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Modeling the interplay between mutation and selection at the
molecular level is key to evolutionary studies. To this end, codon-
based evolutionarymodels havebeenproposed as pertinentmeans
of studying long-range evolutionary patterns and are widely used.
However, these approaches have not yet consolidated results from
amino acid level phylogenetic studies showing that selection acting
on proteins displays strong site-specific effects,which translate into
heterogeneous amino acid propensities across the columns of align-
ments; related codon-level studies have instead focused on either
modeling a single selective context for all codon columns, or a
separate selective context for each codon column, with the former
strategy deemed too simplistic and the latter deemed overparame-
terized. Here, we integrate recent developments in nonparametric
statistical approaches to propose a probabilistic model that accounts
for the heterogeneity of amino acid fitness profiles across the coding
positions of a gene. We apply the model to a dozen real protein-
coding gene alignments and find it to produce biologically plausible
inferences, for instance, as pertaining to site-specific amino acid
constraints, as well as distributions of scaled selection coefficients. In
their account of mutational features as well as the heterogeneous
regimes of selection at the amino acid level, themodeling approaches
studied here can form a backdrop for several extensions, accounting
for other selective features, for variable population size, or for sub-
tleties of mutational features, all with parameterizations couched
within population-genetic theory.
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Following the seminal works of Muse and Gaut (1) and Gold-
man and Yang (2), most early applications of codon-based

evolutionary models were focused on evaluations of selective
effects operating at different positions along a gene or at different
timepoints along thephylogeny (see refs. 3, 4 for reviews).Many of
these approaches havemodeled selective effects using aparameter
representing the nonsynonymous/synonymous rate ratio. How-
ever, this may not be ideal, in particular because it amounts to
ignoring differences between different pairs of possible amino acid
replacements resulting from nonsynonymous point mutations. In
recent years, questions regarding selective effects have diversified,
such as in the work of Yang andNielsen (5), who propose a test for
selection on codon usage. This test is based on models that invoke
a multidimensional specification of scaled selection coefficients,
based on either 20 or 61 (under the universal genetic code) scaled
fitness parameters—adding 19 or 60 degrees of freedom to the
underlying codon substitution model—in contrast with the more
conventional use of the single nonsynonymous/synonymous rate
ratio parameter, viewing all nonsynonymous events as equivalent
(e.g., see ref. 6). By assigning scaled fitness parameters to each of
the 20 amino acids, or to the 61 sense codons, Yang and Nielsen
obtained scaled selection coefficients associated with each type of
possible event from the difference in scaled fitness between the
states before and after the event. Moreover, the models have the
attractive feature of having direct connections to population

genetic theory (7), and Yang andNielsen have referred to them as
mutation-selection substitution models (5).
Beyond addressing specific questions regarding selective

regimes,most previousworks have given little attention to the level
of realism implied by the models used. For instance, most codon
substitution models employed to date have the same stationary
distribution for all positions. However, if it is not too unreasonable
to assume a homogeneous mutation process along the sequences,
there are both theoretical and empirical reasons to believe that
selection operating at the level of the encoded protein sequences is
strongly site specific, thus resulting in a marked differentiation of
the stationary distribution across positions (discussed in ref. 8). In
practice, of course, codon substitution models were not meant as
faithful descriptions of protein-coding gene evolution, but rather
as tools for detecting particular selective effects, using appropriate
test statistics, which, in the best cases, would be able to offset the
model’s lack of realism (e.g., ref. 5). However, this might be
problematic, as inferences based on too grossly misspecified
models can lead to artifactual conclusions. In the mutation-
selection framework in particular, this calls for a more elaborate
reference model for protein-coding sequence evolution.
Interestingly, the original motivations of Halpern and Bruno

