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Glucose homeostasis is critically dependent on insulin release from
pancreatic β-cells, which is strictly regulated by glucose-induced
oscillations in membrane potential (Vm) and the cytosolic calcium
level ([Ca2+]cyt). We propose that TRPM5, a Ca2+-activated monova-
lent cation channel, is a positive regulator of glucose-induced
insulin release. Immunofluorescence revealed expression of TRPM5
in pancreatic islets. A Ca2+-activated nonselective cation current
with TRPM5-like properties is significantly reduced in Trpm5−/−

cells. Ca2+-imaging and electrophysiological analysis show that glu-
cose-induced oscillations of Vm and [Ca2+]cyt have on average a
reduced frequency in Trpm5−/− islets, specifically due to a lack of
fast oscillations. As a consequence, glucose-induced insulin release
from Trpm5−/− pancreatic islets is significantly reduced, resulting in
an impaired glucose tolerance in Trpm5−/− mice.

Ca2+ signaling | insulin release | pancreatic β-cells | transient receptor
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The pancreatic β-cell is an electrically excitable cell that secretes
insulin when extracellular glucose levels exceed a threshold

concentration. Characteristically, upon stimulation with glucose,
β-cells display an oscillatory change of the membrane potential
(Vm) and, in parallel, of the cytosolic Ca2+ level ([Ca2+]cyt) (1–4).
This pattern, consisting of slow waves of depolarized plateaus on
which bursts of action potentials are superimposed and separated
by electrically silent intervals, plays a critical role in the regulation
of insulin secretion. Indeed, in the absence of depolarization, no
insulin is released, and the “extent” of electrical activity largely
determines the amount of released insulin (1, 5). The bursting
pattern of the β-cell is a complex interplay among different ion
channels (e.g., ATP-sensitive K+ channels, voltage-gated Ca2+

channels, and Ca2+ and voltage-activated K+ channels), intra-
cellular Ca2+ levels ([Ca2+]cyt), and the cellular metabolism of the
β-cell (1, 6). The increase in [Ca2+]cyt originates from glucose-
induced Ca2+ influx through voltage-gated L-type Ca2+ channels
and, possibly, Ca2+mobilization from intracellular stores, the latter
promoted by activation of the phospholipase C system and gen-
eration of inositol 1,4,5-trisphosphate (1, 7, 8). Despite intensive
investigation, several aspects of the rhythmic electrical activity of
β-cells, such as the origin of the variability in oscillation pattern,
remain unclear. Indeed, glucose stimulation can result in high-
frequency short bursts, low-frequency long bursts, or a combination
of these two patterns, also known as compound bursts (9, 10).
In this study we identified TRPM5 as a player in the electrical

activity of glucose-stimulated pancreatic β-cells. TRPM5 is one of
28 members of the large transient receptor potential (TRP)
superfamily (11–13). TRPM5, and its close homologue TRPM4,
are Ca2+-activated cation channels that are permeable for mon-
ovalent cations, but not divalent cations, with a conductance of
approximately 20 to 25 pS (14–16). Using Trpm5−/−mice we show

here that this channel promotes high-frequency glucose-induced
oscillations in Vm and [Ca2+]cyt in pancreatic β-cells. Loss of
TRPM5 expression, and high-frequency bursting, is functionally
relevant as this leads to reduced glucose-induced insulin release
from isolated islets and impaired glucose tolerance.

Results and Discussion
Expression of the Trpm5 Gene in Pancreatic β-Cells. Previously,
Trpm5 expression was shown on the mRNA level in several β-cell
lines and in human and mouse tissues, including taste buds,
intestine, and pancreatic islets (13, 17–22). Here we describe
immunostaining of TRPM5 protein in pancreatic islets with a
specific antibody (Fig. 1). TRPM5 is colocalizedwith insulin inWT
islets, strongly suggesting expression of TRPM5 in insulin secret-
ing β-cells. Specific staining with the TRPM5 antibody is absent in
Trpm5−/− islets. Quantitative PCR experiments in a purified β-cell
sample confirmed expression ofTrpm5 in the β-cells. Expression of
Trpm5 could also be detected in purified α-cells, although to a
lower level compared with β-cells (Fig. S1).

