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Abstract
Isolated cleft lip with or without cleft palate (CL/P) is among the most common human birth defects,
with a prevalence around 1 in 700 live births. The Runt-related transcription factor 2 (RUNX2) gene
has been suggested as a candidate gene for CL/P based largely on mouse models; however, no human
studies have focused on RUNX2 as a risk factor for CL/P. This study examines the association
between markers in RUNX2 and isolated, nonsyndromic CL/P using a case-parent trio design, while
considering parent-of-origin effects. Case-parent trios from four populations (77 from Maryland, 146
from Taiwan, 35 from Singapore, and 40 from Korea) were genotyped for 24 single nucleotide
polymorphisms (SNPs) in the RUNX2 gene. We performed the transmission disequilibrium test on
individual SNPs. Parent-of-origin effects were assessed using the transmission asymmetry test and
the parent-of-origin likelihood ratio test (PO-LRT). When all trios were combined, the transmission
asymmetry test revealed a block of 11 SNPs showing excess maternal transmission significant at the
P < 0.01 level, plus one SNP (rs1934328) showing excess paternal transmission (P = 0.002). For the
11 SNPs showing excess maternal transmission, odds ratios of being transmitted to the case from the
mother ranged between 3.00 and 4.00. The parent-of-origin likelihood ratio tests for equality of
maternal and paternal transmission were significant for three individual SNPs (rs910586, rs2819861,
and rs1934328). Thus, RUNX2 appears to influence risk of CL/P through a parent-of-origin effect
with excess maternal transmission.
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INTRODUCTION
Oral clefts are one of the most common birth defects in humans and represent a significant
public health problem both in terms of the medical and economic burden for affected
individuals and their families. Nonsyndromic cleft lip with or without palate (CL/P) is
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“complex” or “multifactorial” in its etiology, in that both genes and environmental risk factors
control risk [Wyszynski et al., 1997; Cobourne, 2004]. Although several candidate genes have
been extensively studied in different populations (transforming growth factor α (TGFA),
IRF6, BCL3, RARA, etc.), only a few genes have been shown to contain mutations that appear
causal (MSX1, PVRL1, etc.), and these are rare and often show incomplete penetrance [van den
Boogaard et al., 2000; Zucchero et al., 2004; Carinci et al., 2007].

The Runt-related transcription factor 2 (RUNX2 [MIM 600211]) gene is located on
chromosome 6p, where studies of multiplex families have yielded evidence for linkage [Eiberg
et al., 1987; Marazita et al., 2004]. RUNX2 (CBFA1) is a critical transcription regulator
involved in both bone and tooth formation [Aberg et al., 2004]. Mutations in this gene have
been associated with cleidocranial dysplasia [CCD; Mundlos et al., 1997; Otto et al., 1997;
Cooper et al., 2001]. Several studies have reported that RUNX2 may lead to cleft palate in mice
[Ducy et al., 1999; Aberg et al., 2004]. However, to date no study has focused on whether the
RUNX2 gene is a risk factor for CL/P in humans.

It is important to consider parent-of-origin effects when studying birth defects because maternal
genotype controls the in utero environment of the developing fetus, and separating maternal
genotypic effects from imprinting effects remains an important question [Weinberg and
Umbach, 2005; Wilkins and Haig, 2003]. Maternal parent-of-origin effects have been
suggested for several genes associated with non-syndromic CL/P [Mossey et al., 1998;
Martinelli et al., 2001; van Rooij et al., 2003; Jugessur et al., 2003; Rubini et al., 2005]. In this
paper, we tested for association between markers in RUNX2 and risk of CL/P in 298 case-
parent trios specifically considering parent-of-origin effects.

METHODS
SAMPLE DESCRIPTION

As part of an international study of oral clefts, we collected data on case-parent trios recruited
through treatment centers in Maryland (MD, Johns Hopkins and University of Maryland), the
Chang Gung Memorial Hospital in Taiwan (TW), KK Women’s and Children’s Hospital in
Singapore (SP), and Yonsei Medical Center in South Korea (KR). Research protocols were
reviewed and approved by institutional review boards at each institution. Table I lists the gender
of all CL/P probands. All parents of probands were unaffected in the SP, TW, and KR trios,
but four parents among the 77 MD trios also had an oral cleft. All probands underwent clinical
genetics evaluations (including assessing other congenital anomalies or major developmental
delays) and were classified as having an isolated, nonsyndromic CL/P.