(9), over a decade ago, were in fact to account for site specificities
of amino acids within the mutation-selection modeling frame-
work. The model used by Halpern and Bruno closely corresponds
to a fully site-heterogeneous version of amodel described in ref. 5,
with a separate set of 20 scaled fitness parameters affiliated to each
coding site of the alignment. Although the Halpern and Bruno
framework has attractive features, their model has hardly been
used since (but see ref. 10). Reasons for this hiatus include the fact
that a large number of sequences are required to reliably infer site-
specific amino acid fitness parameters and that such site-specific
codon substitutionmodels are computationally highly demanding.
Meanwhile, working withmodels that operate at the amino acid

level, several studies have shown that maximally heterogeneous
parameterizations may be unreliable, and that a more reasonable
balance between this and homogeneous parameterizations is
required (e.g., refs. 11–14). In particular, using mixture models to
capture across-site heterogeneities in amino acid propensities in
the context of profile HMMs (15), or of protein phylogenomics
(11, 16, 17), has generally been found to give an improved model
fit over either of these extremes (e.g., refs. 11, 18). Furthermore,
algorithmic developments for performing the needed probability
calculations [relying on data-augmentation-based Markov chain
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Monte Carlo (MCMC) sampling] have recently allowed for richer
substitution models to become tractable (e.g., refs. 19, 20).
Here, we integrate recent developments from previous works to

explore a nonparametric approach previously used for amino acid
level modeling (11, 16) within the mutation-selection codon sub-
stitution modeling framework. The basic biological assumptions
underlying ourmodel are the sameas those in ref. 9: (i)most coding
positions are under a regimeof purifying selection at the amino acid
level (where it is likely that only a few amino acids have com-
paratively higher fitness values than all other amino acids); (ii) this
regime of purifying selection at a coding site is constant over time;
and (iii) although selective effects are likely to implicate inter-
dependencies between different coding sites (21), these shall be
ignored; in other words, the focus is limited to capturing the mar-
ginal site specificities induced by purifying selection, based on site-
heterogeneous modeling of amino acid fitness. We illustrate fea-
tures of themodel in a qualitative-to-quantitative presentation, first
showing that the integration ofmodeling approaches from refs. 5, 9,
11, 16, 17 leads to biologically plausible inferences, in particular
regarding site-specific amino acid constraints and distributions of
scaled selection coefficients.Using aposterior predictive simulation
diagnostic, we further show that the modeling approaches capture
global features of selection, and, using Bayes factors, that they lead
to a significant improvement in statistical fit. We propose the
framework as a reference mutation-selection model, and discuss
further developments and applications that it could enable, con-
tributing to a merger of phylogenetics and population genetics.

Results and Discussion
Mutation-Selection Modeling with the Dirichlet Process.Webuild our
model on a basic mutational specification, corresponding to a gen-
eral time-reversible (GTR) model at the nucleotide level (22). The
GTRmodel is given by two sets of parameters: six parameters (five
effective degrees of freedom) governing the exchangeability of each
(unordered) pair of nucleotides, as well as four global nucleotide
propensity parameters (three effective degrees of freedom, for a
total of 5 + 3 = 8 parameters). For modeling selective effects, we
incorporated the approach of an “infinite” mixture of amino acid
profiles described in refs. 11, 16 into the mutation-selection codon
substitution framework inspired by refs. 5, 9. This part of themodel
is implemented using Markov chain Monte Carlo methods to
update configurations of a Dirichlet process (e.g., see ref. 23). A
particular configuration of the Dirichlet process is given by a set of
amino acid propensity vectors, with each vector having one ormore
sites affiliated to it. The entries of each vector consist of positive
values (summing to 1), and in our parameterization the difference
of the logarithm of two entries corresponds to a scaled selection
coefficient. This coefficient in turn defines a fixation factor for
nonsynonymous events, derived frompopulation-genetic principles
(e.g., see refs. 5, 9 for details regarding the specification of a codon
substitution matrix in the mutation-selection framework, and also
see Materials and Methods). Note that given a particular config-
uration of the Dirichlet process, two or more sites may have the
same fixation factors, if these sites are affiliated to the same amino
acid propensity vector; however, through the posterior averaging
implemented by the MCMC—updating configurations of the
Dirichlet process—each site has its own posterior distribution of
amino acid propensity parameters. As for the parameters governing
the Dirichlet process itself, often called hyperparameters, these
include a “granularity” parameter (controlling the mixture gran-
ularity, or “clumpiness”), a vector parameter acting as a base dis-
tribution of the amino acid propensity mixture components, and a
parameter controlling the dispersal of mixture components around
the base distribution (11, 16). We combineMCMCmethods for the
Dirichlet process with MCMC update operators on mutational
parameters, branch lengths, hyperparameters (althoughusing afixed
tree topology), embedded within a data-augmentation-based system
(20, 24), giving us the means to sample from the overall joint pos-

