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Summary: Cell death after traumatic brain injury (TBI) is a
major cause of neurological deficits and mortality. Under-
standing the mechanisms of delayed post-traumatic cell loss
may lead to new therapies that improve outcome. Although
TBI induces changes in multiple cell types, mechanisms of
neuronal cell death have been the predominant focus. Recent
work has emphasized the diversity of neuronal death phe-
notypes, which have generally been defined by either mor-
phological or molecular changes. This diversity has led to
confusing and at times contradictory nomenclature. Here we

review the historical basis of proposed definitions of neuro-
nal cell death, with the goal of clarifying critical research
questions and implications for therapy in TBI. We believe
that both morphological and molecular features must be used
to clarify post-traumatic cell death and related therapeutic
targets. Further, we underscore that the most effective neu-
roprotective strategies will need to target multiple pathways
to reflect the regional and temporal changes underlying di-
verse neuronal cell death phenotypes. Key Words: TBI,
PCD, apoptosis, neurons.

INTRODUCTION

Neuronal cell death is required for normal develop-
ment of the CNS, as well as for removal of dysfunctional
cells in pathological conditions including trauma. Exces-
sive neuronal cell loss, however, underlies acute and
chronic neurodegenerative disorders." Conceptually,
trauma-induced neuronal cell loss has been characterized
as either primary or secondary, with primary referring
immediate cell death related to physical disruption of
membranes and secondary referring to delayed cell death
in surrounding or distant regions. Secondary neuronal
cell death results from both physiological and biochem-
ical changes induced by the insult.

Although cell death itself can be readily defined as the
irreversible loss of integrated cellular activities or termi-
nal disruption of key cellular substructures (or both), it
has been more difficult to develop a generally acceptable
taxonomy of cell death. Criteria such as type of inducer,
specific molecular mechanisms, energy dependence, and
morphological changes have all been used to classify cell
death, leading to widespread confusion. Moreover, fail-
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ure to cite critical prior work in other fields has resulted
in both controversy and a tendency to oversimplify. For
example, neuronal cell death has been commonly delin-
eated into two distinct categories: necrosis, which is
considered a passive process associated with loss of ionic
homeostasis, failure of membrane integrity, and or-
ganelle and cell swelling, and apoptosis, often reflecting
an energy-dependent process characterized by cytoplas-
mic and nuclear condensation and fragmentation, dimin-
ished cell volume, and relative preservation of organellar
structure. The limitations of such nomenclature become
readily apparent when apoptotic-type mechanisms are as-
sociated with necrotic-type morphology.” In fact, these two
patterns of cell death often coexist, and intermediate mor-
phological forms have been identified, leading some to
propose the term aponecrosis.’

THE HISTORY OF CELL DEATH:
MORPHOLOGICAL-BASED CLASSIFICATION

The word necrosis, which was used by the Greco-
Roman physician Galen, originates from the ancient
Greek word nekros, meaning corpse.” In the mid-19th
century, Rokitansky® and Virchow® used the term ‘ne-
crosis’ to refer to macroscopic phenomena reflecting ad-
vanced tissue breakdown. By the end of the 19th century,
use of microscopy techniques revealed the connection
between macroscopic necrosis and cell death.* Various
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changes observed in the cellular nucleus after ischemia
or injury were described by terms such as ‘pyknosis’
(chromatin condensation), ‘karyolysis’ (nuclear disap-
pearance), ‘karyorrhexis’ (nuclear fragmentation) and
‘chromatin margination’ (chromatin condensation on the
inside of the nuclear membrane).” ' Cell death was also
observed under physiological conditions, such as re-
gressing ovarian follicles, with reference to pyknotic
chromatin as well as cell fractionation into smaller bod-
ies, a process called chromatolysis."' Chromatolysis was
also identified in the lactating mammary gland'? and in
breast cancer tissue.'? In the early 1950s, chromatolysis
was rediscovered in physiological cell death during em-
bryo development, with the key detail that mitochondria
appeared largely unaffected.'*