SNP SELECTION, DNA, AND GENOTYPING
Single nucleotide polymorphisms (SNPs) were selected in a region surrounding RUNX2 on
chromosome 6p21, with a goal of identifying one SNP per 5 kb of physical distance. Variants
with “SNP scores” (an assessment of design quality of the Illumina assay (San Diego, CA)
based on a proprietary algorithm) above 0.6, high validation levels in dbSNP (this included
validation levels where the submitter had validated the SNP on multiple platforms), and high
heterozygosity levels (particularly in multiple populations) were given higher priority during
the selection process. From 26 selected SNPs, 24 were polymorphic in all four populations
(Table II).

Genomic DNA samples were prepared from peripheral blood by the protein precipitation
method described previously [Bellus et al., 1995]. DNA concentration was determined using
the PicoGreen® dsDNA Quantitation Kit (Molecular Probes, Inc., Eugene, OR) and all DNA
samples were stored at −20°C. A 4 μg aliquot of each genomic DNA sample was dispensed
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into a bar-coded 96-well microtiter plate at a concentration of 100 ng/μl and genotyped for
SNP markers using the Illumina Golden-Gate™ chemistry with Sentrix® Array Matrices from
the manufacturer [Oliphant et al., 2002] at the SNP Center of the Genetic Resources Core
Facility, a part of the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School
of Medicine. Two duplicates and four Centre d’Etude du Polymorphisme Humain (CEPH)
controls were included on each plate to evaluate genotyping consistency within and between
plates and to insure correct orientation. Genotypes were generated on a BeadLab 1000 system
(San Diego, CA) [Fan et al., 2003].

STATISTICAL ANALYSIS
Within each population, the minor allele frequency (MAF) was computed among parents.
Pairwise linkage disequilibrium (LD) was computed as r2 for all SNPs using the Haploview
program [Barrett et al., 2005]. LD blocks were identified from the pairwise LD in each
population separately (Fig. 1). Four blocks of LD were identified, consisting of 4, 11, 3, and
6 SNPs, respectively. As an initial screening, single-SNP and two to five-SNP haplotypes were
analyzed using the family-based association test (FBAT) program, where empirical P-values
were calculated for each test [Laird et al., 2000; Rabinowitz and Laird, 2000]. For this FBAT
analysis, each population was analyzed separately for individual SNPs and haplotypes.
Clayton’s extension of the transmission disequilibrium test (TDT) incorporated into STATA
8.2 (College Station, TX) [Spielman et al., 1993; Cordell et al., 2004] was used on individual
SNPs to test for evidence of linkage and LD in the combined sample of 298 trios.

Parent-of-origin analyses were conducted in the combined sample in several ways. Firstly,
parent-of-origin effects were examined using the transmission asymmetry test (TAT)
suggested by Weinberg et al. [1998], which is similar to the TDT but excludes matings between
two heterozygotes (where transmission can be ambiguous). The TAT was stratified into
separate allelic tests for fathers and mothers. Next, we used the likelihood-based approach
proposed by Weinberg [1999] to test for parent-of-origin effects. This log-linear model
considers the three mating types in which the mother and the father carry different numbers of
variant alleles, with further stratification by the number of alleles inherited by the child. Like
Weinberg, we will call this latter method the “parent-of-origin likelihood ratio test” (PO-LRT).
This model considers maternally mediated in utero effects (maternal genotypic effects on the
phenotype of the fetus), which could otherwise confound assessment of parent-of-origin
effects, along with a separate term for imprinting [Weinberg, 1999]. Here, imprinting reflects
a differential transmission of alleles to the affected child from mothers vs. fathers. This PO-
LRT was executed using the LEM software (Tilburg, The Netherlands) [van Den Oord and
Vermunt, 2000].

