

Within the multiple-systems perspective, a crucial distinction is made between explicit and
implicit categorization systems (Ashby & Valentin, 2005; Brooks, 1978; Kemler Nelson,
1984; Love, 2002; Smith & Shapiro, 1989; Smith, Tracy, & Murray, 1993). An explicit system
is thought to use analytic, rule-based processes and to depend on working memory and
executive attention. In contrast, an implicit system is thought to use nonanalytic, multi-
dimensional processes and to learn slowly by mapping regions of perceptual space to response
outputs.

Illustrating this distinction, Brooks (1978) found that intentional and incidental categorizations
by humans were, respectively, analytic and nonanalytic. Similarly, Kemler Nelson (1984)
found that intentional and incidental category learners, respectively, solved category problems
using single-dimensional rules or multidimensional family resemblance. Waldron and Ashby
(2001) found that a cognitive load selectively and strongly disrupted rule-based category
learning (also Love, 2002). In a related finding, Smith et al. (1993) showed that depression
selectively impaired rule-based category learning (perhaps because individuals with depression
lacked the cognitive resources for hypothesis generation and rule evaluation).

The implicit-explicit distinction was placed into a cognitive-neuroscience framework in the
COVIS (Competition between Verbal and Implicit Systems) theory of category learning
described by Ashby and his colleagues (Ashby et al., 1998; Maddox & Ashby, 2004; Ashby
& Waldron, 1999). COVIS places two systems in competition during category learning: an
explicit system (based in the anterior cingulate, the prefrontal cortex, the head of the caudate
nucleus, and the hippocampus) that learns through hypothesis testing and systematic reasoning,
and an implicit system (based largely in the striatum) that learns procedurally through the
catalysis of immediate reinforcement signals.
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Much of the evidence for these category-learning systems comes from rule-based (RB) and
information-integration (II) category tasks, like those illustrated in Figure 1. Each exemplar in
both of these categorization tasks is a circular sine-wave grating that varies across trials in bar
width and bar orientation. In the experiments described below, there were 300 such exemplars
in each category of each task, but only some of these are shown in Figure 1.

In the top panel of Figure 1, the vertical category boundary denotes that only X-axis variation
(i.e., bar width) carries valid information about category membership, and the participant must
discover this dimensional rule from successive presentations of single exemplars, with
feedback following each response. This is an example of an RB task because the category
bound can be discovered via logical reasoning.

In contrast, in the II categorization task illustrated in the lower panel, the diagonal category
boundary indicates that both bar width and orientation carry valid category information, and
the participant must learn the dimensional-integration principle that allows correct category
assignment, once again based on the successive presentation of single exemplars with feedback.
In this case, accuracy is maximized only if information from both stimulus dimensions is
integrated into the category decision. Note that there is no simple way to verbally describe this
category boundary.

The RB and II tasks are matched for category size, within-category exemplar similarity,
between-category exemplar separation, and the a priori perceptual difficulty of the
categorization problem. In these senses, the two tasks serve as mutual controls. They differ
only in the RB-II aspect that is critical to the present research.

Humans show distinct behavioral differences in learning these two categorization tasks (for a
review, see, e.g., Ashby & Maddox, 2005). They strongly dimensionalize these stimuli. They
learn RB category tasks quickly through explicit-reasoning and hypothesis-testing processes.
They declare verbally their task solution. In contrast, humans learn II category tasks more
slowly. They integrate the dimensions poorly because they perceive them so separably, and
they have difficulty describing their solution verbally. The empirical goal of the present
research is to ask whether similar behavioral differences characterize the approach of
nonhuman primates to RB and II category tasks.

Monkeys might rely less than humans on dimensional analysis and category rules, either
because of the differential development of prefrontal cortex in the two species or because of
the differential availability of language. If so, monkeys might not show an RB advantage
because the tasks are otherwise carefully balanced. This would be an important theoretical
statement about primate-human differences in categorization, and about the ancestral
categorization system from which that of humans emerged.

On the other hand, dimensional analysis and category rules might be a general property of
cognition across primates or even mammals. In this case, monkeys would still show a strong
RB advantage. This would demonstrate an important continuity across the primate lineage. In
fact, the possibility that primates can use rules and hypotheses on-line is an issue with deep
empirical roots in comparative psychology (Harlow, 1949; Krechevsky, 1932; Rumbaugh &
Pate, 1984). The research would also bear on issues of declarative and explicit cognition in
primates, to the extent that they show a performance pattern that is acknowledged to be
declarative and conscious in humans. Finally, the possibility of explicit category rules in
nonverbal species would focus attention on the presumed link between rule-based cognition
and verbalization-language, given a nonverbal species in which that link is necessarily broken.
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Experiment 1: Humans
In Experiment 1, we gave humans the two-dimensional RB and II category tasks illustrated in
Figure 1. We expected that RB category learning would proceed faster than II category learning,
replicating the typical finding and grounding our methodology for subsequent use with
nonhuman primates.