Characterization of a Ca2+ Release–Activated Cation Current in
Pancreatic Islet Cells. To determine whether TRPM5 is part of the
Ca2+-activated monovalent cation current described earlier in
insulin-secreting cell lines and primary β-cells (23–25), we compared
whole-cell currents inWT and Trpm5−/− single pancreatic islet cells.
Only cells with a cell capacitance of>5 pFwere analyzed, beingmost
likely pancreatic β-cells (26). In one approach, cells were dialyzed
with a pipette solution containing 1.5 μMCa2+.As shown in Fig. 2, a
Ca2+-dependent cation current can be readily activated, which is
largely reduced in Trpm5−/− cells (Fig. 2 A–C). Comparable results
wereobtainedwhen [Ca2+]cytwas increasedbyflash-uncagingduring
whole-cell experiments (WT, 6.5 ± 1.4 pA/pF; vs. Trpm5−/−, 3.5 ±
0.5pA/pF;P=0.035at−80mV;WT,2.53±0.7pA/pF; vs.Trpm5−/−,
1.09 ± 0.2 pA/pF; P= 0.025 at +80 mV; n= 21–27 from five to six
mice). Ca2+ uncaging during a step to +80 mV (Fig. 2D) allows
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determination of the time course of activation for this current, in
relative isolation from other conductances in β-cells. In WT cells
we found a time constant for activation (τ=24.1± 3.5ms; n=14),
which is similar to what has been shown before for TRPM5 (27).
Furthermore, the Ca2+-activated current in these conditions in
WTcells showed a clear bell-shaped dependency on [Ca2+]cyt (Fig.
2F), which corresponds to the Ca2+-dependence of TRPM5 (13,
27). Obviously, the current in Trpm5−/− cells is strongly reduced at
each [Ca2+]cyt level (Fig. 2 C and F). Finally, the Ca2+-activated
current in WT cells displayed a cation conductance sequence
Li+>Na+>>Ca2+∼NMDG+, which is essentially the same as re-
ported for TRPM5, but different from the background current in
Trpm5−/− cells (Na+>Li+>>Ca2+∼NMDG+). Thus, it is clear

that TRPM5 is an important constituent of the calcium-activated
cation current in pancreatic β-cells. Other presently known
molecular candidates for this class of ion channels include TRPC5
(28, 29), TRPM2 (30), and TRPM4, which may constitute the
remaining Ca2+-activated cation current in Trpm5−/− β-cells. At
least TRPM2 and TRPM4 are also expressed in insulin-secreting
cell lines and in mouse pancreatic islets (31, 32). Notably, deletion
of the Trpm4 gene has no effect on glucose tolerance or on insulin
release from pancreatic islets (33). Finally, note that the current
described here is fundamentally different from the “leak” channel,
NALCN, proposed recently in β-cells (34, 35).

Slower Intracellular Ca2+ Oscillations in Islets Derived from Trpm5−/−

Mice. To find clues about the functional role of TRPM5 in pan-
creatic β-cells, we first turned to glucose-induced Ca2+ oscillations.
β-Cells display very characteristic [Ca2+]cyt oscillations in response
to high glucose concentrations, which critically regulate the release
of insulin. To analyze glucose-induced signaling in intact islets, we
monitored [Ca2+]cyt dynamics in intact Fura-2–loaded islets of
WT and Trpm5−/− mice. The basal fura-2 fluorescence ratio (F350/
F380), in a nonstimulatory glucose concentration (3 mM), was
similar in WT and Trpm5−/− islets (WT, 1.16 ± 0.03; vs. Trpm5−/−,
1.20 ± 0.02; P = 0.16; n = 27–33 from five to seven mice). Islets
from both genotypes had a similar glucose concentration threshold
for triggering [Ca2+]cyt oscillations (WT, 6.20±0.243; vs.Trpm5−/−,
6.21± 0.239;P=0.97; n=14–15 from four tofivemice), indicating
that glucose metabolism preceding glucose-induced electrical
activity is not changed in Trpm5−/− mice.
Increasing extracellular glucose concentration from 3 to 10 mM