To assess the overall significance of these TAT findings for maternal and paternal transmission
given the observed pattern of LD among SNPs in RUNX2 while considering multiple tests (see
Fig. 1), we conducted a permutation test for each of the inferred LD blocks in this gene
(consisting of k = 4, 11, 3, and 6 SNPs, respectively). Therefore, the block became the unit of
analysis. A Bonferroni correction for each individual SNP P-value would be unacceptably
conservative, in light of the high dependence between SNPs within a block. Generating P-
values for each LD block permitted correcting for multiple comparisons with fewer and largely
independent P-values (i.e. in RUNX2 there were four LD blocks to be tested, compared to 24
SNPs). We generated 10,000 data sets by randomly selecting the transmitted/nontransmitted
status of the minor allele across all SNPs within a block for each trio. In this manner, LD
structure was maintained, but any potential information regarding the transmission status was
destroyed, as would occur under a true null hypothesis. Thus, this permutation test gives a clear
assessment of the likelihood of the observed data under the null hypothesis of no preferential
transmission of alleles. Many different test statistics can be devised to generate a block-specific
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P-value. In our analysis, the final inference was based on the arithmetic average of all of the
−log10(P-values) within a block (i.e. a function of the geometric mean of these 10,000 P-values
on simulated replicates). Histograms of these mean −log10(P-values) are plotted separately for
the maternal and paternal transmissions from the 10,000 permutation tests along with the
observed data.

RESULTS
Among these 24 SNPs, there was considerable variation in allele frequency among parents
from MD and the three Asian populations (Table II). From the allele frequencies given in Table
II, it is clear that some markers showed sharp distinctions between MD and Asian samples,
while others did not. Measures of genetic distance based on either individual SNPs or
haplotypes also varied considerably (data not shown). The three Asian populations (TW, SP,
and KR) had very low MAFs for SNPs 5–15 and 19–24 compared to the MD trios, while SNPs
2–4 and 16–18 had similar MAFs in all four populations. For genes in the former group,
obviously there will be fewer informative matings (e.g. matings involving heterozygotes)
among Asian populations, but trios from all populations can still provide some information.
Patterns of LD across the entire gene were calculated within each population, and Figure 1
shows that LD patterns among the 24 polymorphic SNPs were similar across all populations.

In conventional FBAT analysis of individual SNPs and haplotypes (ignoring parent-of-origin),
only SNP 16 showed empirical significance at the 1% level among KR trios, and haplotypes
including this marker were also significant. However, none of the other populations yielded
evidence of linkage and association for SNPs in RUNX2 when parent-of-origin was not
considered (data not shown). When all markers were screened in the combined data set of all
four populations using the TDT without considering parent-of-origin, the odds ratio of
transmission for the minor allele, OR(transmission), was significant for SNP 10 (OR = 1.62,
P = 0.039), SNP 16 (OR = 1.40, P = 0.014), and SNP 18 (OR = 1.35, P = 0.032) (Table III).

Parent-of-origin effects were first investigated by stratifying informative transmissions and
nontransmissions by parental source (paternal and maternal) for all SNPs in the combined data
set (Table IV). TAT revealed 11 contiguous SNPs (SNPs 5–15) with excess maternal
transmission significant at the P < 0.01 level, and SNP 16 that showed excess paternal
transmission (P = 0.002). For SNPs 5–15, the estimated OR(transmission) from the mother
was statistically significant (ranging from 3.00 to 4.00) in TAT analysis. However, the PO-
LRTs were only significant for SNP 5 (P = 0.036, OR(transmission) = 3.59), SNP 9 (P = 0.036,
OR(transmission) = 3.73), and SNP 16 (P = 0.029, OR (transmission) = 0.44; Table IV, last
column). PO-LRTs gave estimated risk ratios for an imprinting effect ranging between 2.51
and 3.73 for the 11 contiguous SNPs (SNPs 5–15), suggesting excess maternal transmission
of this 46.7 kb region.

The overall significance of the findings for maternal and paternal transmissions in the TAT
was assessed by permutation tests to minimize the problem of multiple comparisons while
preserving all information about LD. Excess transmission from the mother to the affected child
was present for almost all of the SNPs in the 11-SNP block containing SNPs 5–15, while no
obvious pattern of excess paternal transmission existed relative to the permuted values
generated under the H0. Using the arithmetic mean of the −log10(P-values) over all 11 SNPs
in this block, only 37 out of the 10,000 permuted replicates exceeded the observed test statistic
for maternal transmission (Fig. 2, left side), and thus, this result is statistically significant at a
5% level after correcting for the number of tests (four tests, one for each block). On the other
hand, there was no evidence of deviation from independence among paternal transmissions
(P-value = 0.645, without correction).
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Similar examination of the other LD blocks in RUNX2 showed no evidence of excess
transmission, either maternal or paternal for blocks 1 and 4 (data not shown). However, in the
third LD block there was evidence of excess paternal transmission yielding a statistically
significant empirical P-value (0.011 corrected for multiple tests). SNPs within this block had
higher heterozygosity values and showed relatively little variation in allele frequencies among
populations (see Table II). Furthermore, two of the three SNPs in this block (rs1934328 and
rs7771889) showed evidence of linkage and LD when parent-of-origin was ignored (see Table
III). SNP rs1934328 also yielded a nominally significant value from the PO-LRT with an
estimated OR(imprinting) = 0.44 (P-value = 0.029), rejecting the null hypothesis of equal
transmission from mothers and fathers (see Table IV).