Method
Participants—Participants were 60 undergraduates from the University at Buffalo, the State
University of New York, who participated to fulfill a course requirement in two experimental
sessions lasting about an hour each. Our participant pool was balanced for gender. Participants
had apparently normal or corrected-to-normal visual acuity and a mean age of 19.5 years. The
racial mix of our participant pool was 41% Caucasian, 45% Asian, 10% African-American,
and 4% Other. As a tool to increase performance motivation, the top scorers were awarded
cash prizes in the experiment.

Stimuli—Each category exemplar was a circular sine-wave grating that varied on two
dimensions: bar width (spatial frequency) and bar orientation (tilt). The disks subtended 4.77
degrees of visual angle, viewed on a 16-inch screen with an 800 × 600 pixel resolution from
a distance of about 24 inches. In the present experiments, width varied from 0.366 cycles per
degree of visual angle to 1.408 cycles per degree. Tilt varied from 0.307 radians to 1.925
radians. Exemplars were created using the randomization technique developed by Ashby and
Gott (1988). In accordance with this method, categories were first defined by bivariate normal
distributions along the two stimulus dimensions, within which each stimulus dimension ranged
along a normalized 0-to-100 scale. Each stimulus was created by drawing a random sample
(x, y) from the Category A or Category B distribution. To control for statistical outliers, the
random sample was discarded if its Mahalanobis distance (e.g., Fukunaga, 1972) was greater
than 3.0. This process was repeated until 300 Category A and 300 Category B exemplars had
been generated.

Category structures—In the vertical RB task shown in the top panel of Figure 1 (in which
only the spatial-frequency dimension carried useful information), Category A had these
population parameters: Mean X=35.86, Mean Y=50, Variance X=16.33; Variance Y=355.55,
Covariance XY=0. Category B had these population parameters: Mean X=64.14, Mean Y=50,
Variance X=16.33; Variance Y=355.55, Covariance XY=0. In the major-diagonal II task
shown in the bottom panel of Figure 1 (X-Axis, Spatial Frequency; Y-Axis, Orientation),
Category A had these population parameters: Mean X=40, Mean Y=60, Variance X=185.94;
Variance Y=185.94, Covariance XY=169.61. Category B had these population parameters:
Mean X=60, Mean Y=40, Variance X=185.94; Variance Y=185.94, Covariance XY=169.61.

In the end, the 300 chosen Category A and Category B exemplars in the two tasks were slightly
adjusted so that their sample means and sample covariance matched the desired population
values for the two categories in the task. Finally, a linear transformation was applied to each
stimulus coordinate-pair to map its values from the original 0-to-100 scale to a space
representing actual values of spatial frequency (cycles per degree) and orientation (radians)
used in the experiment. These mappings were: Spatial Frequency = 1.0 + X/30.0; Orientation
= y X pi/200 + pi/9.

Categorization trials—Each trial consisted of one Gabor disk presented in the center-top
of a computer screen against a gray background. The response icons (A and B) were located
on the screen’s lower-left and lower-right. At center-bottom of the screen, a text banner showed
participants’ increasing (or decreasing) point total as the task progressed.
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Humans responded by pressing the S or L keyboard keys, spatially positioned to correspond
to the A or B on the screen, and labeled for the purposes of the experiment as A or B. Humans,
when correct, saw a green Correct text banner centered between the two response icons as both
response icons disappeared. Their point total incremented, and there was a 1-s, computer-
generated reward whoop. Humans, when incorrect, saw a red Incorrect text banner centered
between the two response icons as both response icons disappeared. Their point total
decremented, and there was a 3-s, computer-generated penalty buzz.

Instructions—Beginning each session, participants were told that they would see striped
circles and that they should decide whether each belonged to Category A or B. They were told
that they would have to guess at first, but that they should be able to learn how to respond
correctly as they went along. The feedback sounds and point consequences were explained to
them. For motivation’s sake, they were also told about the $10 prize that would be awarded to
the two participants who earned points most efficiently by classifying the circles correctly.

Procedure—Each participant was tested individually in two experimental sessions. They
received 600 trials of the RB task and 600 trials of the II task, in a counterbalanced order
determined by their sequential participant number. In each session, participants saw the 300
Category A and 300 Category B stimuli in the task exactly once, presented in random order.
To accomplish this, the stimuli were presented by sampling without replacement.

