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A Probabilistic Strategy for Understanding Action Selection
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Brain regions involved in transforming sensory signals into movement commands are the likely sites where decisions are formed. Once
formed, a decision must be read out from the activity of populations of neurons to produce a choice of action. How this occurs remains
unresolved. We recorded from four superior colliculus neurons simultaneously while monkeys performed a target selection task. We
implemented three models to gain insight into the computational principles underlying population coding of action selection. We
compared the population vector average (PVA)/optimal linear estimator (OLE) and winner-takes-all (WTA) models and a Bayesian
model, maximum a posteriori estimate (MAP), to determine which predicted choices most often. The probabilistic model predicted more
trials correctly than both the WTA and the PVA. The MAP model predicted 81.88%, whereas WTA predicted 71.11% and PVA/OLE
predicted the least number of trials at 55.71 and 69.47%. Recovering MAP estimates using simulated, nonuniform priors that correlated
with monkeys’ choice performance, improved the accuracy of the model by 2.88%. A dynamic analysis revealed that the MAP estimate
evolved over time and the posterior probability of the saccade choice reached a maximum at the time of the saccade. MAP estimates also
scaled with choice performance accuracy. Although there was overlap in the prediction abilities of all the models, we conclude that
movement choice from populations of neurons may be best understood by considering frameworks based on probability.

Introduction
How perceptions, thoughts, decisions, and actions arise from the
activity of populations of neurons is arguably the most vexing
question in cognitive neuroscience. A number of lines of evidence
from experimental work in monkeys indicate that perceptual de-
cisions leading to eye movements (saccades) evolve within sen-
sorimotor centers of the brain such as the lateral intraparietal area
(LIP), parietal reach region, frontal eye field (FEF), and the supe-
rior colliculus (SC) in the midbrain (Gold and Shadlen, 2000;
Roitman and Shadlen, 2002; Ratcliff et al., 2003, 2007; Horwitz et
al., 2004; Scherberger and Andersen, 2007; Kim and Basso, 2008).
A critical, unresolved issue is how the activity of neurons signal-
ing targets and distractors is combined to contribute to a choice
and then, how the combined activity is read out to result in a
saccade. In other words, a key question remains unknown, what
is the read-out rule that underlies movement choice?

Simultaneous recordings from multiple neurons within the
monkey SC made during performance of a task in which one differ-
ently colored target appears in an array with three same-colored
stimuli reveal that when the discriminability between the level of
target and distractor neuronal activity is high, saccade choices are
likely to be accurate. In contrast, when the discriminability be-

tween the level of activity of target and distractor neurons is re-
duced, choice performance is likely to be poor. This result is
consistent with the suggestion that SC neuronal activity signals an
eye movement decision. It also reveals that the choice of which
eye movement to make depends on the combined activity of
neurons representing targets and distractors.

Because SC neurons are tuned broadly for target locations
and saccade endpoints (Schiller and Koerner, 1971; Wurtz and
Goldberg, 1972; Sparks, 1975, 1978; McIlwain, 1986; McIlwain,
1991), it is believed that the activity of large numbers of SC neu-
rons are pooled to compute a vector average, which determines
the saccade direction (Ottes et al., 1986; Van Gisbergen et al.,
1987; McIlwain, 1991; Groh, 2001) in much the same way as
arm movement directions are coded by motor cortex neurons
(Georgopoulos et al., 1986; Schwartz et al., 1988). Indeed, simul-
taneous electrical activation of two regions of the SC results in
saccades with vectors that are averages of the saccade vectors
produced by stimulation of each site independently (Robinson,
1972). Furthermore, inactivation of regions of the SC produces
inaccuracies in saccade directions and lengths that are largely
consistent with predictions of a population vector averaging (Lee
et al., 1988; Quaia et al., 1998; Hanes and Wurtz, 2001). Whereas
these experiments relied on measures of saccades made to single
spots of light, more recent experiments requiring the identifica-
tion of one target from an array of distractor stimuli (Basso and
Wurtz, 1998; McPeek and Keller, 2004) or choosing between two
simultaneously or sequentially appearing stimuli (Port and
Wurtz, 2003; Li and Basso, 2005; Kim and Basso, 2008) suggest
that winner-takes-all or probabilistic strategies may more accu-
rately reflect the information in SC neuronal populations.

Based on our previous work and that of others showing that
SC neuronal activity scales with the likelihood of a correct saccade
choice (Basso and Wurtz, 1998; Dorris and Munoz, 1998; Kim
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and Basso, 2008), here we explored whether SC neurons could
formally encode information about saccade choices probabilisti-
cally. We implemented three different models to reveal principles
underlying how SC neuronal activity might be encoded by the
population and then interpreted by downstream structures dur-
ing the performance of a target selection task. Unique to our
experiments is that we recorded from four SC neurons simulta-
neously and each neuron contained one element of the visual
display within its response field (RF). We determined the best
estimate of the saccade choice by implementing a probabilistic
(Bayesian) model, the maximum a posteriori estimate (MAP),
and winner-takes-all (WTA) and population vector average
(PVA)/optimal linear estimator (OLE) models. To assess the
models, we compared how well each estimate predicted the
saccade choice on a trial-by-trial basis for correct and error
trials. Furthermore, we examined for the first time the tempo-
ral development of the maximum a posteriori estimate. We
found that the MAP model provided the best estimate of sac-
cade choices across all trials, took time to develop, and scaled
with the monkeys’ choice performance. These results are con-
sistent with a probabilistic coding strategy underlying move-
ment choice.

Materials and Methods
Physiological and eye movement monitoring procedures
For electrophysiological recording of SC neurons and monitoring eye
movements, cylinders and eye loops were implanted in two rhesus mon-
keys (Macaca mulatta) using documented procedures (Judge et al.,
1980; Kim and Basso, 2008; Li and Basso, 2008). We recorded from
120 neurons within the intermediate layers of the SC. We used a
subset of the same dataset used for a previous report (Kim and Basso,
2008). Neurons were recorded simultaneously in sets of four. In mon-
key m, we recorded 13 sets of four SC neurons (n � 52). In monkey c,
we recorded 17 sets of four SC neurons (n � 68). Of the total 120
neurons in both monkeys, all neurons were defined statistically as
buildup/prelude (Munoz and Wurtz, 1995; Basso and Wurtz, 1998;
McPeek and Keller, 2002; Li and Basso, 2005, 2008) except three,
which were defined statistically as visual–tonic (McPeek and Keller,
2002; Li and Basso, 2008).

Neurons were recorded with four independently moveable, tungsten
microelectrodes (Frederick Haer) with impedances between 0.3 and 1.0
M� measured at 1 kHz. Four electrodes were aimed at the SC, each
through different stainless steel guide tubes held in place by a plastic grid
secured to the cylinder (Crist et al., 1988). Two were aimed at one SC, and
two were aimed at the other SC. Electrodes were introduced indepen-
dently, and neurons (action potential waveforms) were isolated on each
electrode sequentially. RFs of SC neurons were mapped online. Mapping
was done by moving a spot around the screen and having monkeys make
saccades to the different spots. We listened for maximal discharge and
also monitored raster plots of the discharge online. We considered the
center of the RF to be the location at which a saccade was associated with
maximal discharge of the neuron (audibly and visually). When recorded
in the single target condition, we ensured that each stimulus drove only
one of the recorded neurons. In other words, the RFs of each of the four
neurons were nonoverlapping when recorded in the single target condi-
tion. Action potential waveforms were filtered and amplified by a differ-
ential amplifier (Alpha Omega; MCP-Plus) and then sampled and
digitized (Measurement Computing; PCI-DAS4020/16). The digitized
waveforms were identified and sorted with an interactive computer pro-
gram (Mex; National Eye Institute) allowing the experimenter to sort
waveforms in real time. Neuronal data were also saved to disk as wave-
forms and sorted offline to confirm the adequacy of the online discrim-
ination. For offline analysis, we used custom software (written and
compiled in Delphi 5.0) that sorted spikes based on time–voltage criteria.
Using the magnetic induction technique (CNC Engineering) (Fuchs and
Robinson, 1966), voltage signals proportional to horizontal and vertical
components of eye position were filtered (8 pole Bessel �3 dB, 180 Hz),

digitized at 16-bit resolution, and sampled at 1 kHz (National Instru-
ments; PCI-6036E). The data were saved for offline analysis using an
interactive computer program (Dex, National Eye Institute) designed to
display and measure eye position and calculate eye velocity. We used an
automated procedure to define saccadic eye movements by applying ve-
locity and acceleration criteria of 20°/s and 8000°/s 2, respectively. The
adequacy of the algorithm was verified and adjusted as necessary on a
trial-by-trial basis by the experimenter.

All experimental protocols were approved by the University of Wis-
consin–Madison Institutional Animal Care and Use Committee and
complied with and generally exceeded the standards set by the Public
Health Service policy on the humane care and use of laboratory
animals.

Behavioral procedures
We used a real-time experimental data acquisition and visual stimulus
generation system Rex, Vex, and Mex, developed and distributed by the
Laboratory of Sensorimotor Research National Eye Institute (Hays et al.,
1982) to create the behavioral paradigm and acquire two channels of eye
position and four channels of neuronal data. Trained monkeys sat in a
custom primate chair with head stabilized during the experimental ses-
sion (typically 3–5 h). Visual stimuli were rear-projected onto a screen at
51 cm distance from the subject using a projector (LP130, Infocus) with
a native resolution of 1024 � 768 and operating at 60 Hz. A photocell
secured to the screen sent a transistor–transistor logic pulse to the exper-
imental PC, providing an accurate measure of stimulus onset. The fixa-
tion spot at the center of the screen had a (mean of three measurements)
luminance of 1.52 cd/m 2. Visual stimuli each had luminance values of 5.8
cd/m 2 (mean of three measurements). The background luminance was
0.58 cd/m 2 (mean of three measurements). The PC for the visual stimu-
lus display was a slave device to the PC used for experimental control and
data acquisition.