DISCUSSION
Our study of case-parent trios from different populations (comprising a total of 298 case-parent
trios) showed consistent evidence of linkage in the presence of association (LD) for multiple
SNPs in RUNX2 only when parent-of-origin effects were considered. In a phenotypic study of
RUNX2 mutants in mice, Aberg et al. [2004] reported cleft palate and early opening of the
eyelids among mutant mice embryos. Yamachika et al. [2001] also reported a heterozygous
C⃗ T transition in exon 3 of the RUNX2 gene in a patient with CCD and a cleft lip. In a cohort
study of CCD patients, Cooper et al. [2001] found a significantly increased prevalence of
submucosal cleft palate. Recently, Khan et al. [2006] suggested that CBFA2, a gene related to
RUNX2, may be associated with enlarged cranial sutures with or without cleft palate.

The RUNX2 gene encodes a nuclear protein with a Runt DNA-binding domain and is a member
of the RUNX2 family of transcription factors. RUNX2 contains nine alternatively spliced exons.
Exons 1 and 2 contain alternatively utilized promoter regions and an ATG translational start
codon. There are three alternative versions of exon 5 (exons 5, 5.1, and 5.2) and two alternative
versions of exon 6 [exons 6 and 6.1; [Terry et al., 2004]. A sporadic case of CCD was found
to be caused by heterozygosity at a G⃗ A transition at codon 283 in exon 5 of RUNX2 [Mundlos
et al., 1997].

In our study, we analyzed 24 SNPs spanning 120.5 kb of the RUNX2 gene. We screened for
parent-of-origin effects and 11 adjacent SNPs in RUNX2 showed evidence of excess maternal
transmission. This region with excess maternal transmission falls within the same LD block
in all four populations (Fig. 1), located between exons 4 and 5. The PO-LRT for inequality
between maternal and paternal transmissions seldom exceeded marginal levels of significance
for these 11 SNPs, likely due to the limited number of informative matings. The total number
of informative fathers and mothers is modest, but after deleting heterozygous × heterozygous
matings there were equal numbers of informative mothers and fathers (29 of each) for SNP
rs910586, which showed the most significant result. Complete confirmation, of course, still
requires larger samples of trios, larger numbers of informative heterozygotes, and more
complete coverage with additional polymorphic SNPs.

Excess maternal transmission could reflect genomic imprinting or maternal genotype effects.
Maternal genotypic effects for nonsyndromic CL/P have also been reported for several other
candidate genes. van Rooij et al. [2003] reported that mothers carrying the TT genotype at the
C677T variant in MTHFR showed an increased risk of having a child with CL/P. Martinelli et
al. [2001] also observed an increase in TT homozygotes among mothers of CL/P subjects, with
a risk ratio of 2.51 (1.00–6.14). However, Jugessur et al. [2003] found that children of mothers
carrying the T variant allele had a slightly lower risk of CL/P. Interplay between maternal and
fetal genotypes has been suggested for the gene coding for the TGFA [Mossey et al., 1998].
However, in a study of 134 Italian CL/P trios, Rubini et al. [2005] reported an association
between the c844ins68 variant in the cystathionine β-synthase gene and nonsyndromic CL/P,
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and showed an 18.7-fold increase in risk for CL/P when the child received the c844ins68 allele
from the mother rather than the father.