Results
Accuracy-based analyses—The aggregate proportion correct for all human participants
is shown in Figure 2A, B for successive 10-trial blocks in the RB and II tasks. The data were
analyzed using a three-way analysis of variance (ANOVA), with task type (RB, II) and trial
block (1–60) as within-subject factors, task order as a between-subjects factor, and with task
type nested within task order. The analysis found a significant main effect for task, F (2, 58)
= 126.20, prep = .999, ηp

2 = .539. Participants were .96 and .79 correct overall on the RB and
II tasks, respectively. The analysis also found a significant effect for trial block, F (59, 3422)
= 14.75, prep = .999,ηp

2 = .198. Participants showed substantial learning across their sessions,
from .67 correct in the first block to .90 correct in the last block. The interaction between trial
block and task type, F (118, 3422) = 1.84, prep = .999, ηp

2 = .06, indicated that participants
improved differentially on the two tasks, as is shown in the figures. RB performance moved
more quickly to a higher asymptote.

Model-based analyses—The accuracy-based analyses suggest that participants in both
conditions learned the categories effectively. Before concluding this, however, it is important
to confirm that participants used a strategy of the optimal type. To answer this question, we fit
four different types of decision bound models (e.g., Maddox & Ashby, 1993) to the data from
each individual participant. The II model assumed a pre-decisional (linear) integration of
information across dimensions, Two RB models were fit. The 1D models assumed the
application of a one-dimensional rule (i.e., a vertical or horizontal decision bound), and the CJ
model assumed the use of a two-dimensional, conjunctive rule. Finally, the RG model assumed
a random-guessing strategy (see the Appendix for details). The II and RB models make no
detailed processing assumptions, but they assume that each participant’s responses are
compatible with either an II or RB strategy, respectively.

First, we fit the categorization models to each human’s performance taking all 600 trials as a
single block. The II, 1D, CJ, and RG models fit best the performance of 52, 7, 1, and 0
participants in the II condition. The accuracy of the participants who used an II strategy was
higher than the participants who used an RB strategy (i.e., 0.810 versus 0.696).
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The II, 1D, CJ, and RG models, respectively, fit best the performance of 5, 54, 1, and 0
participants in the RB condition. The 5 participants for whom the II model fit best had best-
fitting decision bounds that were not strictly vertical. Even so, in each case, these bounds were
nearly vertical and the accuracy of the II and RB participants was hardly different (0.940 vs.
0.965). These results confirm that almost all participants effectively learned the categories and
did so using something like the optimal decision bound.

We also fit each human’s data taking the categorization trials in 100-, 200-, or 300-trial blocks.
In this case, we classified each human according to the best-fitting model in their last block of
responding (i.e., their last 100, 200, or 300 trials). In most cases, the last 100, 200, and 300
trials pointed to the same best-fitting model. When they did not, we took the participant to be
best fit by the best-fitting model for two out of the three analyses. The results of this analysis
were as follows.

The II, 1D, CJ, and RG models fit best the performance of 51, 8, 0, and 1 participants in the II
condition. Here, too, the accuracy of the participants who used an II strategy was higher than
the participants who used an RB strategy (i.e., 0.815 versus 0.695).

The II, 1D, CJ, and RG models fit best the performance of 3, 57, 0, and 0 participants in the
RB condition. The 3 cases in which the II model was best fitting mean that the best-fitting
decision bounds for those participants were not strictly vertical. Even so, those bounds were
nearly vertical and the accuracy of the II and 1D participants was hardly different (0.959 vs.
0.935). These results further confirm that almost all participants effectively learned the
categories and did so using something like the optimal decision bound.

In all respects, the results of Experiment 1 replicated the traditional finding of a strong
difference in the speed of acquisition between RB and II tasks for humans. These results
grounded our methodology as we evaluated next whether nonhuman primates would produce
the same data pattern.

Experiment 2: Monkeys
Experiment 2 generalized the human phenomena to the category learning of nonhuman
primates, by examining the behavior of six rhesus monkeys (Macaca mulatta) in the paradigm
of Experiment 1.

Method
Participants—Chewie (8 years old), Han (5 years old), Lou (14 years old), Luke (8 years
old), Murph (14 years old), and Obi (4 years old) were tested. They had been trained, using
procedures described elsewhere (Rumbaugh, Richardson, Washburn, Savage-Rumbaugh, &
Hopkins, 1989; Washburn & Rumbaugh, 1992), to respond to computer-graphic stimuli by
manipulating a joystick. They had been tested in prior studies on a variety of computer tasks.
The monkeys were tested in their home cages at the Language Research Center of Georgia
State University, with ad lib access to the test apparatus, working or resting as they chose
during long sessions. The animals were neither food deprived nor weight reduced for the
purposes of testing and they had continuous access to water.

