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Abstract
This study presents an analysis of the contact of a rippled rigid impermeable indenter against a
cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with
lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to
account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that
under contact creep, the trapped lubricant pool gets depleted within a time period on the order of
seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion,
hydrostatic fluid load across the contact interface may be enhanced by the presence of the trapped
lubricant pool, depending on the initial geometry of the lubricant pool. According to friction
models based on the biphasic nature of the tissue, this enhancement in fluid load support produces
a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool.
The results of this study support the hypothesis that trapped lubricant decreases the initial friction
coefficient following load application, independently of squeeze-film lubrication effects.

INTRODUCTION
The function of articular cartilage is to serve as the bearing material of diarthrodial joints.
Remarkably, this tissue generally remains viable over a lifetime of loading, maintaining a
low friction coefficient even under high stresses. Therefore it has been the focus of many
researchers to investigate the friction and lubrication properties of articular cartilage and to
understand its normal and pathological behaviors. Contact simulations between smooth
articular layers modeled with porous media theories [1,2,3,4] have predicted that upward of
90 percent of the applied contact load may be supported by interstitial fluid pressurization.
Recently, direct experimental measurements of cartilage interstitial fluid pressure [5,6] have
verified this mechanism of fluid load support and demonstrated good agreement between
theoretical predictions and experimental measurements. The significance of these findings is
the confirmation of the important role played by fluid pressurization in the mechanics of
cartilage, as well as this tissue’s ability to achieve a very low friction coefficient even under
adverse loading conditions of high loads and low velocities [7,8,9,10,11,12,13].

The theoretical “dry” contact analyses performed to date have assumed smooth articular
surfaces, however articular cartilage may exhibit various levels of surface roughness
[14,15]. Recent studies have reported surface roughness varying in the range of 0.3–6
microns in normal cartilage, with a period of 15–30 micron, based on various measurement
techniques which maintain cartilage hydrated, such as reflected light interference
microscopy, stylus profilometry, confocal microcopy, laser profilometry and atomic force
microscopy [16,17,18,19,20,21]. Osteoarthritic cartilage may exhibit roughness as high as
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26 microns [20]. Such waviness and roughness in the surface topography may promote
trapping of synovial fluid lubricant during articular contact. Several researchers have
theorized that the presence of trapped lubricant pools potentially explains the observed time
dependent response of the cartilage friction coefficient. McCutchen’s theory [7,8] termed
“weeping” lubrication, proposed that, as articular surfaces are pressed against each other, a
hydrostatic pressure develops in the cartilage’s interstitial fluid which tends to push the fluid
into cracks and asperities between the surfaces. The load across the surfaces would be
supported primarily by the hydrostatic pressure in these lubricant pools and only secondarily
by the skeleton, resulting in low frictional coefficients. As the water is “wrung out”, this
effect is diminished and the friction coefficient would increase, as he observed
experimentally. Conversely, Walker et al. [16,22], Dowson et al. [23], and Longfield et al.
[24] attributed the observed time-dependent frictional response to a mode of lubrication
which they called “boosted lubrication”. In their analysis, approaching cartilage surfaces
would trap pools of concentrated synovial fluid within the “valleys” as “peaks” on opposing
surfaces come into contact. These hydrodynamically pressurized pools provide load support
which maintains low friction between the surfaces. Eventually, the low viscosity
components of synovial fluid would filter into the porous cartilage and through the edges of
the contact regions, leading to greater load support by direct cartilage contact and
consequently greater friction. The large size hyaluronic acid filtrate would leave an enriched
gel on the surface which could act as a boundary lubricant, as also described by Maroudas
[25]. Longfield et al. [24] observed that this boosted lubrication model contradicted the
weeping lubrication model of McCutchen in which interstitial fluid was hypothesized to
exude from cartilage to provide hydrostatic load support. It is also important to note that
other investigators have proposed a mechanism of micro-elastohydrodynamic lubrication for
cartilage [26]. Hou et al. [27,28] and Jin et al. [29] solved the squeeze-film problem between
a spherical rigid impermeable indenter and a compliant biphasic cartilage layer on a rigid
impermeable foundation. Hou et al. [28] found that as the fluid film between the bearing
surfaces decreased in thickness and greater resistance to radial flow occurred, there was
significant flow from the fluid film into the porous cartilage in the high-pressure central
region, consequently supporting the premise of boosted lubrication; conversely, fluid flowed
out of the cartilage in the low-pressure peripheral zone. While the study of Hou et al., and
subsequent studies by Hlavacek [30,31] have provided some support for the hypothesis of
boosted lubrication, it is only recently that theoretical analyses of trapped lubricant pools
between articular cartilage layers have been reported which investigate the pressurization
and fluid flow patterns in such configurations [32].

The presence of pools of lubricant can have a significant effect on the frictional response of
a material. For non-porous engineering bearing materials, a trapped lubricant has been
shown to enhance the fluid pressurization while decreasing the effective area of contact (e.g.
[33,34]) therefore reducing the amount of friction present. However, modeling of trapped
lubricant pools in articular cartilage would require the use of a porous media model to
properly account for fluid flow patterns at the articular surfaces.