elicitedanoscillatory increase in [Ca2+]cyt inbothWTandTrpm5−/−

Fig. 1. Expression of TRPM5 protein in pancreatic islets of Langerhans
immunostaining for TRPM5 and insulin of pancreatic islets from WT and
Trpm5−/− mice.

Fig. 2. Characterization of a TRPM5-dependent calcium-activated nonselective cation current in single pancreatic islet cells. (A) Representative current traces in
response tovoltage rampsfrom−125mVto+125mVinWTcellsdialyzedwitheither0or1.5μMCa2+ inabathsolutioncontaining150mMNa+or150mMNMDG+. (B)
Representative current traces as inA in Trpm5−/− cells. (C) Mean current densities at +80mV and −80mV inWT and Trpm5−/− cells (n = 12–14) in response to 0 Ca or
1.5 μM Ca2+ as in A. (D) Representative example of a current measured in aWT cell in the whole cell configuration during a step at +80 mV showing the activation
kineticsof the calcium-activatedcurrent.After60ms,flashphotolysisof cagedCa2+wasperformed(arrow). [Ca2+]cytwasmeasuredsimultaneously. (E) Representative
example of a currentmeasured as inD in a Trpm5−/− cell. (F) Ca2+dependencyof the current activated after uncagingof Ca2+ at +80mV inWTand Trpm5−/− cells. The
response is the difference in current density before and after the flash photolysis and is obtained from experiments as shown in D and E. *P < 0.05.
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islets (Fig. 3A). During a typical 20-min stimulation with 10 mM
glucose, the average increase in [Ca2+]cyt, as evaluated from F350/
F380, was not different betweenWTandTrpm5−/− islets (WT,0.26±
0.03; vs. Trpm5−/−, 0.21 ± 0.02; P = 0.23; n = 28–33 from five to
seven mice; Fig. 3B). Strikingly, Trpm5−/− islets exhibited overall a
significantly lower frequency of [Ca2+]cyt oscillations (0.82 ± 0.11
peaks/min in WT; 0.38 ± 0.03 peaks/min in Trpm5−/− islets; P =
0.00078; n= 28–34 from five to seven mice; Fig. 3C).
However, in line with previous work (10, 36, 37), we observed

significant variability in theoscillatorypatternamong individual islets.
Using Fourier analysis, three different oscillatory patterns could be
distinguished in WT islets in 10 mM glucose (Fig. S2) (i): slow
oscillators display relevant frequencies below 0.015 Hz (ii), fast
oscillators display relevant frequencies above 0.015 Hz, and (iii)
mixed (compound) oscillators display relevant frequencies in both
slow and fast frequency regions (for a detailed description, see Fig.
S2). Inpreparations fromWTmice, theproportionof islets exhibiting
slow (38.2%), mixed (38.2%), and fast (23.6%) [Ca2+]cyt oscillations