Starting in the 1970s, Kerr, Wyllie, and colleagues in
a series of seminal articles'>™'® described a conserved
cell death process that occurs in development, physio-
logical tissue turnover, and various pathological condi-
tions. This process was characterized by ultrastructural
features, such as condensation of the cytoplasm and
chromatin, cell shrinkage, formation of chromatin balls,
normal organelles, and fragmentation of cells by budding
of membrane enclosed fragments (i.e., apoptotic bodies)
and the absence of an inflammatory response. Initially,
they called this form of cell death “shrinkage necrosis”
but later coined the term ‘apoptosis,” from the ancient
Greek words apo (from) and ptosis (falling), to reflect the
falling leaves of autumn. Although ‘apoptosis’ and
‘chromatolysis’ were evidently different names for a
similar process, Kerr, Wyllie, and colleagues were ap-
parently not aware of the prior literature. Wyllie'® also
described a “necrotic cell death” phenotype, which was
present in severely injured tissues and suggested the
dichotomy of apoptotic cell death and necrotic cell death.

Also in the 1970s, Schweichel and Merker®° proposed
a classification of developmental cell death based on
lysosomes as a key ultrastructural feature: type 1 involv-
ing lysosomes of phagocytic cells (heterophagocytosis);
type 2, involving the lysosomes of the dying cells them-
selves (autophagocytosis); and type 3, with no lysosomal
involvement. In 1990, Clarke?' revised the Schweichel
and Merker classification to include not only lysosomes
but also ultrastructural changes affecting the nuclei or
chromatin, cytoplasm, organelles, and cell budding or
blebbing.

Each distinct cell death type shared a conserved set of
ultrastructural features and was thought to reflect distinct
mechanisms of cell demise. Type 1 is essentially apo-
ptosis, wherein the apoptotic bodies are engulfed or de-
stroyed by lysosomes of neighboring cells or macro-
phages. Type 2 is autophagic degeneration, marked by
presence of autophagic vacuoles that destroy the cytosol
and organelles of the cell. Unlike apoptosis, type 2 in
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general does not feature prominent nuclear pyknosis but
shows dilation of organelles and is generally observed in
regions undergoing massive degeneration®® (although
exceptions are known in each case®'). Most developmen-
tal cell death can be classified as type 1 or 2 in this
nomenclature.

Type 3A (nonlysosomal vesiculate degradation) fea-
tures prominent swelling of the organelles, presence of
lacunar spaces in the cytosol and cellular disintegration
without phagocytosis. Type 3B (cytoplasmic degenera-
tion) starts with dilation of organelles and vacuolation of
the cytosol, followed by nuclear degeneration by kary-
olysis, but the cell is phagocytosed without fragmenta-
tion. Although less common, some forms of develop-
mental cell death reflect features of more than one type or
lack a critical component.?' Type 3B developmental cell
death shows ultrastructural characteristics (mitochon-
drial swelling, dilation of organelles, late karyolysis)
similar to the necrotic cell death phenotype reported in
severely injured tissues,'? further blurring the separation
between physiological and pathological cell death.

Majno and Joris* also disagree with the apoptosis ver-
sus necrosis dichotomy and argue the importance of
identifying the point of no return in cell death. In their
view, past this stage the cell should be considered dead,
even if active processes such as cell dismantling con-
tinue. Others prefer a later threshold for death and define
it as the irreversible loss of integrated cellular activity,*
which may correspond to the rupture of cell membranes
and lysis of the cell, cell fragmentation in separate bod-
ies, or cell engulfment by other cells.>* Majno and Joris**
interpret necrosis as the presence of dead tissue sur-
rounded by living tissue. For them, necrosis is not a form
of cell death, but instead reflects the secondary changes
that occur after cell death, being the cellular equivalent
of postmortem decay. Taking ischemia as a cell death
inducer, Majno and Joris** observe that cell swelling is
one of the earliest observed changes and propose the
term ‘oncosis’ to describe these prelethal processes lead-
ing to cell death (i.e., point of no return).