After fixating on a centrally located spot (0.6° diameter) for a random
time of 1800 –2300 ms, four spots (1.0° diameter) appeared and the
central spot disappeared. Each spot was located in the center of each
empirically defined RF of the four SC neurons (Fig. 1a) (see text above).
The task required monkeys to choose the differently colored target within
�300 ms by making a saccade to the differently colored spot immediately
after the disappearance of the fixation spot (coincident with the array
onset). The target could be either red among green distractors or green
among red distractors. The color arrangement of the display was fixed
each day of recording but varied across recording days. After making a
choice, monkeys maintained fixation at the target spot for a random time
of 500 – 600 ms and then received fluid reward. The location of the target
spot was randomized (with replacement) among the four possible loca-
tions. On interleaved trials, a single spot appeared in each of the four
possible locations. Two spots appeared in each hemifield although the
exact location of the visual spots depended upon the location of the four
electrodes within the SC (Fig. 1b).

Data analysis
We implemented three broad classes of model to recover the population
estimate of saccade choices in the selection task. The simplest model was
a WTA (Feldman, 1982). Next was a PVA model similar to that imple-
mented by Georgopoulos et al. (1986) in motor cortex and Port and
Wurtz (2003) in SC. We also implemented an optimized vector aver-
aging method developed by Salinas and Abbott (1994) referred to as
the OLE. The final model we implemented was a likelihood estimator
based on Bayesian inferential statistics, the MAP. This model arises
from ideas formulated previously (Sanger, 1996, 2002, 2003; Oram et
al., 1998) and recently extended to sensory processing in the middle
temporal area (MT) (Jazayeri and Movshon, 2006) and decision mak-
ing in LIP (Beck et al., 2008). Our implementation of this model is
similar but has important extensions of this recent work that are
discussed below. In the text that follows, we describe how each model
was implemented. We assessed the quality of the model prediction by
comparing the saccade choice recovered by the model to the actual
saccade choice monkeys made, regardless of whether the trial was
correct or in error.
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Bayesian model: MAP. To compute the posterior probability distribu-
tion over the four possible saccade choices, we first consider Bayes’ rule,
which states the following:

P(s�r) �
P(r�s)P�s�

P(r)
. (1)

P(s�r) is the conditional probability of observing a particular saccade
choice given a particular discharge rate, also called the posterior. P(r�s) is
the conditional probability of observing a particular discharge rate when
a particular saccade occurs. This value is known as the likelihood. P(s) is
the probability of a saccade choice or the prior. P(r) is the probability of
a particular discharge rate in spikes per second. A Bayesian framework
provides a way to quantify guesses about events when faced with uncer-
tainty. The probabilities in Bayes’ rule indicate the strength of a belief
from 0 to 1. Since the probability of the discharge rate P(r) is independent
of the saccade choice, we can restate the posterior as proportional to the
product of the likelihood and the prior (Földiak, 1993; Oram et al., 1998):

P(s�r) � P(r�s)P(s). (2)

In words, the probability of a saccade choice given the observation of a
particular discharge {P(s�r)} is proportional to the conditional probabil-
ity of the discharge given the saccade choice {P(r�s)} multiplied by the
prior {P(s)}. Thus, the posterior is proportional to the product of the
likelihood and the prior. Note that for display, we include the normal-
ization factor P(r) so that the scaling ranges from 0 to 1 and so that bona
fide probabilities can be compared across conditions (Oram et al., 1998).

We implemented two prior {P(s)} distributions. In one, we used a
discrete uniform prior with four Dirac delta functions at each of four
possible target choices:

P�s� � 0.25�
i�1

4

��s � �i � 1��/ 2�. (3)

P(s) is a discrete prior distribution describing the four possible saccade
target choices (s) separated by 90°. The four delta functions (�) for each
choice are defined by shifts from the first by 90°(�/2). We summed the
four delta functions and multiplied by 0.25 (four possible choices) so
the prior distribution had uniform probabilities for the four possible
target/saccade choices (Fig. 2h). This reflects the experimental situa-
tion used. Each of the four possible saccade choices represents one of
the four possible target locations and each of these occurred with an
equal (25%) probability.

For the second implementation, we used a simulated P(s) and deter-
mined the distribution that maximized the MAP model’s performance.
To do this, we generated four random values that summed to 1.0 to
simulate probability distributions:

P�s� � �
i�1

4 � randi��
j�1

4

randj���s � �i � 1��/2�. (4)

Equation 4 defines a discrete prior distribution as a summation of four
delta functions as in Equation 3. Each value in Equation 4 (rand1-4)
varied independently from 0.01 to 0.97 with an interval of 0.01. To ensure
that the sum of this distribution was 1.0, we divided each of four random
values (randi) by the sum of all values (�j�1

4 randj). This was then multi-
plied by the 90° shifted delta functions yielding a prior probability distri-
bution that is a discrete, nonuniform distribution with four values, one
for each of four possible saccade choices (Fig. 2i). Because they were
generated randomly, Equation 4 produced the same combinations in
some cases. Therefore we selected only the unique combinations. This
left a total of 156,941 unique combinations of four values. With the
simulated prior distributions in hand, we then recomputed the MAP
estimate using each one of these 156,941 simulated prior distributions.
We identified the simulated prior distribution that when used to recover
the MAP estimate, resulted in the same or better prediction accuracy as
the MAP estimate with the nonuniform prior distribution. The actual
prior distribution that monkeys might use is unknowable. The prior
distribution used, however, is likely to be related to the final choice
behavior (distribution of saccade choices). To test this, we calculated the

Figure 1. Saccade choices in a target selection task. a, Each square shows the spatial ar-
rangement of the task. The spot that is colored differently indicates the target, whereas the
same colored spots indicate distractors (either green among red or red among green). In this
example, the target is red. The black circle in the center of each square indicates the location of
the fixation spot. In the task, the array appeared and the fixation spot disappeared simulta-
neously, cueing monkeys to make a saccade to the target (black arrow). The black lines in each
of the three bottom squares show actual saccade trajectories. Each of the three squares show
examples of choice performance of 	70%, 70 –99%, and 100% correct. Note that all spots
were normalized to 45°, 135°, 225°, and 315° positions for display. The temporal sequence of
the task appears as labeled, black lines below the spatial depiction. b, Schematics of the two SCs
and the electrodes for multiple neuron recordings. c, Examples of four neurons recorded simul-
taneously from the SC. Each tick in a row indicates the time of occurrence of an action potential,
and each row indicates a trial. The four raster plots correspond to the neurons with RF centers
located at the positions shown in the center square. The spike density function (SDF; � � 10
ms) is superimposed on the raster plots. Green lines show SDFs for distractor neurons, and red
lines show SDFs for target neurons. The mean reaction time of the saccade is shown by the black
circle at the bottom of the traces labeled 160.4 ms. Each trace is aligned to the onset of the array,
marked by the upward arrow and vertical line and labeled “array onset.”
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distribution of saccade choices using the actual behavior of the monkeys
on a trial-by-trial basis. In Figure 4a, we show through simulations of
multiple possible prior distributions that there is a strong relationship
between the simulated prior distribution and the distribution of saccade
choices. These correlations validate our use of the simulated before re-
cover the MAP estimate of the saccade choice.

A critical aspect of computing the MAP esti-
mate is how to determine P(r�s). In recent
work, it was shown that a good characteriza-
tion of P(r�s) can be obtained by assuming a
Poisson probability distribution or any distri-
bution of the exponential family with linear
sufficient statistics (Ma et al., 2006; Beck et al.,
2007). So our first approach was to use a Pois-
son probability distribution constrained by the
tuning properties of our SC neurons to esti-
mate P(r1-4�s). Indeed as a first approximation,
our neurons behaved in a linear sufficient
manner as determined by assessing the rela-
tionship of the variance of action potential
counts across trials to the mean of the action
potential counts (see supplemental Fig. 1a,
available at www.jneurosci.org as supplemen-
tal material). We used the Poisson probability
density distribution (PDD) in place of the like-
lihood, P(r1-4�s), where � is the expected num-
ber of action potential occurrences in a Poisson
probability distribution and in our implemen-
tation was the tuning curve {fi(s)} of the ith
neuron. The exponent and the denominator
(ri) are the numbers of action potentials mea-
sured in a 20 ms time epoch (28 ms before to 8
ms before the onset of the saccade):

P(s�r1–4)���
i�1

4 fi(s)ri

ri!
e�fi(s)�P(s). (5)

The posterior probability of a saccade choice
(s) given the discharge of all four neurons
{P(s�r1-4)} was estimated by computing the
conditional probability for each of the four
neurons and multiplying by the prior probabil-
ity. To combine the neuronal activity linearly,
we made the reasonable assumption that the
neurons in our sample were statistically inde-
pendent. We describe how we deal with this
assumption in supplemental Figures 1b and 2
(available at www.jneurosci.org as supplemen-
tal material) and in Results. To allow summa-
tion rather than multiplication, we took the
logarithm of Equation 5:

log�P�s�r1–4�� � �
i�1

4

ri log� fi�s�� � �
i�1

4

fi�s�

� �
i�1

4

log�ri!� � log�P�s��. (6)