Apparatus—The monkeys were tested using the Language Research Center’s Computerized
Test System—LRC-CTS (described in Rumbaugh et al., 1989; Washburn & Rumbaugh,
1992)—comprising a Compaq DeskPro computer, a digital joystick, a color monitor, and a
pellet dispenser. Monkeys manipulated the joystick through the mesh of their home cages,
producing isomorphic movements of a computer-graphic cursor on the screen. Contacting
appropriate computer-generated stimuli with the cursor brought them a 94-mg fruit-flavored
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chow pellet (Bio-Serve, Frenchtown, NJ) using a Gerbrands 5120 dispenser interfaced to the
computer through a relay box and output board (PIO-12 and ERA-01; Keithley Instruments,
Cleveland, OH). Correct responses were accompanied by a computer-generated series of
ascending tones that bridged the animals to their reward. On incorrect responses, there was a
computer-generated buzzing sound and a 20-s penalty timeout.

Procedure—The stimuli, category structures, and trial displays were those already described
in Experiment 1. The monkeys made their categorization decision using a digital joystick to
move a cursor (a tiny red ellipse) to touch the response icon of their choice. Each trial began
with a black square presented in the same position as the to-be-categorized stimulus. Animals
moved the cursor to touch this square as a trial-start response, indicating their readiness. The
black square released to the Gabor disk, and the two response icons were illuminated. To avoid
any confusion with past response icons used by the animals, the A-response icon was a mirror-
imaged TB. The B-response icon was a mirror-imaged QC. These were both novel response
stimuli.

The monkeys received 6,000 trials in the RB and II tasks, with the exception of one animal in
one task that lost one trial due to computer error. These 6,000 trials were 10 random
permutations of the 300 Category A and 300 Category B stimuli available for a task. To allow
this succession of permutations, stimuli were sampled without replacement until the supply of
600 stimuli was exhausted, and then the 600 stimuli were re-introduced. The monkeys, as
humans, were mainly given the spatial-frequency RB task with a vertical decision bound and
the positive II task that were illustrated in Figure 1. The two exceptions to this procedure are
described next.

Data analysis—The six macaques completed 6,000 trials of both the RB and II tasks in
counterbalanced order (Chewie, Han, Lou: RB-II; Luke, Murph, Obi: II-RB). Four macaques
(Han, Lou, Murph, and Obi) completed the vertical RB task shown in the top panel of Figure
1 and the positive II task shown in the bottom panel of Figure 1. Chewie and Luke completed
an initial session of 6,000 trials (Chewie: II Positive, Luke: RB Vertical). In both cases, these
macaques exhibited a strong and persistent response bias in which they made the same response
essentially every trial. In neither case was there any learning. Accordingly, these two sessions
were not analyzed. Chewie’s II task was repeated following his RB task, this time using the II
Negative task instead of the II Positive task he originally experienced and failed. Luke’s RB
task was repeated following his II task, this time using the RB Horizontal task instead of the
RB Vertical task he originally experienced.

Results
Accuracy-based analyses—The aggregate proportion correct for all macaque participants
is shown in Figures 3A and 3B for successive 100-trial blocks in the RB and II tasks. In
comparing the performance of monkeys and humans in Figures 3 and 2, respectively, remember
that there was a 10-fold difference in trial-block length and total trials on task. We return
momentarily to the relative slowness of monkeys’ category learning. The data were analyzed
using a three-way analysis of variance (ANOVA), with task type (RB, II) and trial block (1–
60) as within-subject factors, task order as a between-subjects factor, and with task type nested
within task order. The analysis found a significant main effect for task, F (2, 4) = 7.40, prep = .
884, ηp

2 = .826. Macaques were .84 and .71 correct overall on the RB and II tasks, respectively.
The analysis also found a significant effect for trial block, F (59, 236) = 8.05, prep = .999,
ηp

2 = .746. Macaques showed substantial learning across their sessions, from .60 correct in
the first block to .86 correct in the last block. The interaction between trial block and task type,
F (118, 236) = 2.27, prep = .999, ηp

2 = .532, indicated that participants improved differentially
on the two tasks, as is shown in the figure. In the RB-II task order (Figure 3A), macaques
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improved from a very low RB performance level (as they initially acclimated to the task) to a
very high level late in the experiment. In the II-RB task order (Figure 3B) they were sharp and
sensitive RB categorizers from that task’s outset, having earlier accomplished their task
acclimation.