terior distribution. Altogether, because the framework enables a
model that is derived from the Muse and Gaut approach, and
incorporates the mutation-selection framework using the Dirichlet
process, we refer to it as the MG-MutSelDP model.

Posterior Distributions. We report the posterior distributions of all
parameters governing our model, obtained under a dozen real
data sets, in SI Text and focus here on a few key features. First,
because the Dirichlet process approach is aimed at capturing
selection, the usual interpretation of the nucleotide propensity
parameters must be revised. Under the traditional nucleotide-
level models, such as the GTR model, these parameters reflect
the long-term proportions of nucleotides that are expected
from running the evolutionary model. Indeed, a common practice
aimed at simplifying practical problems has consisted in fixing
these parameters to the observed nucleotide frequencies. In the
present mutation-selection framework, however, one must view
the nucleotide propensity parameters as reflecting the long-term
proportions of nucleotides expected in the absence of selection. In
other words, we do not expect their posterior mean values to re-
semble the global empirical frequencies of the alignment, because
these have presumably been dictated by a tradeoff between
mutational and selective effects. Third-position nucleotide fre-
quencies are those least subjected to the effects of selection at the
amino acid level, and thus a prediction is that the posterior dis-
tributions of nucleotide propensity parameters under our model
should tend to be located near these values. Indeed we found that
the posterior mean values of nucleotide propensity parameters
follow third-position nucleotide frequency values closely. In Fig. 1,
we pooled the posterior mean nucleotide propensity values ob-
tained under a dozen data sets and plotted these against the
empirical third-position frequencies of each respective data set.
The strong correlation provides a first simple validation that our
model is able to tease out mutational and selective factors in a
biologicallymeaningful way. This result is in contrast with previous
works exploring themutation-selection framework, in which it was
noted that the selective parameterization had little effect on
nucleotide propensity parameters (e.g., refs. 5, 20, 21). This con-
trast is likely due to the very different approach of the present work
for modeling selective effects. Moreover, the result suggests that
short-cut schemes of fixing nucleotide propensity parameters to
the global empirical nucleotide frequencies (as done in the original
Halpern-Bruno model) should be avoided.
We next highlight how the modeling approach allows us to

explore site-heterogeneous selective constraints at the amino
acid level. As a simple graphical display that illustrates how the
model distinguishes between amino acids, we calculate for each
site the average amino acid propensity vector over our sample
from the posterior distribution (using the vector affiliated to the
site of interest for each draw), and display it as a logo with the
height of single letter abbreviations being proportional to the
mean propensity parameter for that amino acid (logos are sorted
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Fig. 1. Comparison of nucleotide propensity parameters with third-position
empirical nucleotide frequencies.
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to display the most predominant amino acid at the top of the
profile, and in decreasing order going down the profile).
Using two data sets (GLOBIN17–144 and RHOD38–300, see SI

Text) for illustrative purposes, Fig. 2 contrasts the site-specific
amino acid frequencies observed in the true alignments, in the
Top row of each panel, with the site-specific posterior mean amino
acid propensity vectors obtained under theMG-MutSelDPmodel
in the Second row of each panel, for the first 30 positions. We first
observe that the posterior mean amino acid vectors are indeed
quite heterogeneous across sites. Moreover, the site-specific
posterior mean amino acid propensity vectors are generally sug-
gestive of the true site-specific amino acid frequencies for the
GLOBIN17–144 data set, and the resemblance is graphically more
obvious for the RHOD38–300 data set. We view these results as
further validating the modeling approach, in producing qual-
itatively sensible site-specific inferences. It should be noted that,
to date, nearly all of the codon substitution models used have a
unique stationary distribution at all sites, implying that the same
long-term trend is assumed over the entire gene (i.e., the most
probable gene under such models will consist of a repetitive
sequence of a single codon). In the present case, the amino acid
propensity parameters are involved in the stationary distribution
of the Markov process, such that each site will have its own
effective limiting distribution (i.e., in this case, the most probable
gene will tend to resemble real genes).