�i�1
4 log(ri!) can be ignored because it is inde-

pendent of the saccade choice. However, we
maintained the �i�1

4 fi(s) term because across
our neurons, the tuning curves were different
(Fig. 2d). As a result this term does not sum to
a constant and must remain in the model. The
calculation simplifies to the following:

log�P�s�r1–4�� � �
i�1

4

ri log� fi�s�� � �
i�1

4

fi�s�

� log(P(s)). (7)

Note that for fi(s), we also implemented a ver-
sion of the MAP model in which we used identical Gaussian functions
(Edelman and Keller, 1998) peak shifted by 90° to simulate SC tuning
curves (Fig. 2b). In this case, the �i�1

4 fi(s) term was omitted from the
model because summing over these functions is a constant. To avoid
overestimation of the model, we implemented a leave-one-out cross-

Figure 2. Computing the posterior distribution across saccade choices. a, Simulated, idealized responses (in spikes per second)
of four SC neurons in the four different target conditions of the task. Small squares on the abscissa show the four possible stimulus
configurations of the task. The four curves simulate the activity of each neuron in each of the four possible conditions. For display,
these data were simulated as Gaussian functions with � � 40°. Each Gaussian peak was shifted by 90° to represent the four
possible locations. Each simulated response shows a peak discharge when the target corresponds to the preferred location for the
neuron and shows a reduced level of discharge as the target moves away from the preferred location. The dotted rectangle around
the black simulated response shows an example response whose peak discharge (blue circle) appears for targets located at 45° and
a reduced response for target locations elsewhere. The green dot, red dot, and black dot show the simulated discharge rate for the
other three neurons when the target appears outside of their RF. b, Simulated weights for SC neurons. Each tuning curve represents
the probability of neuronal discharge given a stimulus position from 0 to 359° (in steps of 0.1°). The tuning curves were simulated
as Gaussian functions of equal amplitude (arbitrary units) and widths of 20.6° (Edelman and Keller, 1998). The logs of these
Gaussian functions were used as weights. The green curve shows the weight for the neurons with the highest discharge rate in the
135° target condition. The blue curve shows the weight for the neurons with peak rates in the 45° target condition. The red and
cyan curves show weights for the neurons with peak rates in the 315° and 225° target conditions, respectively. c, The same as in a.
d, Each point is the measured discharge from an SC neuron when monkeys made saccades to one of each of the four possible
locations. e, Frequency histogram of discharge rates measured from the sets of four neurons in the four possible target conditions
across all datasets. The activity of target neurons is shown in the blue bars, whereas the activity of distractor neurons is shown in the
green, red, and black bars. These histograms formed the basis for the density estimation (see Materials and Methods for details).
f, The result of the density estimation (smooth histograms in e—see Materials and Methods) is the likelihood of a response given
a particular saccade choice. Distractor neurons are green, red, and black. The target neurons are blue. g, Without incorporating a
prior probability distribution the result is a (log) likelihood distribution. h, The uniform prior probability distribution. Each dot
shows the probability of one saccade choice. Since the target could appear in each of the four locations with equal probability, the
distribution is uniform. i, Same as in h but using a simulated, nonuniform prior distribution (see Materials and Methods). j,
Estimated posterior probability distribution for one example target condition (45°). Multiplying all four conditional probability
across the four neurons and the prior, results in the posterior probability for the example target condition across the four neurons.
k, Same as in j for the distribution using a nonuniform prior.
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validation procedure. For this, we extracted one trial from each dataset
and used the remaining trials to estimate P(r�s) from each set. We then
recovered the posterior from the extracted trial. This procedure was re-
peated for all trials for each dataset. Equation 7 returns one value for each
of the possible saccade choices. Computing this value for each of the four
possible saccade choices (sj), where j � 1– 4, defines the posterior distri-
bution across the four possible saccade choices. In the case of the uni-
form prior distribution, the result is a Bayesian estimator that yields
the same result as a maximum likelihood estimator as formalized by
others (Sanger, 1996, 2002; Jazayeri and Movshon, 2006). In the case
of the nonuniform prior, the result is a Bayesian estimator distinct
from a maximum likelihood. To determine how well the posterior
distribution predicted monkeys’ actual choices, we compared the
MAP with the saccade choice on a trial-by-trial basis:

MAP�sj� � arg max�log�P�sj�r1–4��

� arg max��
i�1

4

ri log� fi�sj�� � log�P�sj���. (8)

When the saccade choice and the maximum a posteriori estimate corre-

sponded, we considered the model to have a correct prediction. Figure 2
provides a graphic depiction of the MAP model along with the different
P(r�s) and P(s) implementations.

Determining the likelihood using a Poisson PDD relies on two as-
sumptions (Földiak, 1993; Sanger, 1996, 2002; Oram et al., 1998; Jazayeri
and Movshon, 2006; Ma et al., 2006; Beck et al., 2008). The first is that the
occurrence of each action potential in a spike train is independent of the
occurrence of other action potentials in the train. If time between suc-
cessive action potentials is random, we can consider the train of action
potentials as a Poisson process. A common way to assess whether dis-
charge statistics can be described as a Poisson process is to determine the
index of proportionality, also referred to as the Fano factor, which is the
ratio of the variance of the number of action potentials in an epoch to the
number of action potentials in an epoch across trials. On a linear plot, a
slope of 1.0 indicates linearity. To determine the Fano factor of SC
neurons, we counted the number of action potentials within the ep-
och 28 to 8 ms before the onset of a saccade for each trial in a dataset.
We then determined the trial-to-trial variance of the action potential
counts by subtracting individual trial counts from the mean count
and squaring that quantity. This was done for the set of trials across all
neurons. We then computed the mean of the difference measure and
the mean of the action potential count and plotted these values for
each neuron. Supplemental Figure 1a (available at www.jneurosci.org
as supplemental material) shows the action potential count variance
against the mean count across all 120 SC neurons when the stimulus
in the neurons’ RF was either a target or a distractor. The Fano factor
for neurons when targets were in their RFs was 1.44 (n � 120). The
Fano factor for neurons when distractors were in their RFs was 1.03
(n � 360). These observations are consistent with the assumption of
linear sufficient statistics, at least for distractor activity.

Supplemental Figure 1 (available at www.jneurosci.org as supplemen-
tal material) shows that when targets appeared in the RF, the variance to
mean relationship diverged from linearity. This is because SC neurons
are exhibiting rapid increases in discharge associated with the saccade to
the target in the RF. To deal with this deviation from linearity, we ex-
tended our probabilistic model to eliminate the Poisson probability dis-
tribution to estimate P(r1-4�s). Instead, we determined P(r1-4�s) directly
by using a nonparametric density estimation procedure (Optican and
Richmond, 1987; Scott, 1992). Figure 2, e and f, shows graphically how
this was performed. Nonparametric density estimation is simply smoothing
a frequency histogram. This procedure is similar to that used to cal-
culate spike density functions from raster plots (MacPherson and
Aldridge, 1979). We first plotted the distribution of discharge rates
measured in the four possible target condition during the 20 ms epoch

measured 28 to 8 ms before saccade onset. We applied a smoothing
kernel (k[ ]):

k
 � �
e� x�r�2/�2h2

�2�
� h, (9)

where h is the number of bins, r is the discharge rate measured in the 20
ms epoch, and the domain of x is the set of all numbers defined by the
discharge rate. From here, the Gaussians are summed over the discharge
rates, and the sum is weighted by the number of bins in the frequency
distribution (n). Assuming a normal probability density, h can be esti-
mated by minimizing the (averaged) mean integrated squared error
(AMISE) (Scott, 1992):

h � 	4

3
1/5

�n�1/5 � 1.06�n�1/5. (10)

Convolving the histograms with the smoothing kernel in Equation 9
yields the empirical probability density distribution:

P(r�s) �
1

n �
i�1

n

k�x � ri

h �. (11)

This procedure was done to obtain a PDD for each neuron. From here,
we could extract the P(r�s) directly to compute the posterior distribution
over the four possible saccade choices again on a trial-by-trial basis:

P�s �r1–4� � ��
i�1

4

P�ri�s��P�s�/P�r�. (12)

As in the model shown in Equation 8, when the saccade choice and the
maximum a posteriori estimate determined from Equation 12 agreed, we
considered the model to have a correct prediction.

The second assumption that is required to compute the posterior
probability is that the noise correlations between the four neurons should
be independent. Because we were careful to record from neurons with
nonoverlapping RFs, we assumed independence of the neuronal dis-
charge. We calculated the noise correlation coefficients between neuro-
nal responses to confirm our assumption (Averbeck et al., 2006). Since
we have four neurons, combining each into unique pairs resulted in six
pairs allowing us to test all possible noise correlations between the four
neurons [total conditions � 6 (pairs) � 4 (target conditions) � 30 (data-
sets) � 720]. Neuronal activity was measured 28 to 8 ms before saccade
onset for all six pairs. Across our sample of 720 pairs, only 9.86% (71/
720) of the pairs had statistically significant noise correlations (supple-
mental Fig. 1b, available at www.jneurosci.org as supplemental material).
To confirm that the noise correlations were accounted for in our model
or did not contribute much to the result of the model, we performed a
shuffled analysis of our data (as shown in supplemental Fig. 2, available at
www.jneurosci.org as supplemental material).