In fact, however, the term ‘oncosis’ (which derives
from the ancient Greek word for swelling and is related
to onkos, a mass or bulk) was already used much earlier
to describe osteocyte cell death during rickets and during
cartilage growth.?> Oncosis and type 3 cell death are
virtually identical in their defining elements of cellular
morphology. Majno and Joris,** as well as others,*® pro-
pose limiting the term ‘necrosis’ to denote the late phases
of cell degradation, irrespective of the mechanisms of the
cell death. Levin et al.?’ suggest adding a descriptor to
mark the type of necrosis, for example apoptotic necrosis
or oncotic necrosis. They argue further that only mor-
phologic or ultrastructural analysis can inform the cell
death type, and observe that other frequently used criteria
are nonspecific; for example, apoptosis can affect large
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masses of cells and can be accompanied by inflamma-
tion® and, alternatively, oncosis can occur in single
cells.

Remarkably, few articles provide precise descriptions
of cell death based on ultrastructural changes and distin-
guish between prelethal cell death processes (i.e., apo-
ptosis, autophagy, or oncosis) and postlethal degradation
(i.e., necrosis). In part, this may reflect the smaller num-
ber of studies using electron microcopy—based criteria,
leading many authors to use the simplistic apoptosis
versus necrosis dichotomy, or to focus on mechanisms
rather than morphology to define cell death. Kroemer et
al.>® suggest that authors refrain from making definitive
pronouncements regarding cell death type and instead
provide descriptive terms when presenting results (e.g.,
“caspase-3-positive cell death” instead of “apoptosis”).

Unfortunately, this useful suggestion has largely been
ignored. Thus, the term ‘necrosis’ is commonly used to
describe both type 3—oncotic cell death and the uncon-
trolled cell lysis often associated with tissue inflamma-
tion.>” Nonetheless, type 1—apoptosis and type 3—oncosis
can be initiated by the same triggering events, with low
intensity of the insult favoring apoptosis and high inten-
sity of the insult pushing cells toward oncosis,*® or with
high intracellular ATP levels favoring initiation of apo-
ptosis and low intracellular ATP levels associated with
nonapoptotic cell death.*' Moreover, data suggest that
inhibition of one cell death pathway may redirect the cell
toward other mechanisms and phenotypes of cell death.*

Another key concept is that of programmed cell death
(PCD)—which is not equivalent to apoptosis. Pro-
grammed cell death was first described in the 1960s,
even before apoptosis, in a developmental context as cell
death that occurs at a predetermined time as a result of a
genetic clock.?® Others view PCD as a cell death process
that follows a fixed molecular pathway.>* Because all
types of developmental cell death meet one or both cri-
teria, they can all be considered variants of PCD. A more
useful definition of PCD, inspired in part by the work of
Sloviter,*® suggests that PCD encompasses all active cell
deaths, in which cellular processes are required for push-
ing the cell to and beyond the point of no return. In this
interpretation, PCD requires time to develop and in-
volves cellular mechanisms that are potentially open to
therapeutic intervention. In opposition to PCD, passive
cell death results from overwhelming cell injuries (e.g.,
catastrophic cell damage) that instantaneously push the
cell past the point of no return without involvement of
active cell processes.’® Unfortunately, necrosis is often
considered the paradigm of passive cell death, which
incorrectly implies as untreatable many forms PCD with
necrotic-type morphology, such as type-3—oncotic cell
death.