Therefore, the objective of this study is to examine the effect a trapped lubricant may have
on the frictional response of cartilage by tracking the temporal changes in fluid load support
and fluid flow at the contact surface of the tissue. The hypothesis of this study is that the
trapped lubricant will decrease the effective area of contact between contacting surfaces
while simultaneously enhancing the fluid load support, thereby decreasing the friction
coefficient. The specific aims are to formulate and solve the problem of a rigid impermeable
cylinder with a single small ripple, contacting a cartilage layer supported on a rigid
subchondral bone substrate, using the biphasic theory for hydrated soft tissues of Mow et al.
[10]. A time-dependent contact creep contact configuration is analyzed under plane strain.
Additionally, to analyze the potential effects of a trapped lubricant on the frictional response

Soltz et al. Page 2

J Biomech Eng. Author manuscript; available in PMC 2010 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the tissue, our previously proposed boundary friction model [13] is adapted to account for
the trapped lubricant.

METHODS
Problem Geometry

The contact configuration for the problems analyzed in this study is presented in Figure 1a.
A biphasic cartilage layer of uniform thickness b is supported by a rigid impermeable
subchondral bone substrate. A rigid impermeable indenter contacts the biphasic layer under
an applied load intensity W (load per unit length along the out-of-plane or z–direction). The
profile g(x) of the indenter is a parabolic approximation to a cylinder of radius R, with a
centrally located sinusoidal ripple of peak-to-peak amplitude α and wavelength λ:

(1)

where β is the abscissa where the parabola and sinusoid are C1 -continuous (Figure 1b),
which can be obtained from απRsin(2πβ/λ) + λβ = 0, and γ = (β2/2R) − (α/2)[1 + cos(2πβ/λ)].
In the creep contact analysis, the load W is applied at time t = 0 and maintained constant,
with the bony substrate remaining stationary.

Tissue and Lubricant Models
The governing equations for the biphasic theory of Mow et al. [10], include the balance of
mass for the mixture,

(2)

and the balance of linear momentum for each phase,

(3)

where s, f denote the solid and fluid phases, respectively. In these equations, ϕα is the
volumetric fraction, ρα is the apparent density, vα is the velocity, bα is the external body
force per unit mass, and πα is the momentum exchange, for phase α. The constitutive
relations for a linear elastic solid phase and a Newtonian fluid phase are

(4)

(5)
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(6)

where σα is the apparent stress for phase α, p is the interstitial fluid pressure, λs, μs are the
first and second Lamé constants of the solid phase, λf, μf are the first and second viscosity
coefficients of the fluid phase, and k is the hydraulic permeability of the porous-permeable
solid matrix. The total stress is given by

(7)

where σe is the effective stress. The infinitesimal strain tensor E of the solid matrix is related
to the solid displacement u through E = (gradu + gradT u)/2, and the rate of deformation
tensor D f of the fluid phase is given by D f = (grad v f + gradT vf)/2. The solid phase
velocity vs is related to the solid phase displacement u by the material derivative with
respect to the solid phase vs = Dsu Dt. Substitution of these constitutive relations into the
balance of linear momentum equations, in the absence of external body forces, and
neglecting inertia forces, yields

(8)

(9)

It is convenient to define the flux of the fluid relative to the solid phase as

(10)

If equations (8)–(9) are non-dimensionalized with

(11)

where HA = λs + 2μs and b is a characteristic length (e.g., thickness) of the biphasic cartilage
material, the following relations are produced,

(12)
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(13)

For articular cartilage, ϕs,ϕf ~ 1, λs, μs, HA ~ 106 Pa, k ~ 10−15 m4/N.s, λf, μf, ~ 10−3 Pa.s,
and b ~ 10−3 m, so that (λf + μf)k/b2, μfk/b2 ~ 10−12, from which it can be concluded that the
term (λf + μf)grad(div vf) + μf∇2v f can be neglected in Eq.(9). Now, Eqs.(8)–(9) can be
rearranged as

(14)

(15)

using ϕs + ϕf = 1; in effect, these equations correspond to λf = μf = 0. These two equations,
along with Eq.(2) which can be rewritten as div(vs + w) = 0, can be used to solve for the
dependent variables u, w, and p, subject to the appropriate boundary conditions.