(Fig. 3D) was comparable to distributions reported before (10, 37).
Remarkably, fast oscillating islets were completely lacking in prepa-
rations from Trpm5−/− mice, in which 89.3% of the islets were clas-
sified as slow oscillators and the remaining islets showed mixed
oscillations (χ2 analysis, P = 0.0006; Fig. 3D). An analogous differ-
ence is observed when islets were stimulated with a supramaximal
concentration of glucose (20 mM). This leads to longer plateaus of
increased Ca2+, both inWT and KO islets. InWT islets, a sustained
Ca2+plateau is themost prevalent pattern,whereasCa2+oscillations
during the stimulation period were observed in only a small subset of
the islets. Strikingly, in Trpm5−/− islets, the oscillating pattern is the
more prevalent (Fig. S3; χ2 analysis, P= 0.025). Finally, it should be
noted that increased glucose-induced [Ca2+]cyt oscillation frequency
in β-cells lacking the BETA3 subunit of voltage-gated Ca2+ channels
can be accounted for by enhanced formation of inositol 1,4,5-tris-
phosphate and increased Ca2+mobilization from intracellular stores
inBeta3−/− islets (38). InTrpm5−/− islets, thispathway isnotaltered, as
release of calcium from the intracellular stores was the same in WT
andTrpm5−/− islets upon stimulation with acetylcholine [an activator
of the phospholipase C pathway (39); Fig. S4], revealing no differ-
ences in the PI signaling pathway or the amount of Ca2+ in intra-
cellular stores. Taken together, these data demonstrate that TRPM5
is specifically required for the generation of fast [Ca2+]cyt oscillations
upon high glucose stimulation.

Membrane Potential Oscillations from WT and Trpm5−/− Islets. As
TRPM5 is a Ca2+-activated, but Ca2+-impermeable, cation
channel, it can be anticipated that TRPM5 will influence [Ca2+]cyt
oscillations through an effect on membrane potential (Vm). Typ-
ically, glucose-stimulated pancreatic islets display depolarizing
oscillations of membrane potential triggering bursts of action
potentials (Fig. 4A). Oscillations in intracellular Ca2+ and Vm in
glucose-stimulated islets are strictly coupled (Fig. S5A). There-
fore, we performed combined Vm and [Ca2+]cyt measurements, to
unravel the role of TRPM5 in this process.
In line with the pattern of [Ca2+]cyt oscillations, glucose-induced

Vm oscillations in individual islets can be classified as slow (average
frequency<0.015Hz), fast (average frequency>0.015Hz; Fig. 4A),
or mixed, showing the typical pattern of clusters of Vm oscillations
separated by prolonged silent intervals (40). In a group ofWT islets
(n = 17), the distribution of the different oscillation patterns was
comparable to the distribution seen in [Ca2+]cyt measurements (χ2
analysis, P = 0.09): 47% of the islets were oscillating fast (n = 8),
whereas 41.2%couldbe classifiedas slowoscillators (n=7)and the
remaining 11.8% (n=2) showed compound oscillations. Likewise,
Trpm5−/− islets (n = 9; χ2 analysis, P = 0.3), only display slow
oscillations. Thus, it is clear that the absence of fast [Ca2+]cyt
oscillations is mirrored by the absence of fast Vm oscillations in
Trpm5−/− islets (Fig. 4A; χ2 analysis, WT vs. Trpm5−/−, P= 0.019).
To determine the contribution of TRPM5 to the bursting pa-

ttern in glucose-stimulated islets, we performed a detailed com-
parison of Vm changes in islets from both mouse strains. Detailed
analysis of the individual action potentials on topof thedepolarized
plateau, revealed no significant differences between WT and
Trpm5−/− islets concerning parameters like duration and maximal
slope of the upstroke, duration of repolarization, and width at half-
maximal amplitude. A tendency, although not statistically sig-
nificant, toward reduced action potential amplitude was apparent
in Trpm5−/− islets (Table S1 and Fig. S6). Slow burst oscillations
were indistinguishable between WT and Trpm5−/− islets, with
respect to the duration of the interburst interval, the slope of
depolarization during the interburst interval, the threshold
potential for burst initiation (Fig. 4B), the average burst duration,
plateau fraction, resting potential, interburst potential, and the
plateau potential (Table 1). As fast bursting is missing from
Trpm5−/− mice, it seems evident that TRPM5 activity must be
hidden in the difference between fast and slow bursting in WT
islets. The most obvious differences in that comparison are burst