NEURONAL CELL DEATH IN THE CNS

The study of neuronal cell death in the CNS is partic-
ularly challenging, because in bright-field microscopy
most dying neurons appear shrunken, eosinophilic, and
with pyknotic nuclei—regardless of the type of death.?’
Even at the ultrastructural level, dying neurons do not
well fit the cell death descriptions established in other
tissues or during development.®! Thus, distinct types of
neuronal cell death such as paraptosis®’ have been de-
scribed, featuring a requirement for gene expression, no-
napoptotic morphology marked by vacuolization, and
absence of caspase activation. Although it has some par-
tial similarities with type 3B cell death (i.e., cytoplasmic
degeneration),”” paraptosis is one of several forms of
neuronal cell death with nonclassical morphological
characteristics and with identified biochemical markers.

To attempt to clarify neuronal cell death phenotypes,
studies led by Olney and Fujikawa have used ultrastruc-
tural features. In one of these studies, two types of neu-
ronal cell death in the brain were identified, termed
‘physiologic’ cell death and ‘excitotoxic’ cell death.*®
Physiologic cell death was initially characterized as a
developmental death of neurons in the mammalian brain;
its description is similar to type 1-apoptosis,*® although
with some features that differ from apoptosis in other
tissues.*® For example, in the CNS, although organelles
initially appear normal except for mild mitochondrial
swelling,* mitochondrial degeneration and endoplasmic
reticulum vacuolization become prominent after rupture
of the nuclear membrane.*® This pattern of orderly mor-
phological changes is found in neurons from various
brain regions during development®® or in response to
diverse injuries, such as ethanol or TBL.*°

In contrast, excitotoxic cell death is characterized by
rapid cytoplasmic changes, including marked cell swell-
ing, as well as dilation of mitochondria and endoplasmic
reticulum, followed by their rupture. Later, chromatin
condensation in the nucleus results in small chromatin
clumps that eventually consolidate to form a large irreg-
ular mass at the center of the nucleus. Subsequently, the
cell membrane ruptures, but the nuclear membrane re-
mains intact.*® Excitotoxic cell death closely resembles
type 3B—oncosis cell death, except that excitotoxic cell
death shows more intense and longer-lasting masses of
clumped chromatin.

At the ultrastructural level, excitotoxic cell death is
very different from apoptosis, but these two cell death
processes are more difficult to distinguish under typical
light microscopy.* Excitotoxic cell death is detected in
the first hours after TBI, mostly at the local lesion site,
whereas PCD is seen later, and particularly at a distance
from the site.® These authors (i.e., the Olney and Fu-
jikawa research group) concluded that physiological cell
death and excitotoxic cell death are two fundamentally
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distinct neuronal cell death types, and that the activation
of one path excludes the other. Notably, this interpreta-
tion conflicts with the continuum theory, the view that
these death paradigms are extremes of the same pro-
cess,*! and Fujikawa et al.*? contest the existence of a
cell death continuum.

Based on ultrastructural cell changes, Fujikawa et al.*?
describe two unique neuronal cell death phenotypes. One
has features very similar to apoptosis; the other, excito-
toxic cell death, shows ultrastructural changes similar to
type 3B—oncosis. Unlike non-neuronal type 3B—oncotic
cell death, however, neuronal excitotoxic cell death ex-
hibits a condensed cytoplasm and nucleus (i.e., pykno-
sis). Fujikawa** also emphasizes that few if any studies
demonstrate typical ultrastructural features of neuronal
apoptosis outside of neonatal animals. Moreover, he con-
cludes that widely held concepts about the apoptosis-
specificity of mechanisms and markers (such as TUNEL,
internucleosomal DNA cleavage, and caspase activation)
have no basis, because they can be detected and are
required for execution of certain excitotoxic cell death.
The latter observations indicate an active cell participa-
tion (PCD) in excitotoxicity. Therefore, characterization
of cell death should be based on morphology—which
reflects the summation of participating factors.