Monkeys’ and humans’ relative speeds of learning—These data provide one of the
closest existing comparisons between the categorization of humans and nonhuman primates.
Clearly, monkeys’ speed of acquisition was slower overall than was that of humans. For
example, over their 600 trials, the human accuracies were .974 (RB first), .943 (RB second), .
780 (II first), and .810 (II second). In contrast, in their first 600 trials, the monkey accuracies
were .492 (RB first), .901 (RB second), .537 (II first), and .670 (II second). It is interesting that
even in these 600-trial performance levels, one sees the crucial result of the experiment
foreshadowed. Both of the monkeys’ first-task performances began at near-chance levels as
task-acclimation occurred. II-second performance was slightly better than this, after
acclimation had been accomplished in the first task. But RB-second performance was
dramatically better. RB acquisition in the second task epoch was extremely rapid, showing in
another way its privilege within the primate category-learning system.

The species differences in overall learning rate accords well with other cross-species estimates
of the speed of learning (Smith, Minda, & Washburn, 2004; also compare Medin & Dewey,
1984, Medin, Altom, & Murphy, 1984). It should be borne in mind that some of the difference
arose because humans were given explicit instructions about the structure of the category-
learning task and about their goals within it. Monkeys had to learn the task’s grammar and
goals procedurally from their experience within it. In addition, humans received all their trials
in one day instead of on successive days—there might have been forgetting across days by the
monkeys. Thus one should take the learning-rate difference seriously but not over-interpret it.

Model-based analyses—We fit the categorization models to the monkeys’ data in much
the same way we did with the humans. First, we fit the models to the first 600 trials of each
monkey’s performance. The II, 1D, CJ, and RG models fit best for 0, 4, 0, and 2 participants,
respectively in the II condition. The II, 1D, CJ, and RG models fit best for 1, 2, 0, and 3
participants, respectively in the RB condition. Across the two task conditions, all 5 of the best
fits by the RG model were in the animals’ first task, demonstrating again that monkeys can
have fairly slow time-courses of category learning.

In addition, we fit the last 1000 trials of each monkey’s data and classified each monkey
according to which model provided the best fit. We also repeated this classification for fits to
the last 2000 trials and to the last 3000 trials. The results were essentially identical to those
reported here. Figure 4 shows the best fitting decision bounds overlaid on the categorization
stimuli for all animals in both conditions. The results of the modeling analyses are described
now.

The II, 1D, CJ, and RG models fit best for 4, 1, 1, and 0 participants, respectively in the II
condition. This is a difference from the proportions of model fits seen in Experiment 1—85%
of humans performing an II task were best fit by the II model, but only 66% of monkeys were.
For reasons that we describe now, this difference should not be over-interpreted, and indeed
the monkeys’ pattern of model fits strengthens the overall interpretation of the article.

The four participants for which the II model fit best had best-fitting decision bounds that were
not strictly vertical and that assumed information integration. One sees in Figure 4, however,
that except for two cases, these bounds were substantially vertical. Table 1 explores this issue
in more detail. There, goodness-of-fit (i.e., BIC) scores are given for the best-fitting II and RB
models, along with the percentage of responses accounted for by the decision bounds assumed
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by these models. The fit score for the best-fitting model is given in bold. Note that for participant
3, the II model fits much better and accounts for many more responses. This is the bound in
Figure 4 with the shallowest slope. For the other 5 participants, the differences in fit between
the II and RB models are more modest and there are almost no differences in the ability of the
two models to account for the monkey’s responses. Thus, although the behavior of 4 of the 6
monkeys was best described by an II model, only one monkey effectively integrated the bar
width and orientation information. The other animals all showed a strong dimensional focus.
If anything, the animals dimensionalized the stimulus space more strongly than the humans
did, not less strongly.

In the RB condition, the II, 1D, CJ, and RG models fit best for 2, 4, 0, and 0 participants,
respectively. The 2 participants for which the II model fit best had best-fitting decision bounds
that were not strictly vertical. However, Figure 4 shows that in both cases, these bounds were
nearly vertical. Table 2 confirms that in these two cases, the 1D model accounted for at least
as many responses as the better fitting II model. Thus, all 6 participants effectively showed
substantial dimensional learning.

In summary, the model fitting shows that most of the macaques used a decision bound of the
same type as the optimal bound. Even so, it is also clear that the animals showed a strong
tendency to analyze and dimensionalize the stimuli, even when this was not the optimal
strategy. The results demonstrated, in monkey category learners, too, a strong difference in the
speed and level of acquisition between RB and II tasks.

General Discussion
We gave humans and macaques RB and II category-learning tasks using an established human
methodology. Both species strongly dimensionalized the perceptual space, sharply attended to
single dimensions, and learned RB category tasks easily. In contrast, in II tasks that require
perceptual integration, learning in both species was slower and less effective. Many researchers
have granted rules an important role in human categorization (Ahn & Medin, 1992; Ashby &
Ell, 2001; Erickson & Kruschke, 1998; Medin, Wattenmaker, & Hampson, 1987; Nosofsky,
Palmeri, & McKinley, 1994; Regehr & Brooks, 1995). Here, macaques showed a similar
pattern. To some extent, macaques demonstrated their use of rule-based categorization
processes that are deemed in humans to be explicit, conscious, declarative, and reasoning/
language-based. The results represent a new continuity between primate and human cognition.