It is important to note that although our implementation is Bayesian
in the sense that we calculated a posterior probability by combining
likelihoods and prior distributions, there are some differences between
our model and true Bayesian estimator. First, the likelihood distributions
in our model are discrete and are estimated from four individual neu-
rons. Any additional variability that may be conveyed leading to a saccade
choice is ignored. Second, the prior distributions we implemented are
also discrete and deterministic. Third, and as noted above, since we can-
not ever know the true prior distribution, we simulated it. As shown in
Figure 4a, the simulated prior distribution correlates with the distribu-
tion of saccade choices made by the monkeys. This validates our ap-
proach and indicates that the simulated prior distribution we used to
recover the MAP estimates of saccade choice was a good approximation
to the actual prior used by the monkeys while performing this task.

WTA. We implemented a WTA model by computing the mean dis-
charge rate during an interval 28 ms to 8 ms before the onset of a saccade
(Miyashita and Hikosaka, 1996) on a trial-by-trial basis from each of the
four neurons across all 30 sets. For each set of four neurons, the neuron
with the highest discharge rate was defined as the “winner.” We then
compared the RF location of the winner neuron on each trial to the

2344 • J. Neurosci., February 10, 2010 • 30(6):2340 –2355 Kim and Basso • Bayesian Inference and Movement Choice



location of the saccade choice on that trial. Because there were four
neurons, each representing one possible location, a correct prediction
occurred when the neuron corresponding to the saccade choice had the
highest discharge rate.

PVA. To compute the population vector average (V� population), we con-
sidered each of the four neurons simultaneously recorded as one of a
larger population of neurons representing one of the possible saccade
choices. We computed the V� population for each trial using the four neu-
rons, one representing the target (target neuron) and the other three
representing the distractors (distractor neurons). We implemented a
similar procedure for computing the V� population as used previously in
motor cortex (Georgopoulos et al., 1986) and SC (Port and Wurtz, 2003).
However, we adopted a normalization procedure suggested by Salinas
and Abbott (1994) to avoid obtaining negative vectors:

V� population �

�
i�1

4 	ri	��
j�1

4

rj
2
�1

S�i

4

. (13)

We computed the neuronal population vector average using Equation
13, where ri was the mean discharge rate for each ith neuron measured
during the 20 ms interval immediately before the onset of the saccade
during the selection task (28 ms to 8 ms before saccade onset; note that
this is the same interval as used for MAP and WTA). Since each neuron
had different discharge rates and different baseline rates, it was necessary
to normalize the neuronal responses to avoid arbitrary biases in V� population.
The normalized neuronal response was determined by calculating

ri	��
j�1

4

rj
2
�1

. This term was then multiplied by the unit vector S�i, which

was defined as the average saccade direction determined by the actual eye
movements made by the monkeys. This result was then summed and
divided by four to obtain V� population. The saccade choice with the smallest
angular difference between it and the V� population was considered a correct
model prediction. One assumption of this version of the PVA is that the
SC contains a homogenous representation of all possible saccades. So we
also implemented a model developed by Salinas and Abbott (1994) that
optimizes the neuronal population vector to take into account inhomo-
geneous distributions. For this model, we determined V� population by sum-
ming the discharge rates weighted by an optimized saccade vector:

V� population � 	 �
i, j�1

4

riD� j
/4

D� j�optimized� � �	�
i�1

4

Cri
/4��1

� 	�
i�1

4

rij � S�j
/4. (14)

where i � neuron number and j � saccade choice. The optimized saccade
vector (D� j(optimized)) was determined by multiplying an inverse correla-
tion matrix ([(�i�1

4 Cri
)/4] �1) (supplemental Fig. 3a, available at www.

jneurosci.org as supplemental material) of the discharge rates for all
possible saccade choices by another correlation matrix (supplemental
Fig. 3b, available at www.jneurosci.org as supplemental material) be-
tween four saccade unit vectors (S�j) and neuronal responses (rij). Once
we obtained the optimized saccade vectors, we multiplied the neuronal
responses (ri) by the optimized saccade vectors and averaged them. This
calculation resulted in an optimized V� population that took into account the
inhomogeneity of the saccade choice locations represented by the sample
of neuronal discharges. As for the PVA, we considered the OLE as correctly
predicting the saccade choice when the angle between the V� population and the
actual saccade choice was smallest (supplemental Fig. 4, available at www.
jneurosci.org as supplemental material).

Results
Trained monkeys performed a pop-out selection task in which
one stimulus from among four was uniquely identified as the
target because of its color. In some arrays, the target appeared red
and the three distractors appeared green. In other arrays, the

target appeared green and the three distractors appeared red. The
color of the target varied from experimental day to experimental
day. The position of the target within the array of four stimuli
appeared at a random location within experimental days.
Therefore, for each trial, the monkeys knew the color of the
target, but they did not know the position of the target. Figure
1a shows an example of the task in which the target appeared
red. We recorded from four neurons simultaneously while
monkeys performed this task. Each stimulus position appeared in
the empirical center of the RF of the recorded neuron. As a result,
the positions of the stimuli in the array were constrained by the
positions of the electrodes within the SC map, although two were
always located in each SC and we excluded neurons with overlap-
ping RFs (Fig. 1b and see Materials and Methods). Figure 1a
shows the idealized case in which the stimuli appeared 90° from
one another. For data presentation, we normalized the positions
so that each of four spots appeared at 45°, 135, 225, and 315°.

Because of the variability in the positions of the targets, there
was variability in choice performance (Kim and Basso, 2008). In
the example shown in Figure 1a, the monkey performed with
100% accuracy on trials when the target appeared at location 45°.
On the same experimental day, performance was between 70 and
99% accurate on trials when the target appeared at the 315° po-
sition. Performance was poorer (	70% accurate) when the target
appeared at position 225°. Figure 1c shows an example of the
recordings from four neurons in this task. We demonstrated re-
cently that the relative level of activity of SC target neurons and
SC distractor neurons predicts saccade accuracy in a manner con-
sistent with the interpretation that SC neuronal activity encodes
the saccade choice (Kim and Basso, 2008). Furthermore, the
range of choice probabilities we and others obtained from SC
neurons was similar to the range reported in decision making
tasks in SC and other brain regions such as FEF and lateral in-
traparietal area (Horwitz and Newsome, 2001; Shadlen and New-
some, 2001; Gold and Shadlen, 2002; Horwitz et al., 2004). This
suggests that similar numbers of neurons in these areas are
pooled to determine the choice.

SC population activity and saccade choice
Previous work in SC indicates that buildup/prelude neuronal
activity scales with the likelihood of saccade occurrence (Basso
and Wurtz, 1998; Dorris and Munoz, 1998; Kim and Basso,
2008), suggesting that saccade choice may be encoded across the
population of SC buildup neurons. We formulated three models
to reveal insights into the computational principles underlying
saccade choice in SC. For each model, we compared the results of
the model with the saccade choice made by the monkeys to de-
termine the models’ accuracy. We implemented a simple WTA
model, two variants of the population vector average model
(PVA and OLE), and a probabilistic model based on Bayesian
inference called the MAP. These models are explained in Materi-
als and Methods. In what follows, we describe the results of each
model. In parallel, we point out important extensions of the
probabilistic model we implemented compared to that imple-
mented by others.

Probabilistic and WTA models
One important point about computing the MAP is the manner in
which P(r�s) (the likelihood) is estimated. We did this in two
different ways. First, we used a Poisson PDD to characterize vari-
ability for P(r�s) as depicted in Figure 2a– d and as done recently
by others (Jazayeri and Movshon, 2006; Beck et al., 2008). Sec-
ond, we determined P(r�s) directly using nonparametric density

Kim and Basso • Bayesian Inference and Movement Choice J. Neurosci., February 10, 2010 • 30(6):2340 –2355 • 2345



estimation (see Materials and Methods and Fig. 2e,f). When es-
timating P(r�s) using a Poisson PDD to characterize variability,
we constrained the distribution in three different ways. In one
way, we used the log of Gaussian functions that were designed to
simulate the tuning curves of SC neurons with parameters � �
20.6° and baseline discharge � 7 spikes/s (Fig. 2b) (Edelman and
Keller, 1998). Note that recent work used von Mises curves for
which the logs are cosine functions (Jazayeri and Movshon, 2006;
Beck et al., 2008). In a second way, we estimated the tuning curves
by measuring the discharge rates of neurons during performance
of saccades to the different target positions when only a single
target appeared. In the third way, we used the discharge of SC
neurons when saccades were made in the four possible target
conditions to estimate the tuning curves (Fig. 2d). Importantly,
for the tuning curves measured from the four possible target
trials, we used the same data for estimating tuning curves and
predicting movement choice. Therefore, we implemented a
leave-one-out cross-validation procedure to avoid model
overestimation (see Materials and Methods).

Figure 2 illustrates these different approaches to estimating
(log) likelihoods. In these examples, individual neurons are indi-
cated by different colors, and the condition shown is when the
spot located in the 45° position was the target. For this condition,
the red neuron contributes little discharge (Fig. 2a,c, red dot).
Likewise, the green and black neurons contribute little since these
neurons are largely inactive for this target position. The blue
neuron contributes maximally since the target is located within
the center of its RF (Fig. 2a,c, blue dot). Note that in Figure 2, a
and c, we interpolated discharge rate points in between the four
target positions to generate smooth functions for the discharge
rates. This was done for display only. In reality there are only four
points, one for each of the four possible target conditions. These
discharge rates are then weighted by the logs of the individual
tuning curves, either modeled as Gaussian functions (Fig. 2b),
estimated from the real data (Fig. 2d) or determined directly from
the probability density estimation procedure using the real data
(Fig. 2e,f). Combining the (log) likelihoods (Fig. 2g) with the
prior probability (Fig. 2h,i and see Materials and Methods) yields
the posterior probability across all four possible saccade choices
(Fig. 2j,k). The same computation excluding the prior yields a log
likelihood distribution (Fig. 2g).