CELL DEATH PROGRAMS: MOLECULAR
PATHWAYS THAT PARTICIPATE IN
CELL DEATH

Programmed cell death is a form of cell death exe-
cuted by activation or inactivation of various molecular
pathways, with multiple death phenotypes. Many variet-
ies of PCD and associated molecular mechanisms have
been identified in the CNS, as described in several ex-
cellent and comprehensive reviews.***> Programmed
cell death has been confirmed as a major cause of post-
traumatic neuronal cell death and is associated with
poorer prognosis in patients after TBL.*® Morphologi-
cally defined PCD includes apoptosis, autophagy, parap-
tosis, calcium-dependent death, and oncosis. The cell
death mechanisms that mediate the specific PCD pro-
cesses include, among many others, caspases and pro-
apoptotic members of the Bcl-2 family (apoptosis), INK
and ATG orthologs (autophagy), ERK2 (paraptosis, a
cell death associated with trophotoxicity), PARP/AIF
(PARP/AIF-dependent death), calpains and cathepsis
(calcium-dependent death), and JNK (oncosis).**** No-
tably, few or none of these mechanisms are irreplaceably
necessary for taking a cell past the point of no return.
Most often, multiple mechanisms are simultaneously and
redundantly activated, and in response to blocking any
individual mechanism others can serve to execute the
cell death. Several significant developments involving
cell death mechanisms will be discussed.
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Cell cycle activation-dependent neuronal cell
death pathways

Mature neurons are postmitotic cells and as such were
believed to be unable to re-enter the cell cycle; however,
cell cycle events can be induced in mature differentiated
neurons, where they lead to neuronal cell death.*” As
shown in several human chronic neurodegenerative dis-
orders, markers of cell cycle re-entry can be detected
long before neuronal death, suggesting that cell cycle
events may be upstream of the initiation of neuronal cell
death execution.’” Acute CNS injuries such as TBI also
cause activation of the cell cycle in neurons, leading to
cell death.*’

Traumatic brain injury is associated with increased
expression of cell cycle activation markers such as cyclin
D1, CDK4, E2F5, c-myc, and PCNA, as well as down-
regulation of various endogenous cell cycle inhibitors, in
neurons initiating molecular pathways of apoptosis such
as caspase activation.*®*? Moreover, blocking cell cycle
activation pathways using pharmacological inhibitors of
CDKs attenuates neuronal cell death and significantly
improves outcome after TBI in rodent models.*®~>°

Caspase-dependent neuronal cell death pathways

Caspases are cysteine aspartic acid-proteases activated
by proteolytic cleavage. The cellular morphological
changes that are hallmarks of apoptosis (e.g., membrane
budding, chromatin condensation, and nuclear fragmen-
tation) require caspase-dependent cleavage of specific
substrates. Caspase 3 activation can occur through the
extrinsic pathway involving TNF and Fas receptors, or
the intrinsic pathway that involves mitochondrial outer
membrane permeabilization followed by release of cyto-
chrome ¢ from mitochondria intermembrane space to the
cytosol. There, cytochrome ¢ forms an ATP-dependent
complex with the apoptosis-inducing factor (Apaf-1) to
activate in turn caspase 9 and caspase 3.>' A recently
proposed neuronal death concept involves dependence
receptors, a group of trophic receptors that promote neu-
ronal survival in the presence of their ligands but in the
absence of their ligands can bind and activate caspases,
thus becoming caspase substrates that contribute to cell
death.*’

Caspase 3 appears to be the major member of the
group of effector or executioner caspases, which also
include caspases 6 and 7. Caspase 3 plays a major role in
injury-induced neuronal loss after TBL.>' Neuronal apo-
ptosis associated with activation of caspases has been
shown after human TBI and in various animal mod-
els.”?>>> Treatment with structurally different caspase
inhibitors improves outcome after experimental TBI, and
prolongs the therapeutic window.>*>%>7

The endoplasmic reticulum can also serve as the origin
of a cell death pathway, involving caspase 12.°® Caspase
12 can be induced in the brain after TBI, suggesting that