It was not pre-ordained that the cognitive systems of macaques would be organized in a
dimensionalized, rule-preferring format. For example, other species might perceive these
stimuli more integrally and less separably than humans (Foard & Kemler Nelson, 1984; Garner,
1974; Garner & Felfoldy, 1970; Handel & Imai, 1972; Lockhead, 1972), just as young humans
sometimes perceive multidimensional stimulus combinations more integrally than adult
humans (Shepp & Swartz, 1976; Shepp, Burns, & McDonough, 1980; L. Smith & Kemler
1977, 1978; Smith & Kemler Nelson, 1984; Ward, 1983). Given a non-dimensionalized
perceptual space, the RB and II tasks used in the present experiments would be identical in
within-category coherence, between-category separation, stimulus distance/similarity
relationships, and inherent task difficulty, and thus no difference in the speed of acquisition
would be predicted.

RB and II tasks would also be equally learnable given a mechanism based on configural
representations (Pearce, 1987, 1994). Configural theory presumes that multidimensional
stimulus compounds—in their entirety—enter into associations with outcomes and responses.
Our RB and II tasks were exact structural rotations of one another through 45o of perceptual
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space, and therefore would equally support the use of configural representations in building
adaptive response strategies.

RB and II category learning might also be equivalent given an elemental theory of
discrimination. In II tasks, every trial presents task-relevant information along both
dimensions. As long as neither dimension is totally ignored, there is no way for attention to be
wrong-footed so that relevant information is missed on some trials. Important models of
attention and discrimination learning (e.g., Sutherland & Mackintosh, 1971; Mackintosh,
1975) left ample room for the parallel gain of associative strength to occur for multiple relevant
cues in a way that could support equivalent RB and II learning. Indeed, some elemental
approaches to discrimination learning might predict an II learning advantage. After all, animals
trained with multiple relevant cues available usually acquire a discriminatory habit faster than
animals trained with only one cue (e.g., Eninger, 1952). Sutherland and Mackintosh (1971, p.
141) showed that the combined strengths of two relevant cues would often be greater than the
strength of the relevant cue in single-cue learning. At worst, when there is a weak and strong
cue (in salience or reinforcement predictiveness), the multiple-cue case produces performance
equal to (not worse than) the single-cue case (Sutherland & Mackintosh, 1971, ch. 4, p. 131;
Warren, 1953; Harlow, 1945). These additivity effects were analyzed and modeled in work by
Restle (1955, 1957) and by Sutherland and Macintosh, (1971, ch. 5). Note that these early
studies generally focused on the inclusion of two cues that were highly correlated with trial
outcomes, whereas in the present studies the cues were only partially correlated with outcomes.
Therefore, one cannot automatically extrapolate from those studies to the present case.
Nonetheless, those studies do not lead one to expect the strong RB (single-cue) preference
shown by monkeys here. In a sense, the present data furthers those studies by studying the case
in which partially predictive information is presented along two dimensions.

Remember also that there is evidence that II learning is managed in humans (and perhaps in
monkeys) by an implicit-striatal system that uses a form of procedural learning. If humans and
monkeys learned II and RB tasks using this system, then again one would not predict a strong
RB performance advantage. The implicit system relies on nonanalytic, multi-dimensional
processes that slowly learn to map response outputs to regions of perceptual space, and it, too,
would be indifferent to the rotation of the task in perceptual space and to the dimensional
alignment of the task’s axes.

Yet humans and monkeys showed a strong RB performance advantage when the axes of the
task’s solution were aligned with dimensionalized perception. This clearly suggests that both
groups used some attentional/cognitive category-learning process that emphasized single-cue
solutions, rather than multiple-cue associations. There is no rationale for suggesting that this
rule- or hypothesis-like system was striatally based. To the contrary, the natural interpretation
of our results is that monkeys showed for the first time here a version of the RB-II implicit-
explicit dissociation that has been a dominant feature of recent work in the cognitive
neuroscience of category learning.

This continuity across humans and nonhuman primates raises additional questions. First, when
in evolutionary time—given that a commitment was not necessary—was the commitment made
by the mammal-primate lineage to place special emphasis on the dimensional organization of
tasks and on single-dimensional solutions to multidimensional category tasks. This question
has a distinguished pedigree in comparative psychology. Lashley (1929) found that rats often
made cue-response associations quite suddenly (e.g., Sutherland & Mackintosh, 1971, Figure
4.1). With equal notoriety, Krechevsky (1932) reported that rats appeared to adopt the same
response strategy for a series of trials, as though they were testing single-cue behavioral
hypotheses and discarding them until finding one strongly correlated with reward. These
observations were the controversial basis for the Noncontinuity Theory of animal
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discrimination learning, and they are consonant with the present results that reveal a
preferential, single-cue system in category learning. However, those observations were not
strongly grounded in systematic experiments, and other theoretical perspectives have been
taken toward them (Sutherland & Mackintosh, 1971). The present RB-II paradigm offers a
constructive convergent paradigm for exploring—comparatively and systematically—these
attentional phenomena.