Distributions of Selection Coefficients. To summarize site-specific
results across all sites into a more quantitative illustration of the
properties of the model, we focus on the distributions of scaled
selection coefficients. More specifically, we used equations 5 and 6
in ref. 5 (also seeMaterials and Methods) to calculate, for each site,
the proportion of mutations going from codon a to codon b among
all possiblemutations at stationarity under theMarkov process, and
the proportion of these falling within particular ranges of selection
coefficient values of interest. The proportion ofmutations from a to
b among all substitutions—i.e., among the mutations that have
passed the filtering of selection (5)—can also be calculated as
explained in ref. 5, hence allowing us to contrast the distributions of
selection coefficients between these two setsofmutationcategories.
These calculations require parameter values. Here, we simply use

the componentwiseposteriormean, for global parameters, and site-
specific posterior mean amino acid propensity vectors (always
based on the affiliation configuration of the Dirichlet process
draws) and further average the site-specific results across all sites.
Fig. 3 shows the distributions obtained using our proposedMG-

MutSelDPmodel for the two example data sets. In each panel, the
dashed-line histogram reports the proportion of mutations having
the scaled selection coefficient displayed in the abscissa. In each
case, we first note that most of this distribution is located in the
negative region: for theGLOBIN17–144 data set (Fig. 3A), 87.0%of
proposedmutations are either deleterious (i.e., in bins centered on
any S< 0, at 61.3%) or neutral (i.e., in the bin centered on S=0, at
25.7%); and for the RHOD38–300 data set (Fig. 3B), 92.9% of
proposed mutations are either deleterious (bin centers with S < 0
at 67.5%) or neutral (in bin centered on S = 0 at 25.4%). Each
panel also shows a solid-line histogram, reporting the proportion
of mutations among all substitutions that have the coefficient
displayed in the abscissa. These distributions are symmetrical
(owing to the time-reversible nature of the models) and the bin
centered on S = 0 now attains 37.7% for the GLOBIN17–144 data
set and 50.9% for the RHOD38–300 data set.
The distributions of scaled selection coefficients have intuitive

interpretations in the mutation-selection modeling framework.
There is a long history of empirical observations showing that most
possible mutations are detrimental in terms of fitness, and this is
represented in the predominantly negative location of the dashed-
line histograms.Moreover, the distributions of selection coefficients
among substitutions (solid-line histograms) are representative of
the model design of capturing the balance between mutation and
selection (9), in being centered about 0, and show that the highest
proportion of substitutions are those that are neutral (in the bin
centered on S= 0) with the remaining being nearly neutral (mildly
positive or mildly negative), andmore tightly distributed around the
bin centered on S= 0.We note that these latter results, which are a
basic consequence of the construction of our model, are in
accordance with the theoretical developments of Sella and Hirsh
(25), who find that the distributions of selection coefficients of
mutations that reach fixation should be symmetrical around 0.

A

B

Fig. 2. Site-specific aminoacid frequencies and inferredaminoacidpropensity
vectors. (A) For theGLOBIN17–144 data set, followed by RHOD38–300 in B. In each
panel, the Top Row is a representation of the site-specific amino acid frequen-
cies (with frequencies of amino acids proportional to height of the single letter
abbreviation), obtained by translating the true alignment; the Second Row
shows the site-specific amino acid propensity parameters (the log of which
corresponds to their scaled fitness) obtained under the MG-MutSelDP model.
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Fig. 3. Distributions of scaled selection coefficients (S) at equilibrium of the
Markov process under the MG-MutSelDP model applied to the GLOBIN17–144
data set in A and RHOD38–300 in B. The dashed-line histogram displays the
proportion of mutations among all possible mutations having the coefficient
value in theabscissa,whereas thesolid-linehistogramdisplays theproportionof
mutations among all substitutions having the coefficient value in the abscissa.
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Model Assessment and Ranking. We performed a simple posterior
predictive diagnostic showing that the MG-MutSelDP model cap-
tures selective features, reported in SI Text, but otherwise sought to
rank theheterogeneousmodeling ideas describedherewith respect
to other well-known modeling approaches. We used the thermody-
namic integration methods described in ref. 26 to compute Bayes
factors. However, as currently implemented, these are computa-
tionally intensiveMCMCprocedures. Inparticular, they currentlydo
not allow us to exploit the data-augmentation sampling systems that
make the Dirichlet process modeling studied here tractable. Hence,
to keep the thermodynamic calculations manageable, we only
ranked three empirical modeling approaches, with respect to the
MG model and only performed this analysis on the smallest of the
our data sets (GLOBIN17–144). For these empirical versions, the
mixture model is predefined, in terms of the number of components
and in terms of the profiles of each component, which are fixed to
those inferred in ref.12; only the weights of the components are free
parameters, endowed with a flat Dirichlet prior. Depending on the
numberof components,we refer to thesemodels asMG-MutSelC20,
MG-MutSelC40, and MG-MutSelC60.
The empirical versions considerably reduce the MCMC com-

putational demands, while capturing the essence of the heteroge-
neous modeling ideas. However, because the 20, 40, or 60 profiles
were obtained from a framework operating at the amino acid level
only (i.e., that does not attempt to tease out mutational and
selective effects), the Bayes factors associated with their use in the
mutation-selection framework are likely to be lower than they
might be with empirical mixtures obtained by incorporating the
nucleotide (codon)-level data within the training methods descri-
bed in ref. 12.Despite this weakness of the plug-inwe attempt here,
the natural log Bayes factors are ∼236, 255, and 269 for the MG-
MutSelC20, MG-MutSelC40, and MG-MutSelC60 models, res-
pectively (computed against the MG model). These are much
greater than the natural log Bayes factor in favor of the MG-NS
model, evaluated in ref. 24 at ∼92, or even the MG-NSDP model
(which applies a Dirichlet process to the unidimensional non-
synonymous rate factor (27), at∼195. These results suggest that the
approaches studied here could be addressing one of the most
important points of articulation in codon substitutionmodel design,
although further comparisons with other approaches (e.g., refs. 28–
31) should eventually be performed.

Conclusions
The MG-MutSelDP model we report here rests on three basic
biological assumptions previously mentioned: the assumption of a
site-heterogeneous background of purifying selection at the amino
acid level, of constancy of selective regimes, and of independence
between codon sites (or a complete lack of within-gene and
general epistasis). Whereas the first assumption appears justified,
there have been several reports of violations of the second and
third assumptions (e.g., refs. 32, 33, 34 ). Nonetheless, we believe
the approach could serve as a basic reference model with direct
connections to population-genetic theory (7), while constituting a
stepping stone to a more in-depth modeling of protein-coding
sequence evolution. We have shown several lines of results that
support this viewpoint. First, it appears successful in teasing out
mutational tendencies from selective effects, as reflected by the
similitude of the posterior distributions of nucleotide propensity
parameters and the empirical third-position nucleotide frequen-
cies (Fig. 1). Second, the inferred site-specific selective constraints
at the amino acid level appear qualitatively reasonable when
contrasted with observed amino acid frequencies (Fig. 2). Third,
the model produces biologically sensible distributions of selection
coefficients for all possible mutations (predominantly negative
values), and theoretically coherent distributions when considering
mutations that pass through the filtering of selection (Fig. 3).
Finally, themodel performswell in posterior predictive checks and
markedly outperforms othermodels asmeasured byBayes factors.

Despite the theoretically attractive aspects of Halpern and
Bruno’s mutation-selection framework, proposed over a decade
ago, the approach has received little attention in practice, mainly
due to computational difficulties; the Halpern and Bruno model
involves as many different codon matrices as there are sites, and
even models with a single matrix have generally been considered
computationally too expensive, motivating other approaches that
circumvent their use (e.g., ref. 35). However, with recent develop-
ments in data-augmentation-based MCMC sampling methods, as
well as the Dirichlet process modeling approaches, these types of
heterogeneous modeling ideas are becoming tractable (at least for
performing inferences on the basis of posterior distributions). In
our implementation of theMG-MutSelDPmodel, we observed the
data-augmentation-based sampler to be roughly two orders of
magnitude faster than the traditional pruning-based sampler,which
implies that the latter would require years of CPU instead of weeks
in some cases we study here. Although the empirical mixture
approaches can provide less taxing models, the Bayes factors
reported above (computed using pruning-based sampling) still
requiredover 2months ofCPUtime. It is thus of interest to advance
further computational methods, both to ameliorate our current
data-augmentation-based sampler and tobridge this typeofMCMC
sampling with our thermodynamic integration methods.
Many other applications can be envisioned for these evolu-

tionary models. For instance, although we have reported dis-
tributions of selection coefficients averaged across all sites, the
modeling framework allows for site-specific distributions to be
inferred as well; as a specific example, from the posterior dis-
tribution of parameters under theMG-MutSelDPmodel obtained
from, say, a mammalian alignment (and tree), one could evaluate
the selection coefficients associated with all possible point muta-
tions of a given human gene sequence (e.g., see ref. 36). Also, the
model could be applied to the problem of phylogenetic inference
per se, particularly as algorithmic developments progress; the
amino acid level CAT model has been found to be more robust in
conditions where homogeneousmodels are susceptible to the long
branch attraction artifact (16), and recent work has shown the
presence of phylogenetically relevant synonymous signals even in
highly diverged proteins (37). TheMG-MutSelDPmodel accounts
for both these recent observations and could therefore be expected
to provide a particularly robust framework for phylogenetic
inference. Finally, the model could constitute a more relevant
background against which to distinguish positive selection. All our
experiments show that purifying selection is both widespread and
overwhelming in intensity in protein-coding sequences. It seems
possible that weak signals of positive selection (possibly sporadic)
are overwhelmedby such a strong purifying selection environment.
Our posterior predictive experiments (Supporting Information)
show that we offset the background of purifying selection in a
significant way, but they also reveal the potential presence of weak
signals of positive selection. Exploring these directions is likely to
be computationally challenging for large data sets, although
promising advances continue to be made (e.g., ref. 38).
Among the useful possible extensions to the model, it could

allow one to tease out mutational and selective contributions to
the compositional variations across proteomes of different species
(39). Or, the overall efficacy of selection could be modulated over
the phylogeny by having a variable effective population size over
the tree, which could also enable a probabilistic reconstruction of
ancestral population sizes. A global modeling of selection on
codon usage (as in ref. 5) could be incorporated in a straightfor-
ward way and could be expanded to incorporate heterogeneities at
this level as well. Combinations with context-dependent muta-
tional modeling (e.g., refs. 40, 41) could also be envisaged, as well
as accommodating levels of dependence between codons (21).
More generally, any aspect could be modeled as lineage depend-
ent, site dependent, gene dependent, dependent on the chromo-
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somal region, etc., thereby providing a foundation for contrasting
evolutionary patterns under a broad spectrum of conditions.

Materials and Methods
Models. We build the MG-MutSelDP model as follows: mutational parame-
ters corresponding to the exchangeability of each (unordered) pair of
nucleotides are written as ϱ ¼ ðϱmnÞ1≤m;n≤4, with the (arbitrary) constraint
∑1≤m<n≤4ϱmn ¼ 1; mutational parameters governing nucleotide propensities
are written as φ = (φn)1 ≤ n ≤ 4, with ∑4

n¼1φn ¼ 1; a particular configuration of
the Dirichlet process is given by a set of K (1 ≤ K ≤N, whereN is the number of
codon sites in the alignment) amino acid propensity vectors, written as ψ =
(ψ(k)

l)1 ≤ l ≤ 20, 1 ≤ k ≤ K (with∑20
l¼1ψ

ðkÞ
l ¼ 1 for all k), and an allocation vector z =

(zi)1 ≤ i ≤ N. For a particular site i, the entry of the allocation vector, zi, returns an
index, in the range 1 to K, corresponding to the particular amino acid pro-
pensity vector currently affiliated to site i.With this detailed configuration, for
any site i the scaled selection coefficient for an event from codon a to codon b
is given by SðiÞab ¼ lnðψðzi Þ

fðbÞ=ψ
ðzi Þ
fðaÞÞ, where f(a) returns an index corresponding to

the amino acid encoded by codon a. Note that two or more sites may have the
same scaled selection coefficients, if these sites are affiliated to the same amino
acid propensity vector; however, through the fluctuations of the MCMC—
updating configurations of theDirichlet process—each site has its own effective
distribution. The Markov generator at a particular site i, for a particular con-
figuration of the Dirichlet process, then has three possible off-diagonal entries:
(i)ϱacbc

φbc
, for the caseofa synonymous event fromcodona to codonb,where c

is 1,2,or3, for thefirst, second,andthirdwithin-codonpositions,andacgives the
index corresponding to the nucleotide at the cth position of codon a; (ii)
ϱacbc

φbc
SðiÞab=ð1− e− SðiÞ

ab Þ, for the case of a nonsynonymous event from codon a to
codon b, where SðiÞab=ð1− e− SðiÞ

ab Þ is the fixation factor; and (iii) 0 for cases with
codonsdifferingbymore thanonenucleotide (onlypointmutationsareallowed
by themodel). As in ref. 16, we draw amino acid propensity vectors from a base
prior governed by a 20 dimensional (19 effective degrees of freedom) proba-
bility vector, aswell asa parameter controlling thedispersionaround this vector,
and another parameter controlling the granularity of the mixture. The base
prior probability vector is endowed with a Dirichlet hyperprior, and unidimen-
sional parameters are endowedwithexponentialhyperpriors ofmean1. For the
MG-MutSelC20, MG-MutSelC40, and MG-MutSelC60 models described in the
main text, the only free parameters involved in the mixture are the weights of
the components; these weights are implicitly integrated out via an allocation

system, in a manner that is equivalent to having a flat Dirichlet prior on them
(12). The priors on all other parameters are as described in ref. 24, as are the
priors for the MG, MG-NS, and MG-NSDP models (described in ref. 24 and the
main text).

MCMC Sampling. Weused samplingmethodologies described elsewhere (e.g.,
refs. 19, 20) that consist of drawing data augmentations conditional on
parameters (and auxiliary variables) followed by updates on parameters
conditional on the data augmentations. We used the approach described in
ref. 24 to draw data augmentations, although here the draws are directly
available from the posterior distribution (because the models are site inde-
pendent). Thermodynamic integrations for computing Bayes factors were
performed as in ref. 26.

Distributions of Selection Coefficients.Weused theapproachdescribed in ref. 5
to produce distributions of selection coefficients. Briefly, the distributions of
selection coefficients are those at stationarity under the Markov process; the
stationary distribution at a given codon site i under a particular configuration
of the Dirichlet process is πðiÞa ∝φa1φa2φa3ψ

ðzi Þ
fðaÞ. The proportion of mutations

from a to b among all possible mutations at site i, μ(i )ab is then given by
μðiÞab ¼ πðiÞa ϱacbc

φbc
=∑a≠bπ

ðiÞ
a ϱacbc

φbc
. The collection of all values of μ(i )ab are then

binned to produce a histogram (Fig. 3, dashed line). The proportion of
mutations from a to b among all substitutions at site i is calculated in the same
way, but including the selective factor in the latter equation, and the col-
lection of values are again binned to produce a histogram (Fig. 3, solid line).

Data. We used 12 data sets to demonstrate the modeling ideas in practice.
These data sets were previously assembled and part of published works (6,
42–47). The data sets are described in Supporting Information, along with
the trees used.
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