CELL DEATH MECHANISMS IN TBI 7

the endoplasmic reticulum apoptotic pathway may play a
role in injury-dependent neuronal death.>

Caspase activity can be regulated by several classes of
molecules. Among these, the Bcl-2 family plays an im-
portant role,. It includes Bcl-2 and Bcel-xL which antag-
onize mitochondria permeabilization, as well as other
proteins that have the opposite effect. This latter class
includes three subtypes: one including Bax and Bak that
can directly permeabilize the mitochondria; another in-
cluding Bid and Bim that activate the first subtype; and
one including proteins such as Bad, Puma, and Noxa that
can target and inactivate Bcl-2 and Bcl-xL.** The bal-
ance between the activities of these two antagonistic
types of Bcl-2 family proteins is a major determinant of
apostat (i.e., the probability of apoptotic death) and is
reflected in the neuronal cell death after TBI. Increased
Bcl-2 and Bcl-xL expression in the brain after TBI is
associated with attenuation of cell death and a more
favorable prognosis,” whereas increased post-TBI ex-
pression of Bax, Bad, or Bim may promote cell death.*

Caspase-independent neuronal cell death pathways

Caspase-independent mechanisms are important medi-
ators of neuronal cell death.®® Some of the most signif-
icant findings of the last decade were that the mitochon-
dria intermembrane space contains other proapoptotic
molecules in addition to cytochrome c. After mitochon-
drial outer membrane permeabilization, these proteins
(including Smac/DIABLO, Omi/HtrA2, AIF, and endo-
nuclease G) may be released into the cytosol and mod-
ulate cell death.®'~%*

Apoptosis inducing factor (AIF) is a phylogenetically
ancient flavoprotein NADH oxidase resident in the mi-
tochondrial intermembrane space, where its oxidoreduc-
tase activities are required for oxidative phosphorylation.®®
After mitochondrial outer membrane permeabilization, AIF
is released into the cytosol and then translocates to the
nucleus, where it binds chromatin and causes peripheral
chromatin condensation and high molecular weight DNA
fragmentation.®!

Neuronal cell death after TBI involves AIF nuclear
translocation.®® Most studies support a model in which
AlF-mediated cell death is independent of cytochrome c,
Apaf-1, and caspase.’”%® Some of the key regulators of
AIF release from mitochondria and translocation to the
nucleus include PARP-1, Cyclophilin A and HSP-70.
There is experimental support for the hypothesis that AIF
release is mediated by activation of PARP-1.°° More-
over, inhibition of PARP-1 activity has neuroprotective
effects after TBL.”® The mechanisms proposed to explain
PARP-1 dependent release of AIF from the mitochondria
include depletion of cytosolic NAD™, which causes mito-
chondrial dysfunction and mitochondrial outer membrane
permeabilization,”"’* and poly(ADP-ribose) (PAR) poly-

mer, a product of PARP-1 activity having direct or cal-
pain-mediated effects on mitochondria.”*

Cyclophilins are a subgroup of peptidylprolyl cis-trans
isomerases.”* Among these, cyclophilin A (cyclophilin-
18, CypA) appears to be both required for the transloca-
tion of AIF from the cytosol to the nucleus, as well as for
the chromatolytic effects of AIF.”> CypA knockout ani-
mals demonstrate reduced infarct volume after cerebral
hypoxia—ischemia, suggesting a significant role for the
AIF-CypA axis in neuronal cell death in this model.”®

The heat shock proteins of the HSP70 family have
multiple functions, including serving as ATP-dependent
chaperones and assisting the folding of newly synthe-
sized proteins, as well as cytoprotection when upregu-
lated in response to cellular stress.”’ Increased levels of
HSP70 provide neuroprotection against brain ischemia,’®
whereas the absence of HSP70 results in larger lesions
after ischemic injury.”® The mechanisms responsible for
HSP70-dependent neuroprotection include binding of
Apaf-1 and AIF, thereby neutralizing their proapoptotic
function by blocking the formation of the apoptosome™”
and by attenuating nuclear translocation of AIF,*! re-
spectively. HSP70 overexpression attenuates ischemic
brain injury by sequestering AIF®*? and by reducing
caspase-dependent apoptosis.”” Conversely, decreased
HSP70 results in increased release of cytochrome ¢ and
activation of caspase 3 with associated cell death after
cerebral ischemia.”