Fig. 3. Overall reduced frequency of intracellular Ca2+ oscillations in isolated
islets from Trpm5−/− mice as a result of a lack of fast oscillations. (A) Effect of
glucose (10mM) on the [Ca2+]cyt in islets fromWT and Trpm5−/−mice. Initially, the
islets were bathed in a solution containing 3 mM glucose. Arrows indicate appli-
cation of 10mMglucose. (B) Average increase in ratio (F350/F380) after stimulation
with 10 mM glucose in islets fromWT and Trpm5−/−mice (n = 28–34 from five to
sevenmice; P = 0.23). (C) Frequency of oscillations in individual experiments from
WT and Trpm5−/− islets, counted as the number of peaks permin (n = 28–34 from
five to seven mice). [Ca2+]cyt increase of 15%was considered to be an oscillation,
when 100% is the amplitude between the baseline and the highest level reached
in 10mMglucose. ***P< 0.001. (D) Proportion of islets showing slow,mixed, and
fast oscillation patterns according to Fourier analysis in WT (38.2%, 38.2%, and
23.6%, respectively) and Trpm5−/− islets (89.3%, 10.7%, and 0%, respectively): n =
28 to 34 from five to seven mice; χ2 analysis WT vs. Trpm5−/−: P = 0.0006.
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duration, interburst interval, and maximal slope of the interburst
interval. Burst duration is significantly shorter in fast oscillating
islets comparedwith slow islets (Table 1). This is, however, unlikely
to result from a lack of TRPM5 activity, as a Ca2+-activated cation
channel would be expected to prolong the burst duration. Fur-
thermore, in agreement with the unchanged average [Ca2+]cyt
increase in Trpm5−/− islets, the plateau fraction is similar in all
groups (Table 1). Fast oscillators display a significantly shorter
interburst interval, resulting in higher burst frequency. In parallel,
the maximal slope of the interburst interval is significantly
increased in fast oscillating islets compared with slow islets. It

is clear from combined [Ca2+]cyt and Vm measurements that the
Ca2+-transient overlaps with the interburst interval (Fig. S5A), so it
is likely that TRPM5 is active during the interburst interval. As the
increased slope is lacking in Trpm5−/− islets, our data strongly
suggest that TRPM5 is contributing to the depolarizing current
during the interburst interval to drive the Vm toward the threshold
for a new burst of activity.
Interestingly, a mathematical model of Ca2+ and Vm changes

in a glucose-stimulated pancreatic β-cell reproduces this phe-
notype (Fig. S5B). In this model, removing a Ca2+-activated
monovalent cation conductance significantly reduces the oscil-
lation frequency, as we observe in our KO mouse model. This is a
result of the lack of a depolarizing current in the interburst
interval, which shapes the slow depolarization of the membrane
potential to reach the threshold for a new burst of activity (Fig.
S5C). Note that the increased Ca2+ during the burst of activity
overlaps to a large part with the interburst interval, as we also
observe in simultaneous Ca2+ and Vm measurements (Fig. S5 A
and B), explaining why TRPM5 would be active in this period.
It’s important to mention here, however, that it is unclear what

the exact mechanism behind the variability of the oscillation
pattern of a pancreatic islet is (9), and why TRPM5 is apparently
only functionally relevant in a (fast-oscillating) subpopulation of
the islets. Several models for glucose-induced Ca2+ oscillations
exist, of which the most successful propose a complex interplay
among [Ca2+]cyt levels, ion channel activity, glycolytic rate, and
mitochondrial respiration (6). Bertram et al. (6) propose that
slow oscillations (period between 2 and 7 min) represent oscil-
lations in glycolytic activity and that fast oscillations (period as
long as tens of seconds) are controlled by ion channel activity
during persistent high glycolytic activity. Compound bursting
would represent a complex interplay among several of the
aforementioned factors. Our data fit well into this model, in a
sense that we can show that TRPM5 is essential for the occur-
rence of fast but not slow oscillations and that also compound
bursting is largely lacking in Trpm5−/− islets. An interesting
hypothesis might be that the weight of TRPM5-mediated
depolarization is coupled to the glycolytic rate in the cell. Thus,
at a constantly high glycolytic rate, which is a necessity for fast
oscillations according to Bertram et al. (6), TRPM5 activity
would be able to depolarize Vm in the interburst interval, as the
hyperpolarizing KATP current is largely inactive at that point.
Conversely, during an oscillating glycolytic rate, TRPM5 would
be inadequate to depolarize Vm during the low point of glycolytic
activity, corresponding to the interburst interval between slow
oscillations (6) as a result of high activity of KATP.