All models used simultaneously recorded neuronal data mea-
sured in 20 ms epochs 28 ms to 8 ms before the onset of the
saccade on a trial-by-trial basis for all 120 neurons (30 datasets of
4 neurons) from two monkeys. Figure 3a shows the result of the
MAP model with simulated Gaussian tuning curves. The black
line shows the mean of the MAP estimates of all the trials for each
of the four possible target positions in which the saccade choice
was predicted correctly by the maximum of the posterior
probability distribution. The gray line shows the same for the
trials in which the saccade choice was not predicted by the
MAP estimates. Overall the MAP estimates predicted saccade
choices on 2870/4035 (71.11%) trials. Having the neuronal
response of each neuron weighted by the log of a uniform
Gaussian (or uniform cosine functions) means that the con-
tribution of each neuron was directly proportional to its dis-
charge rate. Since the Gaussian tuning curves were shifted by
90°, they were minimally overlapping, and therefore the dis-
tractor neurons contributed an identical and minimal amount
to all conditions. Thus, the neuron with the highest discharge
rate dominates the prediction of saccade choice in the poste-
rior distribution. This result is, in principle, identical to the
prediction of a WTA model.

Figure 3. WTA and MAP models of saccade choice. a, The mean of the MAP estimates across
all trials, computed using the logs of fixed Gaussians as weights is plotted for the four possible
saccade choices. The black line shows the mean of the MAP estimates for the trials in which the
model estimate correctly predicted the saccade choice. The gray line shows the mean of MAP
estimates across all the trials in which the model estimate did not predict saccade choice cor-
rectly. The shading around the lines indicates 1 SE. This version of the MAP model could predict
71.11% (2870 of 4035 trials) of all saccade choices. b, The probability of measuring a particular
discharge rate in the interval 28 to 8 ms before saccade onset in the selection task is plotted for
all neurons across all 30 datasets. Black lines show probability of nonselected neuron discharge
rates. The gray bars show probability of selected neuron discharge rates. The WTA model could
predict 71.11% (2870 of 4035 trials) of all saccade choices. c, The same as in a except the
posterior probability was computed using the log of the tuning curves of SC neurons to charac-
terize P(r�s). Saccade choices were predicted with 81.64% (3294/4035) accuracy. d, Same as in
a and c except the posterior was computed using the empirical probability distribution to
characterize P(r�s). Saccade choices were correctly predicted with 81.88% (3304/4035)
accuracy.
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Figure 3b plots frequency histograms of the mean discharge
rate in each of the 4035 trials from all 120 neurons. In the WTA
model the neuron with the highest discharge rate predicts saccade
choice. As is evident from Figure 3b, the distribution of discharge
rates measured from target neurons overlaps with the distribu-
tion of discharge rates measured from distractor neurons (Fig. 3b,
compare black lines and gray bars). This indicates that the dis-
tractor neurons were as likely to have the highest discharge rate as
the target neurons for some trials. This occurred even though the
saccade choice corresponded to the RF location of the target neu-
ron on all of the trials from which these data were taken. Overall
71.11% (2870/4035) of saccade choices were predicted correctly
by the WTA model.

The homogeneous and nonoverlapping tuning curves used
in this version of the MAP model do not provide any benefit over
the WTA model in predicting saccade choice. This result also
reveals the possibility that simulated, nonoverlapping and homo-
geneous tuning curves may not be optimal for population coding.
To explore whether using the actual neuronal tuning curves
would improve the model predictions over simulated ones, we
implemented a version of the MAP model using tuning curves
estimated from actual neuronal responses. In Figure 3c, we show
the result of the MAP model when the tuning curves were esti-
mated from the SC neuronal discharge in the four possible target
conditions. In this case, the tuning curves “overlap” in the sense
that there is discharge in the distractor neurons because there is
always a stimulus in their RF, whether or not that stimulus will
ultimately be chosen for a saccade. This implementation of the
MAP model improved accuracy by �10% over the previous ver-
sion in that it predicted saccade choice on 3294/4035 (81.64%) of
trials compared to 71.11% of the trials. This provides some indi-
cation that the properties and amount of overlap in the distribu-
tions used to estimate the likelihood (logs of tuning curves in this
case) is an important variable when considering population cod-
ing of movement choice.

Although we used the tuning curves estimated from the neu-
ronal data, the implementation of the MAP model described
above still made the assumption that the variability used to esti-
mate P(r�s) could be characterized by a Poisson probability
distribution. However, the Poisson assumption is unrealistic bi-
ologically for single neurons. This is unrealistic, particularly for
SC neurons, where discharges are characterized by robust bursts
shortly before and during the generation of saccades (see supple-
mental Fig. 1a, available at www.jneurosci.org as supplemental
material) (Sparks, 1986; Moschovakis et al., 1996). In light of this,
we implemented an additional version of the MAP in which we
determined P(r�s) directly from our recorded neuronal data by
generating a probability distribution of the neuronal discharges
(Fig. 2e,f and see Materials and Methods). Estimating P(r�s) di-
rectly from the raw discharges improved the result of the MAP
model minimally. Overall it predicted saccade choices correctly
in 81.88% (3304/4035) of trials (Fig. 3d). That there was little
difference between the result using this method and the result
using a Poisson probability distribution is consistent with recent
theoretical work (Ma et al., 2006; Beck et al., 2007) and suggests
that even though individual neuronal variability is not well ex-
plained by Poisson statistics, a MAP estimate based on Poisson
variability performs well.

MAP estimates with the nonuniform priors
Up to now, we recovered the MAP estimates using a uniform
prior and the empirical PDDs to estimate P(r�s). We did this
because the target for the saccade choice was equally likely to

appear in each of the four possible locations on every trial and
monkeys did not have to use a before perform this task. However,
despite the correct target occurring with a 25% probability, mon-
keys did not always perform with this accuracy indicating that
they likely incorporate biases into their choices. These biases
must be based on something other than the sensory information
(Kim and Basso, 2008). Therefore, we implemented a nonuni-
form prior distribution into our MAP model to determine
whether we could improve the MAP estimates of saccade choice.
As described in the Materials and Methods, we simulated many
possible prior distributions and identified one for each dataset
that resulted in the maximum number of correct MAP estimates.
To validate our use of these simulated distributions, we com-
pared them to the distributions of saccade choices the monkeys
actually made. Note that the prior distributions and the distribu-
tions of saccade choices are not identical, but they should be
related. Although the actual prior distribution used by monkeys
is unknown, we reasoned that correlations between the simulated
prior distributions and the distributions of saccade choices would
indicate a reasonable approximation to the actual prior. In Figure
4a, we show that across the sample, the simulated prior distribu-
tions were correlated to the distributions of saccade choices. An
example of one such correlation is shown in the inset of Figure 4a.
Each point in Figure 4a is a pair of points, one from the distribu-
tion of saccade choices and one from one of the simulated prior
distributions. The arrow drawn from the inset to the point in
Figure 4a shows the two points from the inset remapped to the
plot of points shown in Figure 4a. The total number of points in
Figure 4a is 120 because we had 30 datasets and each dataset has
four possible saccade choices. One simulated prior distribution
was used for each dataset.

Figure 4b shows the result of adding the nonuniform prior
distribution to recover the MAP estimate using the empirical
PDD to characterize P(r�s). The black line shows the mean of the
MAP estimates for trials correctly predicted by the MAP model.
The gray line shows the mean of the MAP estimates for trials that
were incorrectly predicted by the model. Overall the MAP esti-
mates with the nonuniform prior predicted saccade choices on
3420/4035 (84.76%) trials. By using the nonuniform prior, the
performance of the MAP estimates improved 2.88%, from
81.88% to 84.76%. The influence of priors on model perfor-
mance is highly dependent on task demands. Therefore, we next
asked whether the change in prediction accuracy occurred for
correct and error trials similarly. We reasoned that monkeys
might make more errors because they relied more on their priors
than on the sensory information to inform their choice. There-
fore, we guessed that MAP estimates of saccade choice might
improve preferentially for error trials over correct trials when we
used the nonuniform prior. Figure 4c plots the percentage of
trials correctly predicted by the MAP estimates using the uniform
versus the nonuniform priors sorted by whether the trial was
correct or in error. For correct trials, the MAP estimates with the
uniform prior predicted choice in 84.91% of the total trials (Fig.
4c, second gray bar). Using the nonuniform prior increased the
prediction accuracy to 87.22%. This is an improvement in the
MAP estimate of 2.31%. For error trials, the MAP estimates de-
termined with the uniform prior accurately predicted saccade
choices on 71.49% of trials (Fig. 4c, third gray bar). The MAP
estimates determined with the nonuniform prior accurately pre-
dicted 76.32% of the error trials. This represents an improvement
in the model accuracy by 4.83% (Fig. 4c, third black bar). We
performed a resampling procedure in which we randomly se-
lected correct trials and error trials and assessed whether they
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were predicted by the MAP model with the uniform or the non-
uniform prior. Repeating this sampling procedure 1000 times
and comparing the resulting distributions indicated that the im-
provement in prediction accuracy that occurred by implement-
ing a nonuniform prior to recover the MAP estimate occurred
more for error trials than for correct trials. The differences in

improvements were statistically significant (� 2 � 1000, p 	
0.001). Based on these results, we conclude that the prediction
accuracy of the MAP estimates using a nonuniform prior exceeds
that of the uniform prior. Furthermore, using a nonuniform
prior improves the MAP estimates preferentially for error trials
over correct trials. This suggests that errors in choice may occur
because monkeys base their choices on the prior information
rather than the sensory information.