In the present study, log-linear models suggested by Weinberg [1999] to discriminate between
maternal genotype and child genotype revealed a possible maternal imprinting effect for
multiple SNPs in RUNX2. Maternal genotype effects were not individually significant for all
11 of these contiguous SNPs. Recently, Young et al. [2007] reported that RUNX2 transcription
factors reinforce cell fate through an epigenetic mechanism that retains phenotypic gene
expression patterns after cell division. RUNX2 also regulates expression of GNAS, a maternally
imprinted gene [Bertaux et al., 2006; Weinstein et al., 2004]. In an analysis by real-time
polymerase chain reaction of zebrafish RUNX2 genes, Flores et al. [2004] reported that
RUNX2b was expressed only as a maternal transcript. They also detected maternal expression
of RUNX2b during early embryogenesis in zebrafish.

Even though this candidate gene study involved a modest number of SNPs, addressing the
issue of multiple comparisons is imperative before an overall statement about the significance
of findings can be made. Since SNPs in strong LD typically have highly correlated P-values,
adjusting significance levels via the overly conservative Bonferroni correction is particularly
undesirable. Therefore, we conducted permutation tests for each of the four LD blocks and
adjusted empirical P-values for the number of blocks, resulting in largely independent P-
values. In the second LD block with 11 SNPs, we found strong evidence against the null
hypothesis only for maternal transmission (the empirical P-value of 0.0037 would still be
significant after correcting for multiple comparisons); but no such evidence for excess paternal
transmission was seen. Thus, this 47 kb region of the gene seems to show excess maternal
transmission to offspring with CL/P.

Interestingly, the next LD block of three SNPs with higher allele frequencies (and more
informative) showed evidence of excess paternal transmission in these data. One SNP
(rs1934328) in this block yielded significant evidence of imprinting when analyzed alone with
the PO-LRT, giving an estimated OR(-imprinting) = 0.44, which was significantly less than
what would be expected under the null hypothesis (H0:OR = 1). Since this model included
separate terms for maternal genotype effects, this raises the possibility of imprinting in
RUNX2.

The case-parent trio design offers the advantage of testing directly for maternal vs. paternal
effects, and allows separating these from effects of the fetal genotype vs. parental origin in a
robust manner [Cordell et al., 2004; Starr et al., 2005; Sinsheimer et al., 2003]. Another
advantage of this design is that it minimizes issues of confounding that plague traditional case-
control designs. This feature permitted pooling trios from four diverse populations into a
combined test of allelic effects on the OR(transmission) to the affected child, while testing for
parent-of-origin effects. The present study suggests maternal transmission effects for markers
in RUNX2 and risk of nonsyndromic CL/P, although further work is still needed to confirm its
ultimate impact on risk.

WEB RESOURCES
HAPLOVIEW: http://www.broad.mit.edu/mpg/haploview/index.php/

Online Mendelian Inheritance in Man (OMIM): http://www.ncbi.nlm.nih.gov/Omim/
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Fig. 1.
Linkage disequilibrium as measured by r2 in RUNX2 among parents of CL/P children from
four populations. White: r2 = 0. Shades of gray: 0<r2<1. Black: r2 = 1. RUNX2, Runt-related
transcription factor 2; CL/P, cleft lip with or without cleft palate.
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Fig. 2.
Permutation tests under H0 for LD block 2 for maternal and paternal transmission under TAT
on 298 CL/P trios. Results of permutation tests for maternal and paternal transmissions in the
largest inferred LD block (11 SNPs) in RUNX2. A total of 10,000 data sets were generated by
randomly selecting transmitted/nontransmitted status of the minor allele for all SNPs within
the LD block for each case. Using the arithmetic mean of the 11 −log10 P-values (calculated
for each of the 10,000 data sets) as test statistic, we find that only 37 out of the 10,000 permuted
data sets exceeded the test statistic for maternal transmission in the observed data (left), while
6,450 out of the 10,000 permutation-based data sets exceeded the test statistic for paternal
transmission (right). LD, linkage disequilibrium; TAT, transmission asymmetry test; CL/P,
cleft lip with or without cleft palate; RUNX2, Runt-related transcription factor 2; SNP, single
nucleotide polymorphism.
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TABLE I

Gender among 298 nonsyndromic CL/P cases from four populations

CL/P cases

Population Total (n) Male (n) Female (n)

Taiwan 146 95 51

Singapore 35 24 11

Korea 40 22 18

Maryland 77 44 33

Total 298 185 113

CL/P, cleft lip with or without cleft palate.
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