Fig. 4. Vm measurements in WT and Trpm5−/− islets stimulated with 10 mM
glucose. (A) Representative examples of Vmmeasurements inWT islets showing
fast (Left) and slow(Middle) oscillationpatternsand inTrpm5−/− isletsdisplaying
slow oscillations (Right). (B) Comparison of duration of the interburst interval,
threshold potential for burst initiation, and slope of the depolarization during
the interburst interval in WT fast- and slow-oscillating islets and in Trpm5−/−

slow-oscillating islets (n = 8–9 from five to six mice). *P < 0.05; ***P < 0.001.

Table 1. Characteristics of Vm measurements in WT and Trpm5−/− islets during stimulation with 10 mM glucose

Characteristic

WT

Trpm5−/−:Slow (n = 9
from 5 mice)

P value

Slow (n = 7
from 5 mice)

Fast (n = 8
from 6 mice)

WT: Slow vs.
fast

Slow: WT vs.
Trpm5−/−

Duration of interburst interval, s 180.8 ± 55.4 11.8 ± 1.4 153.5 ± 34.0 0.013* 0.78
Slope of depolarization in the
interburst interval, mV/s

0.023 ± 0.004 0.13 ± 0.02 0.034 ± 0.01 0.0001* 0.18

Threshold potential for burst initiation, mV −56.9 ± 1.1 −54.3 ± 2.1 −59.1 ± 2.4 0.27 0.64
Average duration of burst plateau, s 120.5 ± 17.6 12.7 ± 3.5 114.7 ± 17.4 <0.0001* 0.82
Plateau fraction, % 0.47 ± 0.04 0.55 ± 0.06 0.6 ± 0.05 0.22 0.56
Plateau potential, mV −42.2 ± 2.5 −49.2 ± 3.0 −46.2 ± 4.4 0.091 0.41
Interburst potential, mV −61.2 ± 2.3 −59.4 ± 2.72 −66.7 ± 1.5 0.61 0.14
Resting potential, mV −70.4 ± 0.8 −71.5 ± 1.0 −73.0 ± 2.1 0.12 0.98

Comparison of different parameters (in mean ± SEM) of Vm in WT slow (n = 7 from 5 mice) vs. WT fast (n = 8 from 6 mice) oscillating islets and WT slow vs.
Trpm5−/− slow oscillating islets (n = 9 from 5 mice). The plateau fraction is calculated as the sum of burst lengths divided by the total period of glucose
stimulation.
*Significant at P < 0.05.
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Metabolic Phenotype of Trpm5−/− Mice. To determine whether the
lack of fast oscillations has consequences for pancreatic islet
function, glucose-induced insulin release from freshly isolated islets
wasmeasured. Insulin releasewas significantly reduced inTrpm5−/−