In contrast to caspase-mediated cell death, AIF-medi-
ated cell death can proceed under compromised bioen-
ergetic conditions; it is prominent in the central areas of
the lesion after cerebral ischemia.®” In fact, in PARP-1-
dependent cell death, mitochondria release AIF as well
as cytochrome C, but caspases fail to be activated be-
cause of the associated ATP depletion.”"”*> We hypoth-
esize that, unlike the case with caspase-mediated cell
death, AIF may play a larger pathophysiological role
after more severe brain injuries, which are expected to
result in significant bioenergetic declines.

Autophagic PCD

Autophagy is a process that involves lysosomal deg-
radation of proteins and organelles, controlled by genes
from the Atg family; under physiological conditions, it
can have a protective role by generating amino acids and
energy for the cell.*> Although autophagy has been often
seen in dying cells, the challenge has been to determine
when autophagy serves as a causal factor for cell death
(autophagic PCD) and is not simply a secondary event.*’
Notably, in some cell death models inhibition of the
mitochondria permeabilization or activation of caspases
creates conditions in which autophagy and the Atg genes
are required for PCD,* suggesting that autophagy might
either be a process parallel but secondary to apoptosis or
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act as a compensatory mechanism initiated by inhibition
of apoptosis.*’

COOPERATION OF CELL
DEATH PROGRAMS

Inhibition of caspase-dependent cell death pathways
may not provide substantial neuroprotection, because of
the associated activation of caspase-independent PCD
pathways.®® In fact, there is growing support for the
hypothesis that in every stress-induced model of cell
death there may be multiple pathways involved® and
that the slower or less intense mechanisms become ap-
parent primarily when the dominant mechanisms are at-
tenuated.*> A key role is likely played by the cellular
bioenergetic status. When this status is preserved,
caspases are dominant and AIF-dependent cell death be-
comes important only after caspase activation has been
blocked. Under bioenergetic deficient conditions, how-
ever, AIF may be the more predominant mechanism.

An important question is whether inhibition of the
dominant pathway may actually initiate or enhance al-
ternative pathways.>>~®% Whether inhibition of the AIF
pathway causes an enhanced caspase-dependent re-
sponse has not been fully determined.® There is, how-
ever, solid evidence that AIF and caspases act through
parallel pathways, and that strategies that target both
have potentially additive therapeutic effects.”® Autoph-
agic and caspase-dependent PCD might also show a sim-
ilar relationship.*’

CELL DEATH MECHANISMS: IMPLICATIONS
FOR TREATMENT OF TBI

Challenges to successful treatment of TBI-induced
neuronal cell death include the presence of a multitude of
cell death pathways, which have both overlapping and
distinct molecular mechanisms, and the short therapeutic
windows for some types of neuronal cell death.”' Fur-
thermore, in addition to neuron-specific pathways there
is also neurotoxicity secondary to microglia-initiated in-
flammatory responses.”? These facts might explain, in
part, the failure of clinical neuroprotection trials in TBI,
which too often have only targeted a single cell death
pathway or have modulated mechanisms with a rela-
tively short therapeutic window.”’

In preclinical studies, improved levels of neuroprotec-
tion have been obtained using therapeutic agents with
multifunctional activities,”>* such as small cyclized
dipeptides,” progesterone,’® statins, and erythropoietin,
among others. Treatment with various cyclic dipeptides
significantly improved motor and cognitive recovery af-
ter TBI in both rat and mouse models, and attenuated
both apoptotic and oncotic cell death in primary neu-
rons.”” These agents limit mitochondria changes associ-
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ated with cytochrome c release, decrease expression of
secondary injury pathways such as cell cycle proteins
and cathepsins or calpains, and increase expression of
neuroprotective molecules, including brain-derived neu-
rotrophic factor (BDNF) and heat shock proteins.”’