PVA and OLE
In the same way that motor cortex is considered to encode arm
movement direction (Georgopoulos et al., 1986; Schwartz et al.,
1988), it is considered that the SC encodes the direction of a
saccade by averaging across the population of active neurons,
each of which contributes a minivector to determine saccade di-
rection. Although supported by lesion experiments (Lee et al.,
1988; Quaia et al., 1998; Hanes and Wurtz, 2001) and argued on
theoretical grounds (Van Gisbergen et al., 1987; McIlwain, 1991;
Groh, 2001), recent lesion experiments (McPeek and Keller,
2002) and dual neuron recording experiments (Port and Wurtz,
2003) suggest that a vector average may be too simplistic, at least
when considering saccades made in the presence of more than
one visual stimulus. Therefore, we implemented a PVA model as
well as an improved version, the OLE, to assess whether these
models could predict saccade choice as well as the MAP model.

For the PVA and OLE the same dataset was used as that used
for the MAP model. Figure 5a shows the result of the PVA. Figure
5b shows the result of the OLE. Each line is the neuronal popula-
tion vector for each trial (n � 4035). The black lines show the
result when the direction of the population vector and the direc-
tion of the saccade had the smallest angular difference (see sup-
plemental Fig. 4, available at www.jneurosci.org as supplemental
material). We considered these trials to have a correct prediction.
The gray lines show the result when the difference in the angle
of the direction of the population vector and the angle of the
direction of one of the distractor stimuli was the smallest. We
considered these trials to have an incorrect prediction. Overall
the PVA accurately predicted 2248/4035 (55.71%) of saccade
choices (Fig. 5a).

The PVA predicted the saccade choice correctly for many tri-
als but also failed quite often. Next, we optimized the neuronal
vectors with the correlation matrix. This maximizes the PVA
performance by taking into account the fact that our sample of
neurons did not contain a homogenous representation of saccade
space (see Materials and Methods). Figure 5b shows the predic-
tion results of the OLE. Overall the OLE predicted 2803/4035
(69.47%) of saccade choices accurately, which represents a

Figure 4. The influence of the prior in predicting a saccade choice. a, The ratio of the saccade
choice is plotted against the simulated prior probability. One example of choice distribution and
the simulated prior distribution appears in the inset (black dotted line and squares � simulated
prior; gray dotted line and triangles � the distribution of saccade choices). To show the rela-
tionship between the distribution of saccade choices and the simulated prior distribution, two
points from the inset were remapped to the plot of points shown in a. This was done for all 120
datasets, so n � 120 points. The Pearson correlation coefficient was determined, r � 0.19. This
relationship was small but statically significant ( p 	 0.05) b, The mean of the MAP estimates
across all trials, computed using the empirical PDD, and the nonuniform prior distribution is
plotted for the four possible saccade choices. The black line shows the mean of the MAP esti-
mates for the trials in which the model estimate correctly predicted the saccade choice. The gray
line shows the mean of MAP estimates across all the trials in which the model estimate did not
predict saccade choice correctly. Shading around the lines indicates 1 SE. This version of MAP
model predicted the saccade choice correctly on 3420/4035 (84.76%) trials. c, The percentage of
trials predicted correctly from the MAP model is plotted for the models using the uniform (gray
bars) and nonuniform (black bars) prior distribution. The trials are sorted by whether they were
correct or in error. The percentages in each condition appear on the top of each bar.

Figure 5. Population vector average and saccade choice. a, The neuronal vector determined
by Equation 13. The direction of each line indicates the direction of the population vector and
the length indicates the strength of activity. The black lines show the trials in which the popu-
lation vector correctly predicted saccade choice. The gray lines show the incorrectly predicted
choice. PVA correctly predicted 55.71% (2248/4035) of trials. b, Same as in a for the OLE com-
puted as described in Equation 14. The OLE correctly predicted 69.47% (2803/4035) of trials.
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13.76% improvement over the PVA. However, when compared
to the WTA and MAP models, the OLE showed the lowest pre-
diction accuracy of saccade choice. Note that this is despite the
fact that like the MAP, the OLE uses information from all four
neurons to determine the saccade choice.

Figure 6 provides a direct comparison of the results from all
the models and their different implementations. The MAP using
a nonparametric density estimation procedure (from data re-
corded in the four possible target condition) for determining
P(r�s) and a nonuniform prior predicts saccade choices very well.
This version of MAP predicted saccade choices correctly in
84.76% (3420/4035) of all the trials (Fig. 6a, first bar). The next
best prediction occurred for the same implementation with the
uniform prior. This version predicted 81.88% (3304/4035) of all
trials (Fig. 6a, second bar). When we estimated P(r�s) using a
Poisson PDD constrained by the tuning curves measured from
the four stimulus condition data, the MAP estimate predicted
saccade choices equally well at 81.64% (3294/4035) of all trials
(Fig. 6a, third bar). The MAP with Gaussian tuning curves and
WTA had identical results, both correctly predicting saccade

choices in 71.11% (2870/4035) of all trials (Fig. 6a, fourth and
fifth bars). When we used the data from the single target condi-
tion for the tuning curves and the Poisson probability density,
MAP predicted saccade choices in 69.94% (2822/4035) of the
trials. This was a drop in model performance by 14.82% com-
pared to the best MAP prediction (69.94% vs 84.76%%) (Fig. 6a,
first and sixth bars). The model performance degraded further
when we determined P(r�s) from the nonparametric density func-
tion built from the data collected during performance of the sin-
gle target condition. In this case, 58.64% (2366/4035) of all trials
were predicted from the trials (Fig. 6a, seventh bar).

When the OLE was optimized using the data from the four
stimuli condition it predicted saccade choice for 69.47% (2803/
4035) of all trials (Fig. 6a, eighth bar). This result is about as good
as the WTA (69.47% vs 71.11%). However, when the OLE was
optimized using the data recorded during the single target con-
dition, its performance dropped to 60.25% (2431/4035) (Fig. 6a,
ninth bar). As expected, the PVA performed least well, predicting
55.71% (2248/4035) of all trials (Fig. 6a, tenth bar). Together
these results point toward two important conclusions. First, the
model of the population code from the SC build up neurons that
can be used to predict choice improves when it combines all the
information about the neurons in the population such as their
full tuning curves and not just the peak of the tuning curve as is
the case for the traditional population vector average. Second, a
critical aspect that determines the performance of the model of
the population code is the distribution from which P(r�s) is
drawn. The reason that the accuracy of the models using the
single target neuron data performed so poorly is because these
data are not accurate characterizations of P(r�s) in the four pos-
sible target condition.

The Venn diagram in Figure 6b shows the percentages of trials
predicted by each model and how the predictions overlapped.
Determining whether there are substantial numbers of trials pre-
dicted exclusively by one model rather than another provides
important information about the computational principles un-
derlying population coding and choice in the SC. We selected
three models that showed the best prediction accuracy: the MAP
with nonparametric PDD estimation from the four stimuli con-
dition and the nonuniform prior, the OLE optimized with the
four stimuli condition and the WTA. Saccade choices were pre-
dicted successfully in 92.0% of all trials by any of the models,
whereas 8.0% of all trials were unpredictable by any of the mod-
els. For 53.5% of all trials, each model did a good job at predicting
saccade choice. The MAP predicted 6.7% of trials exclusively,
whereas OLE predicted 2.1% of trials exclusively, and WTA pre-
dicted 3.2% of trials exclusively. Thus, although all models per-
form reasonably well, the probabilistic model overall performs
slightly better than both of the others. Future experiments with
target locations represented by overlapping neuronal RFs will
provide further and better tests of the ability of MAP estimates to
predict choices relative to these other models.

The posterior probability distribution scales with choice
performance accuracy
Previously we showed that for buildup neurons encoding targets
and distractors the levels of activity scaled with performance ac-
curacy (Kim and Basso, 2008). When performance accuracy was
high the differences in discharge rates between target and distrac-
tor neurons were highly discriminable. When performance accu-
racy was poor, the differences in discharge rates were less
discriminable. In light of this, we were also interested in deter-
mining whether the posterior probability from the MAP model

Figure 6. Comparing models of saccade choice. a, The percentage of trials predicted cor-
rectly from each of the models is plotted. The number inside each bar indicates the number of
trials (out of the total 4035) that were correctly predicted by each model. Each model result is
labeled inside each bar. From left to right, the bars are as follows: MAP with empirical PDD
characterization of P(r�s) determined from four stimulus condition data with the nonuniform
prior; MAP with Poisson PDD characterization of P(r�s) determined from four stimulus condition
data with the uniform prior; MAP with Poisson PDD constrained by the tuning curves measured
from the four stimulus condition data; MAP with Gaussian tuning curves; WTA; MAP with Pois-
son PDD characterization of P(r�s) determined from single stimulus condition data; MAP using
empirical PDD characterization of P(r�s) using single stimulus condition data; OLE optimized
with four stimulus condition data; OLE optimized with single stimulus condition data; and PVA.
b, Venn diagram of the percentage of trials predicted by each of the models. The MAP model in
this plot is the one using the empirical PDD characterization of P(r�s) determined from the four
stimulus condition data and the nonuniform prior (the first bar in the top panel). None of the
models predicted 8.0% (324/4035) of the trials.
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and the angular difference from the OLE varied with the variabil-
ity in behavioral performance. Since these two models are based
on combining activity from multiple neurons, we expected that
the output of these models would scale with performance accu-
racy. In the case of the OLE, we expected to see a small angular
difference between the population vector and the saccade choice
when performance accuracy was high. We expected to see a larger
angular difference when performance accuracy was poor. For the
MAP, we expected to see the peak of the posterior distribution
centered on the saccade choice with a higher probability when
performance accuracy was high. When performance accuracy
was low, we still expected to see the peak of the posterior distri-
bution centered on the saccade choice but with a lower probabil-
ity. Note that the area under the distribution would remain 1, but
the relative probabilities associated with each saccade choice
would differ with choice accuracy.