islets when stimulated with 10 or 20 mM glucose (Fig. 5A and Fig.
S5). Importantly, the insulin content of individual islets (WT,65.9±
5.5 ng insulin/islet; vs.Trpm5−/−, 57.2±5.2ng insulin/islet;P=0.27;
n = 8) and the pancreatic insulin content in Trpm5−/− islets (WT,
45.9± 6.6 μg insulin per pancreas; vs. Trpm5−/−, 51± 6.8 μg insulin
per pancreas; P = 0.58; and WT, 90.8 ± 12.7 μg insulin per g of
pancreas; vs.Trpm5−/−, 105.1± 1.3 μg insulin per g of pancreas;P=
0.38; n = 3) were unchanged, indicating that TRPM5 is not
required for insulin synthesis or storage. β-Cells release insulin
through Ca2+-dependent exocytosis of membrane vesicles (41).
Cell capacitance measurements from isolated β-cells reveal a sim-
ilar exocytotic response to the Ca2+-ionophore ionomycin (ΔCm,
0.70± 0.26 pF inWT cells vs. 0.74± 0.18 pF in Trpm5−/− cells; P=
0.77; n = 6 per group), excluding a defect in Ca2+-dependent
exocytosis as a result of Trpm5 gene deletion. Considering that
the time-averaged [Ca2+]cyt signal (and the plateau fraction in Vm
measurements) upon glucose stimulation was not significantly dif-
ferent from WT, it may seem difficult to explain a significant
reduction in Ca2+-dependent insulin release. However, in this
aspect, our results are fully consistent with previous work in β-cells
(38) as well as in other secretory cell types such as pulmonary
alveolar cells (42) and somatotropes (43), showing that fast Ca2+

oscillations are more efficient than slow oscillations in triggering
exocytosis of secretory vesicles. It is clear thatCa2+exhibits a strong
cooperativity in triggering exocytosis from β-cells, suggesting that
four to five Ca2+ ions bind to the exocytotic machinery to induce
vesicle fusion (44).This nonlinearitymay, at least partially, underlie
the more efficient insulin release in rapidly oscillating islets.
Moreover, oscillatory changes in [Ca2+]cyt in β-cells were also
shown to be much more efficient than sustained changes in mobi-
lizing and/or priming vesicles for release (38).
Finally, in conscious mice, overnight fasting blood glucose

levels were significantly higher in Trpm5−/− mice (95 ± 3 mg/dL)
versus WT mice (72 ± 2 mg/dL; n = 25–28; P = 0.0009). No
changes were observed between both mouse lines in an insulin
tolerance test (Fig. S7). However, in agreement with the reduced
insulin release measured from isolated islets, plasma insulin
levels after i.p. glucose injection in overnight fasted male mice
were significantly reduced in Trpm5−/− mice compared with WT
mice (Fig. 5B). As a consequence, results of oral glucose toler-
ance test (OGTT) and i.p. glucose tolerance test (IPGTT) show
a reduced glucose tolerance in Trpm5−/− mice (Fig. 5C). These
data convincingly show that reduced glucose-induced insulin
release from β-cells leads to a moderate but significant glucose
intolerance in Trpm5−/− mice.

Conclusion
We identified Trpm5 as an important gene for the function of mouse
pancreatic β-cells. Deletion of Trpm5 results in an impaired glucose
tolerance caused by a reduced glucose-induced insulin release from
pancreatic islets. In this way, insight in pancreatic TRPM5 function
could consolidate our understanding of the pathogenesis of type II
diabetes and might provide a unique target for the treatment of
this disease.

Materials and Methods
Experimental procedures are described in more detail in SI Materials
and Methods.

Mice. Trpm5−/− mice (45) were backcrossed eight generations in the C57BL/6J
background and WT C57BL/6J mice were used as controls. Only male mice
were used for experiments. All animal experiments were carried out in
accordance with the European Union Community Council guidelines and
approved by the local ethics committee.

Preparation of Islets. Islets were isolated from male mice at 10 to 14 weeks of
age via collagenase digestion as described previously (46).