Second, it is interesting to consider why—given that the commitment was not necessary—the
mammal/primate lineage made the commitment to dimensional task organizations and
unidimensional task solutions. What was the benefit to single-dimensional foci and category
rules? What was the character or quality of real-world, ecological categories for mammals/
primates that helped engender this commitment? Even without knowing these answers, clearly
this commitment opened extraordinary possibilities for analysis, hypotheses, rules, inferences,
symbolic representations, and linguistic labels that reached their full development in the
hominids.

Third, short of that full development, it is interesting to evaluate the elements of humans’ rule-
based system that macaques do or do not share. The human system is analytic,
dimensionalizing, verbal, explicit, and conscious. The results show that macaques share with
humans the analytic and dimensional framework within which they grasped RB tasks with
substantial privilege. However, macaques are not verbal as humans are, and this has an
important implication for theories of human categorization. The original formulation of COVIS
(Ashby et al., 1998) conflated explicit reasoning and verbalization (the acronym’s V is for
Verbal), even though little evidence suggested the necessity of verbalization and language for
rule-based, explicit categorization. The macaques are a sharp reminder that this is an
unnecessary conflation. Recent discussions of implicit-explicit theory have avoided this error
(Ashby & Valentin, 2005). There could be explicit forms of rule use that are not verbally
grounded, though they could be grounded in some dimensional, symbolic, nonverbal proxy or
precursor. Lea and Wills (2008) also pointed out that animals may show single-cue solutions
in tasks that are different in character from those of humans, and that the construct of rule-use
needs careful definition when used to compare performances across species.

Macaques were also slower dimensional focusers and rule learners than humans. This
difference is consistent with existing knowledge about monkeys’ general prefrontal
development. They should be “explicitly challenged” given what is known about human-
primate differences in neuroanatomy. We believe there is constructive theoretical work to be
done in considering the evolutionary and cognitive waypoints from monkeys’ gradual
abstraction of category rules to humans’ rapid appreciation of them. One possible attentional-
dimensional accelerant would be an increasingly sharp rivalry between cues in a task, so that
zero-sumness came more quickly to crowd out all but one cue. Theories of selective attention
and discrimination have incorporated such a rivalry, inverse, or zero-sum principle to different
degrees (Sutherland & Mackintosh, 1971; Mackintosh, 1975). Another possible attentional-
dimensional accelerant would be a growing capacity for symbolic/dimensional/propositional
representations that let humans think logically about hypotheses and rules. An emerging
explicit consciousness of rules and hypotheses could also be an underlying factor that
accelerated rule-based category learning along the hominid line.

On this last point, while the present results may reveal in macaques a system of rule-based
reasoning that is in some respects continuous with that of humans, they certainly do not force
the conclusion that macaques hold their rules declaratively, explicitly, or in conscious
awareness. Clearly, more research should be forthcoming to explore this possibility and ground
it empirically, by further dissociating explicit from implicit category learning in macaques.
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For example, because the explicit system uses working memory and executive attention, it
should be relatively resilient to changes in the timing and nature of the feedback signal.
Maddox, Ashby, and Bohil (2003) showed that II category learning in humans, but not RB
category learning, is impaired if the feedback signal is delayed even by 2.5 seconds after
response. Showing this dissociation in macaques would provide further evidence that explicit
and implicit category-learning systems in humans and macaques are similar.

For another example, Maddox, Ashby, Ing, and Pickering (2004) showed that RB category
learning in humans, but not II learning, was impaired if the amount of time to process the
feedback signal is limited. Showing this dissociation in macaques would suggest that they also
deliberately process the feedback given on training trials, as part of a suite of processes that
may include hypothesis memory and evaluation.

In the end, we hope that the present research will foster a dialog among comparative, cognitive,
and neuroscience researchers of category learning. It will be fruitful to compare humans’ and
animals’ categorization competencies and limitations and to correlate these with the differential
development of the brain systems that serve category learning. Currently, few cognitive-
neuroscience articles directly address issues and findings relating to animal categorization
(Ashby & Maddox, 2005).