To explore the relationship between the variability of behav-
ioral performance and the model predictions, we sorted all of the
correct trials (n � 3317) from the 30 datasets into three bins of
performance accuracy, 	70% correct (n � 737), 70 –99% correct
(n � 1255), and 100% correct (n � 1325). We then fed the
neuronal discharge data measured from 28 to 8 ms before the
onset of the saccade from these sorted trials into both the MAP
and the OLE models. Figure 7a shows the angular difference in
the directions of the population vector and the four possible sac-
cade choices. Because we sorted these trials from only correct
trials for this analysis, the target direction shows a much smaller
angular difference than any of the other locations. However,
when we compared the angular difference for the target location
across the different performance conditions, there were small
changes in the difference, but they failed to reach statistical sig-
nificance (ANOVA; F(2,117) � 1.02, p � 0.363) (Fig. 7a, compare
black and gray lines). In contrast to the OLE, the posterior distri-
bution showed scaling with performance accuracy, and these dif-
ferences were statistically significant (Fig. 7b, compare black and
gray lines) (ANOVA F(2,117) � 3.98, p 	 0.05). Previously, we
found that the activity of SC neurons encodes saccade choice as
well as the certainty of the choice (Basso and Wurtz, 1997, 1998;
Kim and Basso, 2008). The findings described here corrobo-
rate and extend that result showing that the posterior distri-
bution recovered from combining likelihoods obtained from
SC neuronal activity and prior information predicts saccade
choices and scales with choice accuracy. Inherent in the pos-
terior distribution is the certainty of the choice indicated by
the performance accuracy.

In one implementation of the MAP model, we used a uniform
prior probability distribution. Because of this, the result of this
model is mathematically equivalent to that of likelihood models
(Sanger, 2002, 2003) most recently implemented in MT (Jazayeri
and Movshon, 2006). Figure 7c plots the log likelihood distribu-
tions for each of the three performance conditions so that we
could compare directly the MAP to the log likelihood. Although
not intuitive, the distributions shown in Figure 7c reveal a pat-
tern. When performance accuracy was low the distribution did
not have a clear peak (Fig. 7c, lightest gray line). Whereas when
performance accuracy was high, the log likelihood distribution
was centered on the saccade choice (Fig. 7c, black line). However,
because these are likelihoods and not bona fide probability dis-
tributions, they cannot be compared directly across conditions
unless they are normalized. Note that the light gray line is for the
poorer performance trials even though it has the highest overall
log likelihood. A difference between the maximum and mini-
mum log likelihood can be taken for this purpose. Using a pos-

terior distribution however, which is a bona fide probability
distribution, this difference step is not required.

The posterior probability distribution develops over time
Given that decisions and saccade choices likely develop over time
(Carpenter and Williams, 1995; Gold and Shadlen, 2000, 2007),
we extended our analysis to determine whether the information
encoded in the posterior probability and the OLE developed over
time to reflect a single saccade choice. For this, we aligned the
trials on the time beginning 50 ms (average SC visual latency)
after the onset of the stimulus array and computed the model
result for each 1 ms until the saccade onset. Figure 8a plots the
angular difference between the neuronal and saccade direction
measured using the OLE. Initially, the angular difference fluctu-
ated and began settling on a small difference value �100 ms after
the onset of the stimulus array. Consistent with the results of the
stationary analysis shown in Figure 7a, the dynamic OLE predic-

Figure 7. MAP estimates scale with performance accuracy. The black lines show mean an-
gular difference for the trials in which performance was 100%. The dark gray lines show the
mean angular difference for trials in which performance was 70 –99% accurate. The light gray
lines show the mean angular difference for trials in which performance accuracy was 	70%.
D1 � distractor 1; D2 � distractor 2; D3 � distractor 3; TG � saccade target choice. a, The
angular difference between the direction of the prediction resulting from the OLE calculation
and the actual saccade direction for trials in which performance accuracy varied. b, The mean of
the MAP estimate with nonuniform prior for the four possible saccade choices, D1, TG, D2 and D3
as in a is plotted for each of the three accuracy conditions. The inset shows the region of the
distribution in the dashed circle. *p 	 0.05. c, Log likelihood for each of the four possible
saccade choices. The arrangement is the same as in a and b.
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tion did not scale very well with performance accuracy. In con-
trast, the developing choice as encoded by the posterior was more
obvious in the MAP estimate. Figure 8b shows the developing
MAP estimate of the saccade choice in the three performance
accuracy conditions (	70%, 70 –99%, and 100%). The MAP es-
timate developed rapidly in the 100% performance accuracy con-
dition and reached a maximum probability of 0.95 at the mean
time of the saccade onset (Fig. 8b, black line). In the 70 –90% and
the 	70% performance accuracy conditions, the MAP estimate
rose less rapidly and reached a probability of 0.90 and 0.83, re-
spectively, at the mean time of saccade onset (Fig. 8b, dark gray
and gray lines). The differences in the peak probability at the time
of the mean saccade onset were statistically significant (ANOVA,
F(2,117) � 5.15, p 	 0.01). This result is interesting because it
reveals that across the different performance accuracy condi-
tions, the height of the posterior distribution is lower for the
poorer performance trials (Fig. 8b, light gray line) than for the
better performance trials (Fig. 8b, black line). In each case, mon-
keys made the correct saccade choice. This is evidence that the
decision or choice threshold varies for these different perfor-
mance accuracy trials (Hanes and Schall, 1996; Paré and Hanes,
2003).

Figure 9 shows the evolution of the posterior for the target
location (TG) and for the three distractor locations (D1, D2, and
D3) using both the uniform prior (Fig. 9a,c,e) and the nonuni-
form prior (Fig. 9b,d,f). In each panel, the MAP estimate for the
saccade choice diverged from the MAP estimates for the distrac-
tors locations as saccade onset approached (Fig. 9, compare thick,
thin, dashed, and dotted lines). As previously reported in LIP
(Beck et al., 2008), these results show the development of the

posterior probability of the saccade choice and the decrease of the
posterior probabilities of the distractors over time. The results
show for the first time that when the nonuniform prior distribu-
tion is applied to recover the MAP estimate, the posterior distri-
bution favors the saccade choice slightly, even before the stimulus
array appears (Fig. 9, compare a, c, and e with b, d, and f). Finally,
as would be predicted from a structure that signals the saccade
choice to be made, the posterior distribution almost collapses
around the saccade choice at the time of the saccade. This is
evident from the MAP estimates because the saccade choice
probability is close to 1.0 and the probability for the distractors is
close to 0. This behavior is unclear from the dynamic analysis of
the OLE shown in Figure 8a.

Discussion
In this report, we show for the first time that the relationship
between SC buildup neuronal population activity and saccade
choice is well described by a probabilistic scheme. Here, we con-
sidered SC buildup neurons as encoders of likelihood distribu-
tions. When the likelihoods were combined with prior
information, we could construct a posterior distribution over
four possible saccade choices whose maximum predicted saccade
choices well. Somewhat astonishing to us was that combining the
activity of only four simultaneously recorded neurons and recov-
ering the maximum value of the posterior distribution predicted
saccade choices accurately on as many as 84.76% of the trials. The
MAP outperformed two well known algorithms, PVA/OLE and
WTA. For the first time, we also showed that the posterior distri-
bution across saccade choices develops over time and reached a
maximum around the saccade choice at the time of the saccade
onset. The posterior distribution almost collapses around the
saccade choice at the time of the movement, as would be pre-
dicted for a structure so close to the motoneurons (Miyashita and
Hikosaka, 1996). We also showed that computing the posterior
distribution across saccade choices by estimating the likelihood
directly from the data using a probability density estimation pro-
cedure maximizes performance of the model. However, consis-
tent with theoretical predictions, the MAP estimates recovered
using the empirical PDD were little improved over those using a
Poisson distribution to characterize variability. Finally, by incor-
porating a nonuniform prior, we found that MAP estimates im-
proved by �3% across all trials. This suggests that incorporating
prior information with the likelihood information provided by
SC buildup neurons is a way population neuronal activity could
encode saccade choices. In what follows, we first describe how
these new results extend previous work on the SC and saccade
choice. Then we describe how our MAP model complements and
extends previous work on probabilistic approaches to sensory
encoding and decision making.