Solutions. For whole-cell current measurements, pipette solution contained
(in mM) 20 NaCl, 120 NaAsp, 10 Hepes. MgCl2, CaCl2, and the appropriate Ca2
+ buffer were added according to the CaBuf program (ftp://ftp.cc.kuleuven.
ac.be/pub/droogmans/cabuf.zip) to obtain 1 mM free Mg2+ and the desired
free Ca2+-concentration. Bath solution contained (in mM) 150 NaCl, 5 MgCl2,
10 Hepes, and 10 glucose. Pipette solution for flash-uncaging contained (in
mM) 20 CsCl, 120 CsAsp, 20 Hepes, 2 CaCl2, 5 DMNP-EDTA [1-(4.5-dimethoxy-
2-nitrophenyl)-EDTA, Molecular Probes], 1 Fura-2FF (Teflabs); and bath sol-
ution contained (in mM) 140 CsAsp, 5 MgCl2, 10 Hepes, 10 glucose, 1 μM
nifedipine (Sigma-Aldrich) and 100 nM tetrodotoxin (Sankyo). Standard
extracellular solution for calcium imaging measurements contained (in mM):
120 NaCl, 4.8 KCl, 2.5 CaCl2, 1.2 MgCl2, 10 Hepes, pH 7.4, with NaOH, with
different concentrations of glucose added as indicated. For Vm and combined
measurements, bath solution contained (in mM): 138 NaCl, 5.6 KCl, 1.2 MgCl2,
2.6 CaCl2, 10 Hepes, pH 7.4, with NaOH; and pipette solution contained (in mM):
10 KCl, 10 NaCl, 70 K2SO4, 7 MgCl2, 5 Hepes, pH 7.35, with KOH, 300 μg/mL
nystatin (Sigma-Aldrich) (47).

Electrophysiology and Calcium Measurements. Whole cell currents were meas-
ured at 31 °C to 33 °C from cells with a capacitance >5 pF (WT, 6.6 ± 0.3 pF; vs.
Trpm5−/−, 6.9± 0.3 pF; P = 0.42; n = 29–37), beingmost likely β-cells (26). [Ca2+]cyt
was measured by monitoring the Fura-2FF fluorescence signal (F350/F380). Cali-
bration of the fura signal was done as previously described (27). Ramp protocol
consisted of a 400-ms ramp from −100 mV toward +100mV (whole cell current
measurements) applied at 1 Hz or from +100 mV toward −100 mV (calcium

Fig. 5. Reduced glucose-induced insulin release leads to a disturbed glucose
tolerance in Trpm5−/− mice. (A) Insulin secretion fromWT and Trpm5−/− islets.
Isletswere challengedwithdifferent glucose concentrations as indicated (n=8
pergroup). Insulin releasewasnormalized to islet insulin content. *P<0.05. (B)
Plasma insulin levels after an i.p. glucose injection in overnight fastedWT and
Trpm5−/−mice (n=4–5mice; *P<0.05; **P< 0.01). (C) OGTTand IPGTTglucose
tolerance tests inWT and Trpm5−/−mice. (n= 7WTand n= 7 Trpm5−/−mice for
OGTT, n = 4 WT and n = 4 Trpm5−/− mice for IPGTT. *P < 0.05; **P < 0.01.)
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uncaging), applied at 0.5 Hz (holding potential, 0 mV). Flash photolysis was
performed after 60 ms during a 300-ms depolarizing step at +80 mV. [Ca2+]cyt
from Fura-2–loaded islets was measured monitoring fluorescence ratio (F350/
F380) every second (after correction for background fluorescence) at 37 °C. Vm

measurements were performed at 31 °C to 33 °C in the perforated patch con-
figuration under current-clamp conditions. In combinedmeasurements, Vm of a
single cell within the islet and [Ca2+]cyt of a region centered around the patch
pipette were simultaneously monitored.

Glucose and Insulin Tolerance Tests. Glucose and insulin tolerance were ana-
lyzed inovernight-fastedand6h–fastedmiceof10–14weeksage, respectively.

Insulin Release. Insulin release was measured from statically incubated, size-
matched,freshly isolatedisletsusingacommerciallyavailableELISAkit (Mercodia).

Data Analysis. Origin software (version 7.0; OriginLab) was used for data
analysis. Data are represented as mean ± SEM unless mentioned differently.
Statistical analysis was performed with the Student t test unless mentioned
differently. P < 0.05 was considered to represent a significant difference.
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