In TBI models, progesterone treatment attenuates
edema and inflammatory cytokines and limits neuronal
loss by preventing mitochondrial changes, with im-
proved functional outcomes.’® Erythropoietin provides
neuroprotection after experimental TBI, likely reflecting
its ability to stabilize mitochondrial function and to re-
duce inflammation and oxidative stress.”®"® Statins have
also been shown to significantly improve outcomes after
experimental TBI, with effects likely due, at least in part,
to their ability to activate Akt-dependent mitochondrial
sparing pathways and to attenuate microglial activa-
tion.'*>'! What links these therapeutic strategies is the
fact that each of the compounds shows pleiotropic ac-
tions, reflecting effects on multiple secondary injury
pathways that are likely synergistic.”®

A different strategy is to focus on therapies that spe-
cifically, and sometimes also simultaneously, target multi-
ple PCD mechanisms. In this paradigm, multifunctional
effects can be generated by multiple drug combinations, or
by targeting single factors that modulate multiple secondary
injury cascades (e.g., activation of the cell cycle,**°
PARP-1,70:102,103 calpains,m4 or HSP70), among others.
Targeting processes such as autophagy represents a more
complex issue, in light of studies indicating both cell
death and neuroprotective activity for autophagy.'®>'%
A schematic of several key mechanisms that mediate
neuronal cell death after TBI is presented in FIG. 1,
including both more mechanism-specific modulators and
pluripotential agents with diverse but less clearly defined
mechanisms of action.

We suggest that improved therapeutic effects may re-
sult from treatment strategies that are directed at multiple
specific targets and mechanisms of cell death, using ei-
ther a combination of therapeutic agents or multifunc-
tional (i.e., pluripotential) drug strategies— or with both
approaches. Optimal targets should include both caspase-
dependent and caspase-independent PCD. Because acti-
vation of these pathways occurs in parallel and peaks 1-3
days after injury, such strategies should be both additive
or synergistic and should show a relatively wide thera-
peutic window. Also promising are therapies that target
not only neuron-specific cell death mechanisms, but also
block microglial-dependent neurotoxicity,’* or have ac-
tions on other cell types, such as oligodendroglia,*’ as-
troglia,47 and endothelial cells.'?”

CONCLUSIONS

The creation of a comprehensive and rational taxon-
omy of cell death is difficult because of the diversity of
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cell death types and the numerous molecular mecha-
nisms involved. Moreover, a given phenotype—even
with an ultrastructural requirement—may reflect differ-
ent mechanisms, or the same mechanism, albeit with
different expression level or intensity, may lead to dif-
ferent phenotypes. Nonetheless, we believe that the con-
sistent application of several key concepts and strategies
should help clarify the process.

Determination of a cell death phenotype should ideally
require ultrastructural support. In the absence of ultra-
structural details, a descriptive mode should be applied
that includes the known morphological and mechanistic
data (e.g., caspase-3-positive apoptosis). Morphology
alone may be unable to address the question of pro-
grammed cell death versus passive cell death, consider-
ing that both forms of cell death share type 3—oncotic

morphology. Furthermore, morphology as the final inte-
grator of all molecular pathways involved in the cell
death tends to reflect the dominant pathways and may
mask the potential role of additional contributing pro-
cesses. The latter issue can best be addressed by detailed
mechanistic studies. It is increasingly evident that any
PCD process may involve multiple, interdependent
mechanisms. For these reasons, we suggest that the op-
timal therapeutic strategy to limit cell post-traumatic cell
death is the use of combination or multipotential treat-
ments that target multiple cell death pathways.
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