Relationship to previous work in SC
It is well accepted that the SC employs a population code to
determine saccadic eye movements (McIlwain, 1986, 1991). Ex-
perimental evidence shows that individual neurons encode
saccade vectors, with each neuron having broad tuning for par-
ticular saccade directions and amplitudes (Robinson, 1972;
Schiller and Stryker, 1972; Wurtz and Goldberg, 1972; Sparks,
1975, 1978). A weighted sum of the activity of SC neurons across
the map is considered to determine the saccade direction (Ottes
et al., 1986; Van Gisbergen et al., 1987; Lee et al., 1988; Quaia et
al., 1998; Groh, 2001; Hanes and Wurtz, 2001) in much the same
way that motor cortical neurons encode the direction of arm
movements (Georgopoulos et al., 1986). However, the experi-

Figure 8. OLE and MAP predictions develop over time. a, The angular difference in the
direction of the OLE vector and the saccade vector is plotted against time for the three choice
accuracy levels. The traces are aligned to the time point 50 ms after the onset of the stimulus
array. Black lines are from the 100% performance accuracy trials, dark gray lines are the 70 –
90% performance accuracy trials, and the light gray lines are the 	70% performance accuracy
trials. b, The mean of the MAP estimates for the saccade choice in the three levels of perfor-
mance accuracy are plotted over time as in a. The vertical dotted line in both panels is the mean
saccade reaction time (RT).
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ments leading to this conclusion for the
SC are based largely on simulations or
were performed using only a single sac-
cade target (Lee et al., 1988; Quaia et al.,
1998; Hanes and Wurtz, 2001).

Recent experiments in the saccadic
system using more complex displays, such
as when multiple visual stimuli appear,
suggest that a WTA strategy is used (Port
and Wurtz, 2003; McPeek and Keller,
2004). Thus, we are left with the conclu-
sion that for single targets, the SC operates
using PVA, whereas for multiple stimuli,
the SC operates as WTA. This conundrum
is evident from behavioral studies too. For
example, it is well known that when two
visual stimuli appear in close proximity,
saccades land in a location between the
two stimuli—a phenomenon called the
global effect or averaging saccades (Find-
lay, 1982; Glimcher and Sparks, 1993;
Kowler and Blaser, 1995; Edelman and
Keller, 1998; McGowan et al., 1998;
Melcher and Kowler, 1999). However, if
the targets appear further apart or more
time is provided, a saccade can be made to
one or the other stimulus (Ottes et al.,
1984). This phenomenon is not unique to
the SC. In the MT, electrical stimulation
and recording experiments support PVA
or WTA or both, leading to the idea that
perceptual decisions rely on a WTA
scheme, whereas movement decisions rely
on a PVA scheme (Salzman et al., 1990,
1992; Ferrera and Lisberger, 1997; Groh et
al., 1997; Recanzone et al., 1997; Britten and
Heuer, 1999; Churchland and Lisberger,
2001). Population coding schemes that
are task or time dependent require mech-
anisms to switch between them. How this
switch would be implemented biologi-
cally is unclear.

Advantages of probabilistic schemes for
understanding action choice
Probabilistic strategies offer a solution to this conundrum. Be-
cause the posterior distribution uses all of the information con-
tained within the tuning curve and it combines activity across all
tuning curves, it naturally represents multiple stimuli simulta-
neously. Furthermore, because the peak and the variance of tun-
ing curves (when considered as likelihood distributions— or the
estimated PDDs) signal the certainty of the encoded parameter,
the posterior distribution provides a normalized likelihood (con-
ditional probability) for each of the alternatives. This eliminates
the need for a switch between population coding schemes. Both
PVA and WTA use only the peak activity. WTA further disregards
information from distractor neurons, leaving much of the
information in the population activity unused. Even when more
information is provided for the PVA as in the case of the OLE, it
still predicts fewer saccade choices as accurately as the MAP.
This is because the OLE does not incorporate variability as
does the MAP model. The OLE however, was almost as good as
the MAP with the Gaussian tuning curves, which in turn, was

identical to the WTA. This results because the correlation ma-
trix that we used to optimize the vector estimation was deter-
mined from neuronal activities that were largely
nonoverlapping. Only the empirical PDDs appear to represent
the true population variability. Thus we see improvement from
the OLE (69.47%) and WTA (71.11%) to the MAP with the em-
pirical PDD (81.88%). As a result of ignoring much of the infor-
mation in the population, variations in behavior, uncertainty, or
even attentional modulation (Spitzer et al., 1988; McAdams and
Maunsell, 1999; Pouget et al., 1999) cannot be resolved using
WTA or PVA/OLE approaches. Future experiments pushing the
amount of overlap in the visual display, the RF of the recorded
neurons and thus the empirical PDDs, will further distinguish
these models.

Probabilistic approaches have the additional advantage in that
they are easily extended to the domain of decision making (Smith
and Ratcliff, 2004; Gold and Shadlen, 2007; Beck et al., 2008).
Current models of decision making or eye movement selection
rely on taking the difference of activity from two populations of

Figure 9. Evolution of the posterior distribution. a, The posterior probabilities for the saccade choice (TG) and the three
distractor locations (D1, D2, and D3) are plotted over time in the 100% performance accuracy condition and the uniform prior.
b, The same as in a for the nonuniform prior. c, The same as in a for the 70 –99% performance accuracy condition. d, The
same as in b for the 70 –99% performance accuracy condition. e, The same as in a and c for the 	70% accuracy condition. f, The
same as in b and d for the 	70% accuracy condition. In all panels, the thick black line is the TG, D1 is the thin black line, D2
is the dotted line, and D3 is the dashed line. The horizontal dotted line indicates chance probability (25%). The vertical dotted line
indicates the mean saccade reaction time (RT).
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neurons representing independent alternatives (Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002; Ratcliff et al., 2003;
Huk and Shadlen, 2005; Boucher et al., 2007; Ratcliff et al., 2007).
Extending these models to more than two choices or to continu-
ous decisions as opposed to discrete choices, is difficult (Ratcliff
et al., 2007; Beck et al., 2008; Churchland et al., 2008; Niwa and
Ditterich, 2008). Furthermore, these models have difficulty in-
corporating changing evidence “on the fly.” A neuronal popula-
tion representing the posterior distribution across choices has the
unique advantage of naturally representing multiple possibilities,
discrete or continuous variables, the ability for recursive compu-
tation (Fig. 8) (Montagnini et al., 2007), and incorporation of
prior evidence. These features make changing a mind “on the fly”
seamless.

We think of the posterior distribution as describing the prob-
ability of a saccade choice. We interpret our result as providing
evidence that the saccade choice may be encoded as the posterior
probability distribution across all possible saccade choices or the
uncertainty associated with each of the possible saccade options.
Whereas conceptual models of the decision process suggest that
uncertainty underlying decisions occurs primarily within the
sensory system (Sugrue et al., 2005), our results suggest that there
is uncertainty associated with the choice of action that may be
distinguished from sensory uncertainty.

Relationship to previous and current models
Here we tested some of the theoretical assumptions of similar
probabilistic models. We made a number of important findings.
First, assuming a Poisson probability distribution to characterize
variability to estimate likelihood is as good as determining the
likelihood directly from empirical probability density estimation.
Therefore, even though individual neuronal variability is not well
explained by Poisson statistics, a MAP estimate based on Poisson
statistics performs well (Ma et al., 2006; Beck et al., 2007). Second,
von Mises or Gaussian tuning may not be the best representation
of neuronal activity across the population. We show here that von
Mises tuning curves (logs of von Mises curves are cosine func-
tions) are not required for the MAP to perform well. Similarly,
using Gaussian tuning curves resulted in model performance that
was only as good as WTA. Estimating the likelihoods empirically
improved model performance. This result is consistent with
results seen in the arm movement literature (Amirikian and
Georgopoulos, 2000; Serruya et al., 2002; Taylor et al., 2002;
Carmena et al., 2003). That von Mises tuning curves and the
minimally overlapping Gaussian tuning curves result in per-
formance identical to WTA is expected since these approaches
minimize or negatively weight (in the case of cosine functions)
the activity of distractor neurons. Indeed, in recent work ex-
tending a Bayesian approach to decision making (Beck et al.,
2008), they assumed von Mises curves (the logs of which are
cosine functions) for the LIP neurons. We suspect they would
obtain the same results as they did if they also implemented a
WTA scheme.

Third, we implemented both a uniform and a nonuniform
prior probability distribution. Therefore, the MAP estimate in
the former case is a Bayesian estimator that is identical to a max-
imum likelihood estimator and the MAP estimate in the latter
case is a Bayesian estimator distinct from a maximum likelihood.
Although the addition of the prior did not improve the model
enormously, we suspect this is because in our task it was not to the
monkeys’ advantage to use a prior. Consistent with this, we found
more improvement for error trials than for correct trials when the
nonuniform prior was added.

In net, we hypothesize that SC buildup neurons encode like-
lihood distributions as demonstrated here. These in turn may be
integrated by burst neurons in SC together with priors (or biases)
from other sources to determine the posterior probability distri-
bution across saccade choices. We propose that using bona fide
PDDs (such as the empirical PDD) for characterizing P(r�s) and
encoding saccade choice as a posterior distribution across sac-
cade choices, is a simple way for the brain to represent and com-
pute choices within the population (Deneve et al., 1999). Since
the peak of the posterior would be associated with the highest
chance of activating the downstream neurons responsible for
driving a particular saccade, decoding the choice is implicit in the
population activity. Furthermore, the width of the posterior dis-
tribution is an implicit way to represent the uncertainty of the
choice.
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