We also hope that our research will draw theoretical connections from the contemporary
systems study of cognitive neuroscience (e.g., Ashby et al., 1998) to Harlow (1949) on learning
sets, Krechevsky (1932) on animal hypotheses, Lashley (1942) on discontinuity theory,
Rumbaugh and Pate (1984) on mediational learning, and to Mackintosh (1975), Restle
(1955, 1957), Sutherland and Mackintosh (1971), Trabasso and Bower (1968), and Zeaman
and House (1963) on animals’ processes of selective attention and discrimination learning. For
we believe that earlier insights and debates, paired with complementary empirical techniques
and theoretical perspectives, still have great potential to illuminate comparative psychology.
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APPENDIX
This appendix describes the models that were fit to each participant’s data and the model fitting
procedure. For more details, see Maddox and Ashby (1993).

Rule-Based Models
The One-Dimensional Classifier (1D) assumes the participant sets a decision criterion on one
stimulus dimension (either bar width or orientation). The model has two parameters (a criterion
on the relevant dimension, and perceptual noise variance).

The Conjunction Rule Classifier (CJ) assumes that the rule used by participants is a conjunction
of the type: “Respond A if the bar width is small AND the orientation is > 45°, otherwise
respond B.” Although several different versions of the model could be fit to the present data,
only the version that seemed plausible based on a visual inspection of the response data was
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fit. The GCC has 3 parameters: one for the single decision criterion placed along each stimulus
dimension (one for orientation and one for bar width) and a perceptual noise variance.

Information-Integration Models
The Information-Integration Model (II) assumes a general linear classifier strategy in which
participants divide the stimulus space using a linear decision bound. The II model has 3
parameters: the slope and intercept of the linear decision bound and a perceptual noise variance.

Random Response Models
Two models assumed random responding – one with unbiased guessing (zero parameters) and
one with biased guessing (one parameter).

Model Selection
Parameters were estimated using the method of maximum likelihood, and the Bayesian
Information Criterion (BIC; Schwarz, 1978) was used for model selection:

where r is the number of free parameters, N is the sample size, and L is the likelihood of the
model given the data.

Smith et al. Page 16

J Exp Psychol Anim Behav Process. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Examples of rule-based and information-integration category structures. The stimuli are sine-
wave disks varying in bar width and orientation. In the top panel, the vertical decision bound
shows that only variation in bar width carried diagnostic category information, so optimal
performance was governed by a one-dimensional (bar-width) rule. In the lower panel, the
diagonal decision bound shows that bar width and orientation both carry category information
—information from both dimensions must be integrated into a category decision. Each panel
illustrates some of the three hundred stimuli that were selected from within the exemplar space
of Category A and Category B using methods described in the text.
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Figure 2.
A. Proportion of correct responses in each 10-trial block for thirty humans who performed 600
trials of a rule-based (RB) and information-integration (II) category task in that order. B.
Proportion of correct responses in each 10-trial block for thirty humans who performed 600
trials of an II and RB category task in that order.
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Figure 3.
A. Proportion of correct responses in each 100-trial block for three monkeys who performed
6,000 trials of a rule-based (RB) and information-integration (II) category task in that order.
B. Proportion of correct responses in each 100-trial block for three monkeys who performed
6,000 trials of an II and RB category task in that order.
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Figure 4.
The stimuli used in the information-integration (II) and rule-based (RB) conditions of
Experiments 1 and 2 and the decision bounds that provided the best fits to the last 1,000
responses of the macaques in Experiment 2. Five macaques received the positive information-
integration task (top-left panel) and the vertical rule-based condition (top-right panel. One
macaque received the negative information-integration task (bottom-left panel) and one
received the horizontal rule-based condition (bottom-right panel).
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Table 1

Model-fitting results for the last 1,000 trials of II task performance by each monkey participant. The BIC score
for the best-fitting model is given in bold.

II Participant

II Model RB Model

BIC % Accounted BIC % Accounted

1 634.4 88.0 640.9 (1D) 88.1 (1D)

2 479.8 89.7 570.4 (1D) 88.7 (1D)

3 291.1 95.8 822.6 (1D) 82.1 (1D)

4 1216.9 70.5 1210.5 (1D) 70.5 (1D)

5 982.6 73.8 958.8 (CJ) 75.9 (CJ)

6 793.1 81.0 890.2 (1D) 83.6 (1D)
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Table 2

Model-fitting results for the last 1,000 trials of RB task performance by each monkey participant. The BIC score
for the best-fitting model is given in bold.

RB Participant

II Model 1D Model

BIC % Accounted BIC % Accounted

1 550.6 92.3 558.7 92.3

2 811.4 86.2 800.4 86.2

3 766.6 86.0 798.6 86.2

4 441.1 94.2 434.3 94.2

5 551.2 91.7 545.6 91.9

6 256.1 97.4 251.6 97.4
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