Modeling the trapped lubricant pool as an incompressible Newtonian fluid similarly
produces the governing equations

(16)

(17)

where v is the lubricant velocity, p its pressure and η its viscosity. In a two-dimensional
analysis,

(18)

From the boundary conditions, the lubricant at the top surface of the trapped lubricant pool
moves at the velocity of the rigid indenter, while at the bottom cartilage surface the lubricant
moves at the mixture velocity (Figure 1a),

(19)

For simplicity, it is now assumed that since the lubricant pool has a small height, the
velocity component vy (x,y,t) of the lubricant can be reasonably estimated with a linear
function of y that satisfies the above conditions,
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(20)

From the continuity of mass equation, (18)1, we now get

(21)

Integrating this expression with respect to x and making use of the symmetry condition vx
(0,y,t) = 0, it follows that ∂2vx/∂y 2 = 0. Then, from the momentum equation along x, (18)2,

(22)

In a biphasic creep problem, characteristic velocities of the solid phase and fluid flux are on
the order of ∂uy/∂t ~ δ̇(t) ~ wy ~ HA k/b, which is approximately 10−6 m/s (~1 μm/s) for
articular cartilage. Given that g(x) ~ 10−6 m and η ~10−3−100 Pa.s, while p ~ 105 Pa in the
trapped lubricant pool, it is evident that the term multiplied by η in Eq.(22) is of order 100–
103 Pa, which is entirely negligible compared to p. Thus the pressure is essentially uniform
in the lubricant pool,

(23)

This order of magnitude analysis indicates that the effect of the lubricant viscosity is
negligible in resisting the flow of lubricant into or out of the cartilage, when compared to the
diffusive drag of the fluid phase against the solid matrix resulting from the low permeability
of cartilage.

Contact Analysis
The methods of solution for the problem of this study follows the approach described in our
earlier study of contact creep [4] in the absence of a trapped lubricant pool, and the reader is
referred to that publication for a detailed description of the reduction of the above biphasic
equations to the set of equations presented below. For the contact creep analysis, the
convected term in the material derivative is negligible and thus Ds/Dt ≈ ∂/∂t. The contact
analysis assumes frictionless conditions at the contact interface of the indenter with the
biphasic layer, which is consistent with neglecting viscous terms in the interstitial fluid of
the biphasic model. At the biphasic layer surface, the traction components are given as

(24)

where the complete determination of the functions pa and ta is to be obtained from the
analysis. As can be construed from Figure 1, the following information about these functions
is available a priori:
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(25)

where ai (t) (i = 1,4) denote the edges of the contact regions and p0 is the value of the
uniform pressure in the trapped pool. To solve for these functions within the contact regions
(a1 ≤ x ≤ a2, a3 ≤ x ≤a4), it is first necessary to match the normal surface displacement of
the biphasic layer with the profile g(x) of the rigid impermeable indenter and to set the
normal fluid flux component to zero. For the contact creep problem, the components of solid
displacement uy and fluid flux w y normal to the surface, expressed in terms of inverse
complex Fourier transforms, are given by [4]

(26)

(27)

where p̃a (ω,t), t̃a (ω,t) are complex Fourier transforms of pa (x, t), ta (x, t), respectively. The
known functions M ̃p, M ̃t, Ñp, Ñt are obtained by satisfying all the boundary conditions for the
biphasic layer (adhesive and impermeable cartilage-bone interface, along with the traction
boundary conditions of Eq.(24) above).

The continuity of normal surface displacement and fluid flux within the contact region is
given by

For a1(t)≤ x ≤ a2(t), a3 (t) ≤ x ≤ a4(t)

(28)

(29)

where δ(t) is the normal approach of the indenter with the biphasic layer (Figure 1a).
Because this normal approach is not known in advance, the system of equations to be solved
must be supplemented with the following load balance equation (where W is assumed
positive in compression)

(30)

Finally, it is necessary to satisfy the conservation of mass equation in the trapped lubricant
pool. Given that the height of the pool is
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(31)

the integral form of the conservation of mass equation is

(32)

where

(33)

is the volume of the trapped lubricant at the current time, and

is the volume of the trapped pool in the absence of surface deformation. It is assumed in this
study that the initial volume of the trapped pool is V(0) = V0, though it should be understood
that the initial condition may be chosen arbitrarily. The above equations are sufficient to
solve for the unknown functions pa (x, t), ta (x, t), δ(t), p0 (t). The contact edges ai (t) (i = 1
to 4) are determined by satisfying the following conditions along the contact interface,

(34)

Solution Scheme
A computational domain −L ≤ x ≤ L which includes the contact region is discretized into n
uniform mesh intervals of length Δx. A collocation method is employed to solve for the
unknown tractions pa (x, t), ta (x, t) at every mesh point xj that falls within the contact region
(a1 ≤ xj ≤ a2, a3 ≤ xj ≤ a4, j = 1 to m), including the lubricant pool pressure p0 (t). The
surface tractions are represented by the interpolation functions

(35)

with unknown coefficients p0 (t), ξk (t), ηk (t), where the basis functions bk (x) are of the
form
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(36)

Fast Fourier Transforms (FFT) can be used to transform these known basis functions to
produce general expressions for p̃a (ω,t) and t̃a (ω,t) from Eq. (35), which can be substituted
into Eqs. (26)–(27); an inverse FFT can be performed in turn on these resulting equations to
provide general expressions for the surface displacement and fluid flux of the form

(37)

where the basis functions ck (x, t), dk (x, t), ek (x, t), fx (x, t) are known,

(38)

To solve for all the unknowns, Eq.(37) is substituted into Eqs.(28)–(29) to produce 2m
equations (two for each x j within the contact regions):

For a1 ≤ xj ≤ a2, a3 ≤ xj ