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The search to understand how genomes innovate in response to
selection dominates the field of evolutionary biology. Powerful
molecular evolution approaches have been developed to test
individual loci for signatures of selection. In many cases, however,
an organism’s response to changes in selective pressure may be
mediated by multiple genes, whose products function together in
a cellular process or pathway.Hereweassess theprevalence ofpoly-
genic evolution in pathways in the yeasts Saccharomyces cerevisiae
and S. bayanus.Wefirst established short-read sequencingmethods
to detect cis-regulatory variation in a diploid hybrid between the
species. We then tested for the scenario in which selective pressure
in one species to increase or decrease the activity of a pathway has
driven the accumulation of cis-regulatory variants that act in the
same direction on gene expression. Application of this test revealed
a variety of yeast pathwayswith evidence for directional regulatory
evolution. In parallel, we also used population genomic sequencing
data to compare protein and cis-regulatory variation within and
between species. We identified pathways with evidence for diver-
gence within S. cerevisiae, and we detected signatures of positive
selection between S. cerevisiae and S. bayanus. Our results point
to polygenic, pathway-level change as a common evolutionary
mechanism among yeasts. We suggest that pathway analyses,
including our test for directional regulatory evolution, will prove
to be a relevant and powerful strategy in many evolutionary
genomic applications.
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Amain challenge of evolutionary biology is to understand the
influence of selection on genetic variation within and

between species. Classically, molecular evolution methods have
targeted individual genes or loci for tests of selection. Their
successes have uncovered both protein-coding and regulatory
variants with signatures of non-neutral evolution (1–3). How-
ever, decades of quantitative genetic mapping studies indicate
that in most cases, variation in phenotype between individuals is
the result of multiple sequence changes at unlinked loci (4). The
genetic response to changes in selective pressure is likely to
follow the same pattern, but, to date, methods for identifying
cases of polygenic evolution have been at a premium.
Some of the strongest evidence for polygenic adaptation has

emerged from the study of protein-coding variants between
phylogenetic lineages. Signatures of positive selection can be
detected in the protein-coding sequences of groups of genes of
related function (5–8), suggestive of a coherent series of genetic
changes accumulated by a population in response to selection.
Additionally, genetic variation in gene expression represents a
rich data source for signatures of selection, both positive (9, 10)
and purifying (11, 12), although the mechanisms that govern
regulatory evolution are not fully understood. Regulatory var-
iants can act in cis, to impact the expression of a neighboring
gene, or in trans, targeting the expression of genes elsewhere in
the genome. Hallmarks of positive selection have been ob-
served at individually mapped cis-regulatory variants (1, 3); one
appealing model predicts that such a locus is part of a suite of
adaptive regulatory changes in downstream effectors of a path-
way (13–16). More generally, in the face of either positive or

relaxed selection, a population may accumulate multiple inde-
pendent changes at effector loci, in cis-regulatory sequences or in
protein-coding regions, avoiding the potentially pleotropic
effects of variation in master regulators (1, 17).
In this work, we set out to test the polygenic evolutionary

model in a simple eukaryotic system. We developed genome-
scale sequencing methods to identify cis-regulatory variants
between two Saccharomyces species, measuring allele-specific
expression levels of a gene in a hybrid diploid (18, 19), and we
used the results to uncover evidence of directional evolution of
the expression of genes in pathways. To extend these findings, we
independently tested for evidence of polygenic evolution using
population resequencing data.

Results
Differential Allele-Specific Expression in an Interspecific Hybrid. We
sought to study directional evolution of cis-regulatory control of
expression on a genomic scale in Saccharomyces cerevisiae and
S. bayanus. As an experimental paradigm (20–22), we used
genome-wide analysis of expression in a hybrid diploid formed
from the mating of the two species. Because the orthologs of a
given gene from both species are present in the same environment
of trans-acting factors, differential expression of the orthologs
reflects the presence of cis-acting differences between the species.
Detecting expression variation within the hybrid requires techni-
ques that recognize the alleles encoded by each ortholog in each
species. For this purpose, we measured allele-specific expression
with Illumina short-read sequencing (RNA-seq) (23–25). We
mated theW303 strain of S. cerevisiae and the CBS 4001 isolate of
S. bayanus to form a hybrid diploid and isolated RNA from two
independent cultures of this strain as biological replicates. For
each, we sequenced cDNA libraries, for a total of eight lanes. We
used the set of sequencing reads mapping uniquely to either the S.
cerevisiae or the S. bayanus genome to quantitate the expression of
the allele of each gene from each species, yielding 4,238 ortholog
pairs with observable allele-specific expression.
For a given ortholog pair, we used the average log-ratio of

S. bayanus to S. cerevisiae per-base read counts as a statistic for
differential allele-specific expression. However, such a measure
reflects not only the biologically relevant difference in transcript
abundance but also the inherent “sequenceability” of one allele
relative to the other. In particular, GC-rich regions tend to be
preferentially sequenced by the Illumina platform (26, 27), rais-
ing the possibility that comparison of raw allele-specific read
counts from an ortholog pair might overestimate the abundance
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of the more GC-rich ortholog. We investigated the impact of
allelic base composition on our RNA-seq read counts (Fig. S1) and
found that, roughly, a 5% difference in GC content between alleles
was associated with a 10% fold-change in their apparent expression.
Toaccount for such confounding,wedeveloped a resampling-based
method for analyzing differential allele-specific expression. In our
approach, the significance of differences in read counts is evaluated
by reference to a null distribution that incorporates differences in
sequence composition. As illustrated in Fig. 1, we resampled the
base-level read counts of the two orthologs to form “null” ortholog
pairs with no differential expression and the same marginal
nucleotide distributions as the original orthologs. In a given null
pair, any apparent difference in the number of RNA-seq reads
mapping to one ortholog rather than the other can be attributed to
sequencingartifacts alone.Whenanalyzingouractual data, to assert
that theobserveddifference inRNA-seq reads betweenorthologs in
a pair arose from variation in expression between the species and
not from technical effects, we required that the observed RNA-seq
fold-change lie outside the range of differences we expected under
the null. This comparison between observed and null data resulted
in a P value for each ortholog pair. The resampling strategy was
stringent, identifying fewer cases of significant differential expres-

sion than did a standard statistical approach that does not account
for GC bias (Table S1).
We applied the resampling method to each of the two biological

replicates and identified ortholog pairs for which both P values fell
below a given cutoff. The results, given in Table S2, yielded 2,124
ortholog pairs with maximum P value < 0.05 (at which 212 genes
would be expected under the null from sequenceability effects
alone), 1,570 ortholog pairs with P < 0.005 (21 would be expected
under the null), and 1,176 ortholog pairs with P < 0.0005 (2 would
be expected under the null). To evaluate the resulting dataset, we
designed quantitative RT-PCR assays to measure allele-specific
expression for a subset of genes that spanned the range of P values
and fold-changes from RNA-seq from among those significant at
P < 0.05 (Table S3). As shown in Fig. S2, we observed good
agreement between RT-PCR and RNA-seq measures of allelic
expression differences in the hybrid. Of immediate relevance for
our downstream analysis (see below), the two methods agreed on
the sign of the fold-change in 20/22 genes tested, confirming the
ability of ourRNA-seqprocedure to determine for a givenortholog
pair whether the S. bayanus or S. cerevisiae allele was associated
with higher expression.

Fig. 1. Schematic of RNA-seq method for inferring differential allele-specific expression in a hybrid diploid; resampling procedure for an example gene. (Left)
Observed base-level read counts are displayed for the S. bayanus and S. cerevisiae orthologs, using color to represent the nucleotide at each base. The x axis
gives the position of each base, and the y axis gives the number of allele-specific reads whose first nucleotide maps to a given position. Above each plot are
the allele-specific marginal nucleotide frequencies πb = [πb(A),πb(C),πb(G),πb(T)] and πc = [πc(A),πc(C),πc(G),πc(T)], for S. bayanus and S. cerevisiae, respectively.
(Center) For each ortholog, “null” counts are created by resampling base-level read counts according to the S. bayanus and S. cerevisiae nucleotide fre-
quencies πb and πc, respectively. Null expression log-fold-changes are computed by averaging (across lanes for each of the two biological replicates) log-ratios
of S. bayanus to S. cerevisiae null per-base read counts. The resampling procedure is repeated 10,000 times for each ortholog. (Right) Boxplots of the 10,000
null expression log-fold-changes for each ortholog. The observed log-fold-change from the original read counts is represented by dark red dashed lines and is
compared with each null distribution to obtain two-sided P values, pb and pc. The significance of the observed allele-specific expression difference is sum-
marized by the maximum P value, max(pb, pc).
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Testing for Directional cis-Regulatory Evolution. We hypothesized
that some cis-regulatory changes betweenS. cerevisiaeandS. bayanus
could reflect a history of selection on gene expressionwhen analyzed
jointly over groups of genes of common function. For a given such
pathway (Fig. 2), we expected to observe a preponderance of
ortholog pairs in which the S. bayanus allele was up-regulated with
respect to the S. cerevisiae allele or a preponderance in which the
S. cerevisiae allele was up-regulated with respect to the S. bayanus
allele. Such an imbalance reflects an accumulation of independent
genetic changes acting in the same direction, which is unlikely un-
der neutrality (28). Rather than assume a specific model for neutral
evolution, we sought to base our null expectation on the genome-
wide prevalence of differential allele-specific expression inferred in
the hybrid.
To test for directional cis-regulatory evolution between the spe-

cies, we first used a previously curated set of gene groups defined by
coregulation in S. cerevisiae (14). We assigned a direction score to
each gene in our dataset: 1 if expression of the S. bayanus allele was
significantly higher than expression of the S. cerevisiae allele at P <
0.05, −1 if expression of the S. cerevisiae allele was significantly
higher than expression of the S. bayanus allele, and 0 otherwise.We
took the sumof the direction scores of the genes in each regulon as a
measure of the imbalance in the direction of cis-regulatory changes
across the group. We then assessed the significance of each such
statistic by reference to a resampling-based null distribution,
yielding a two-sided P value, and we set a lenient threshold corre-
sponding to∼1 expected false-positive group out of all tested. Table
1A reports the set of regulons reaching this criterion,which included
two amino acid biosynthesis pathways, a set of ribosomal and
translation genes, a regulon of respiratory enzymes, and a group of
transporters. The gene groups emerging from this analysis reflect a
history of rare but detectable directional evolution across pathways
during the divergence of S. cerevisiae and S. bayanus.

We next repeated our procedure on Biological Process gene
categories manually assembled by the Gene Ontology consortium
(29). Table 1B lists the resulting categories, including ribosomal
biogenesis, genes mediating aromatic compoundmetabolism, and
a broad group of RNA-processing genes; a subset of the latter, the
genes involved in the nuclear exosome, are illustrated in Fig. 2.We
conclude that signatures of directional evolution can be detected
in tightly defined biochemical pathways as well as in broad and
heterogeneous gene classes.

Sequence-Based Tests for Selection Within and Between Species.
Given our evidence for directional selection during the divergence
of S. cerevisiae and S. bayanus at the level of gene expression across
pathways, we next sought to test more generally for polygenic
evolution. The whole-genome sequences of 34 nonlaboratory S.
cerevisiae isolates and one isolate of S. bayanus (30) comprise a
dataset suitable for sequence-based tests of selection.We reasoned
that, although currently existing sequence-based evolutionary
genetic approaches are not designed to uncover directional regu-
latory evolution, they would allow the study of polygenic evolution
more broadly. For this purpose, for each gene we applied the
McDonald–Kreitman test (31) to compare the frequency of amino
acid changes and synonymous changes within and between species.
We also used a McDonald–Kreitman-like test to compare the
prevalence of variants in regulatory regions with the prevalence of
synonymous changes, again within and between species (9, 32).
Nonsynonymous and upstream variants weremore commonwithin
S. cerevisiae than between the species (30), and test results on
individual genes primarily revealed cases of enrichment for poly-
morphism at candidate functional sites (Table S4). The ubiquitin
gene UBI4 harbored an excess of species differences in the
upstream region (nominal P = 2.7 × 10−9, at which <<1 gene was
expected if all were evolving neutrally), but variation in upstream
regions did not afford sufficient statistical power for a dataset of

Fig. 2. Evidence for directional cis-regulatory evolution, for the example of the nuclear exosome. Shown is a schematic of the proteins in the Gene Ontology
terms “nuclear exosome” and “colocalizes_with: nuclear exosome,” colored to reflect expression differences between S. cerevisiae and S. bayanus alleles in
the interspecific hybrid. Blue, up-regulation of the S. bayanus allele; orange, up-regulation of the S. cerevisiae allele; gray, no measured expression effect. The
complex in the center of the cartoon represents the exosome. The thick black line indicates RNA in the act of processing, the beige cylinder represents a
nuclear pore, and the thin line represents the nuclear envelope. 1: CSL4; 2: RRP4; 3: RRP40; 4: RRP41; 5: RRP46; 6: MTR3; 7: RRP42; 8: RRP43; 9: RRP45; 10: RRP6;
11: RRP44; 12: MMP6; 13: LRP1; 14: NRD1; 15: KAP95; 16: SRP1.

5060 | www.pnas.org/cgi/doi/10.1073/pnas.0912959107 Bullard et al.

http://www.pnas.org/content/vol0/issue2010/images/data/0912959107/DCSupplemental/st04.doc
www.pnas.org/cgi/doi/10.1073/pnas.0912959107


high-scoring genes in McDonald–Kreitman-like tests. However, in
McDonald–Kreitman analysis of coding regions, at nominal P <
0.005 we detected 94 genes (12.6 expected if all genes were evolving
neutrally), including three genes with an excess of nonsynonymous
changes between species: the fatty acid oxidative enzyme TES1, the
transcription factor YRM1, and the cell wall component CCW14.
Excluding the latter candidate cases of positive selection from

further analysis, we next sought to identify pathways enriched for
genes with excess nonsynonymous polymorphism. Because
analysis of Gene Ontology categories gave modest but appreci-
able power (Table S5), we focused on this class of gene groups,
which revealed that the accumulation of coding changes among
S. cerevisiae isolates can be pathway-dependent. Among the top-
scoring results, shown in Table 2, were categories annotated in
stress response, cell division, and DNA metabolism, each
enriched for genes with an excess of protein-coding variants
within S. cerevisiae. In a given pathway, such enrichment is
consistent with a history of relaxed constraint or balancing
selection across the species, or with pathway-level divergence
between S. cerevisiae populations. Given the known preponder-
ance of alleles segregating at low frequency within S. cerevisiae
(30), we repeated McDonald–Kreitman tests and pathway
analyses on a dataset in which singleton sites were filtered out
(Tables S6 and S7). Top-scoring pathways from these filtered
data mirrored pathways emerging from analysis of all sites, albeit

with weaker P values for enrichment of polymorphism (Table
S7); thus, although singleton alleles drive much of the statistical
power for this analysis, more common variants likely exhibit
similar trends of enrichment in pathways. We conclude that an
excess of fixed sequence differences between S. cerevisiae and S.
bayanus, indicative of positive selection between the species, can
be detected at a handful of individual loci and that genes of
common function share patterns of sequence polymorphism
within S. cerevisiae.

Discussion
Decades of work based on the study of individual genes with
signatures of selection have shed light on the mechanisms of
evolutionary change (1–3). However, any such locus may repre-
sent only one component of a suite of changes among genes of
related function that have arisen in response to the same selec-
tive pressure over evolutionary time. The prevalence and
mechanisms of polygenic evolution are unknown, and addressing
the question requires genome-scale data sources and analytic
methods that in many cases remain to be developed. For
genomic analysis of the evolution of gene expression, cis-acting
differences in a heterozygote diploid can be mapped at high
resolution (20–22), but to date, methods for this purpose have
required custom microarray tools. The RNA-seq platform we
pioneer here enables study of cis-acting variation in expression in
any organism and any strain (23–25). Likewise, we have dem-
onstrated the power of extending the classical sequence-based
McDonald–Kreitman test for selection to pathways, an approach
that has increasing utility with the advent of population genomic
sequencing data (5–8, 32).
We have developed an analytic strategy to detect nonneutral

evolution in pathways, finding cis-regulatory changes with effects in
the same direction that have accumulated in one phylogenetic lin-
eage relative to another. Any case of directional evolution of gene
expression in a pathway can be explained with either of two evolu-
tionary models. A lineage can accumulate novel alleles that pre-
dominantly up-regulate or predominantly down-regulate the genes
of a pathway because these changes result in a fitness advantage in a
particular niche. Alternatively, coherent purifying selection can
keep levels of pathway genes predominantly low or predominantly
high in a particular lineage; if this selective force is relaxed in a
second lineage, novel alleles accumulated by drift will change
expression levels in a direction opposing the original selective con-
straint. Tests for directional selectionhave their origin in analyses of
quantitative trait loci mapped to macroscopic phenotypes (28), but
studies of a given trait rarely have sufficient power for the test. By

Table 1. Directional evolution of gene expression in pathways

Name Statistic* # Genes† P‡ Annotation

A. Gene groups defined by coregulation in S. cerevisiae (14); 1.08 false-positive groups expected
Cluster_Histidine −7 8 9.00E-05 Histidine biosynthesis
Node 73 71 349 0.001 Ribosome and translation
Cluster_NRG1 −7 12 0.002 Stress-induced transport
Cluster_Lysine −5 8 0.006 Lysine biosynthesis
Node 45 −9 45 0.007 Respiration

B. Gene groups defined as the Biological Process categories from Gene Ontology; 0.53 false-positive groups expected
GO:0422540 79 269 1.0E-05 Ribosome biogenesis
GO:0016070 124 827 0.009 RNA metabolic process
GO:0006275 −8 56 0.01 Cellular aromatic compound

metabolic process

Listed are the top-scoring gene groups with sign imbalance in cis-regulatory variation. Results for all groups are given in Table S8.
*Directional differential expression statistic measuring the imbalance in the signs of cis-regulatory variants within gene groups, defined as the sum of the
directional scores of the group members (1 for a gene significantly up-regulated in S. bayanus for both biological replicates, −1 for a gene significantly up-
regulated in S. cerevisiae, and 0 otherwise).
†Total number of genes in each group for which a directional score was available.
‡Resampling-based P value assessing the significance of directional cis-regulatory expression variation in each group.

Table 2. Pathway enrichment of within-species sequence
variation

Name MK enrichment* P† Annotation

GO:0007124 6.0 9 × 10−5 Pseudohyphal growth
GO:0006950 2.2 0.0005 Response to stress
GO:0006259 2.1 0.006 DNA metabolic process
GO:0007126 2.5 0.03 Meiosis

Listed are the top-scoring pathways in a test for enrichment among genes
with evidence for protein coding variation within S. cerevisiae according to
the McDonald–Kreitman test. Results for all pathways are given in Table S5.
Gene groups were defined as the Biological Process categories from Gene
Ontology, with 1.2 false-positive groups expected.
*The ratio between the number of genes in the pathway scored as signifi-
cant in the McDonald–Kreitman test and the number of genes in all path-
ways scored as significant, divided by the analogous ratio for all tested genes
regardless of significance.
†Hypergeometric P value for pathway enrichment of genes significant in the
McDonald–Kreitman test.
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contrast, genome-scaledatasetsof cis-regulatory variants of thekind
reported here represent the result of hundreds to thousands of
independent genetic events in the history of the two parent
genomes. Harnessing these data, our test for coherent regulatory
change complements previous strategies to observe the evolution of
regulatory motifs in pathways (13–16), providing a significance
estimate and a direction of inferred effects on pathway output for
each candidate case of nonneutral evolution. Interestingly, among
the hits were a number ofmetabolic pathways, including respiration
and amino acid biosynthesis genes. Although the latter could be the
result of adaptation to laboratory conditions, it is tempting to
speculate that changes in nutrient availability may underlie cases of
pathway evolution in Saccharomycetes, as would be expected from
findings in other organisms (33–35).
However, our test for directional regulatory evolution is not

designed to detect cases of selection on amino acid changes, and it
focuses on the divergence between a pair of isolates rather than
divergence among many strains. Indeed, sequence-based tests
detected cases of polygenic evolution in a set of pathways different
from those identified by the expression-based approach, as expected
given the distinctions between the two methods. In particular,
McDonald–Kreitman tests revealed patterns of protein-coding
polymorphism at the pathway level between S. cerevisiae isolates.
Previous analyses of rare alleles in S. cerevisiae have suggested
relaxed selection as a major evolutionary force in this system (30),
and relaxation resulting from environmental change would be
expected to drive an accumulation of derived alleles in particular
response pathways. Thus, pathways enriched for nonsynonymous
polymorphism across S. cerevisiae may shed light on the changes in
the life history of this species since its divergence fromS. bayanus. In
addition, some cases of pathway-level polymorphism may result
from divergence between S. cerevisiae populations, as the result of
adaptation (36, 37) or of relaxed selection in particular niches.
Improved sequence sampling of the well-defined populations in this
species (30) ultimately will enable in-depth study of the changes in
selective pressure at play during their divergence.
Emerging from our work and that of others (5–7, 13–16, 32) is a

picture of evolutionary change within and between species medi-
ated by polygenic suites of variants in pathways. With respect to
adaptation, a more parsimonious mechanism could involve a sin-
gle advantageous change in an upstream regulator that up- or
down-regulates a pathway in one mutational step (2). However, in
experimental organisms, changes in trans-acting transcriptional
regulators are more prevalent in lines that have accumulated
mutations than in wild isolates (12) and are more common within
species than between species (17), suggesting that upstreameffects
are often deleterious and subject to purifying selection. As such,
the time taken by amutational search for an adaptive variant in an
upstream regulator often may be comparable to that required for
the acquisition ofmultiple changes in downstreameffectors (1).By
the same token, relaxed selection on the function of a pathway
frequently would give rise to suites of downstream changes but less
often to a major upstream variant. The prevalence of polygenic
evolution may explain why detecting evidence for strong selection
on single loci has proven challenging to date and will serve as
continued motivation for the study of mechanisms by which genes
in pathways coevolve.

Materials and Methods
Strains, RNA Preparation, and Sequencing. Strain OZY27, a hybrid of
S. cerevisiae (isogenic to W303; his3 leu2 lys2 trp1 ura3) and S. bayanus
(derived from CBS 4001; ade2 his3 lys2) (38), was kindly provided by O. Zill,
University of California, Berkeley. For each of two biological replicates, an
OZY27 culture was grown to log phase at 25 °C in YPD medium (39). Total
RNA was isolated by the hot acid phenol method (39) and treated with
Turbo DNase (Ambion) according to the manufacturer’s instructions. A Sol-
exa/Illumina 1G Genome Analyzer library was constructed for each bio-
logical replicate as described (40). Each biological replicate was sequenced at
both the Vincent J. Coates Genomic Sequencing Laboratory at the University

of California, Berkeley, and the Core Instrumentation Facility at the Uni-
versity of California, Riverside. The former provided two lanes of 37-bp reads
for each biological replicate; the latter provided three lanes of 40-bp reads
for biological replicate 1 and one lane of 40-bp reads for replicate 2. All
resulting reads were trimmed to 30 bp.

RNA-seq Preprocessing and Mapping. We downloaded 4,853 ortholog pairs
(http://www.broad.mit.edu/regev/orthogroups/orthologs.html) and ineachpair
converted the S. cerevisiae ortholog sequence to that of W303 using sequence
from (30). For each lane, 30-bp reads were mapped to either strand of
the ortholog pair set using Bowtie (41), allowing no mismatches between the
read and the reference sequence. All further analyses were done in R (42). For
each position in the combined orfeome, we determined whether the read
starting at that locationwasuniquely-mappable (2), i.e., had an edit distanceof 2
or greater to any other position in the combined (double-stranded) reference
orfeomeorgenome.Thecombinedorfeomeconsistsofall 4,853 S.bayanusandS.
cerevisiae ortholog pairs; the combined genome consists of the concatenation of
the S. bayanus (http://downloads.yeastgenome.org/sequence/fungal_genomes/
S_bayanus/WashU/contig/) and S. cerevisiae (ftp://ftp.yeastgenome.org/yeast/
data_download/sequence/NCBI_genome_source/) reference genomes, convert-
ing the latter to that of the W303 strain as above. The ensuing analysis con-
sidered only uniquely-mappable (2) reads and the 4,238 ortholog pairs with a
minimum of 200 uniquely mappable (2) bases in both species and a maximum
difference in length of 100 bp. The correlation in read counts was greater
between replicate lanes, sequencing centers, and biological replicates than
between S. bayanus and S. cerevisiae orthologs (Fig. S3).

Identifying Ortholog Pairs with Differential Allele-Specific Expression. Our
method for detecting significant differential expression betweenorthologs in a
pair is described in detail in SI Text. Briefly, for a given orthologpairwe sampled
the base-level read counts of the S. bayanus ortholog to create null S. bayanus
data; to create null S. cerevisiae counts, we resampled, from the S. bayanus
ortholog, base-level read counts according to the nucleotide frequencies in the
S. cerevisiae ortholog. Computing differential expression statistics for each of
10,000 suchnull orthologs yielded a null distribution towhichwe compared the
observed differential expression statistic to obtain a P value. Repeating the
procedurewith thebase-level read counts of the S. cerevisiaeortholog yielded a
second P value, and we conservatively retained the maximum of the two.

Testing for Directional Imbalance in cis-Regulatory Effects Across Pathways.
Our test for directional regulatory evolution is described in detail in SI Text.
Briefly, for pathway analyses we used the regulons defined in (14) and
GO_slim Biological Process categories (http://downloads.yeastgenome.org/
literature_curation/go_slim_mapping.tab). For a given pathway, we added
directional differential expression scores across all genes in the group (1 if the
expression in the S. bayanus allelewas significantly higher than in the S. cerevisiae
allele,−1 if theexpression in the S. cerevisiaeallelewas significantlyhigher than in
the S. bayanus allele, and 0 otherwise) and obtained a P value by comparing the
resulting statistic with a null distribution of 100,000 such statistics obtained by
resampling genes at random, with replacement. At a given P value threshold P0,
weestimated theexpectednumberof false-positivepathwaysas theproductofP0
and the number of tests; we set P0 to attain as close to one false-positive pathway
aspossible. For comparison, results fromtheBenjamini–Hochbergmultiple testing
procedure (43), which controls the false-discovery rate, are given in Table S8.

McDonald–Kreitman Analyses. We downloaded S. cerevisiae strain sequences
from (30), eliminating the laboratory strains W303, S288C, and SK1 from fur-
ther analysis. For each gene, we aligned the amino acid sequences of S. cer-
evisiae strains and the reference sequence of S. bayanus (http://downloads.
yeastgenome.org/sequence/fungal_genomes/S_bayanus/other) using MUSCLE
(44)and regeneratedDNAalignmentswith tranalign (http://emboss.sourceforge.
net/). For a total of 2,511 genes,we applied theMcDonald–Kreitman test using
software from (32). For upstream regions, we used alignments from (30) for
the region starting 200 bp upstream of each gene and ending at coding start,
and tabulated polymorphic and divergent sites; for polymorphic and diver-
gent silent sites, we used ORF alignments of nonlaboratory strains from (30).
Given the 2 × 2 table from these data, for a total of 1,910 genes, we calculated
single-gene McDonald–Kreitman-like P values using Fisher’s exact test. For
filtering of singletons in both coding and upstream analyses, we identified
polymorphic sites at which exactly one S. cerevisiae strain harbored the minor
allele and eliminated these sites from the analysis, using P < 0.005 as a cutoff
for significance in the McDonald–Kreitman test.

For pathway analyses, we used 38 GO_slim categories as above, as well as
gene regulons from (14), filtered as described in SI Text; to minimize the
number of the latter with poor sampling, we considered a regulon only if ≥10
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of its component genes had availableMcDonald–Kreitman data, for a total of
78 regulons tested. In each pathway, we calculated the overrepresentation of
top-scoringMcDonald–Kreitmangenes using the R functionphyper.We chose
significance thresholds to attain as close to one false-positive pathway as
possible, as above. For comparison, results from the Benjamini–Hochberg
multiple testing procedure are given in Tables S5 and S7.
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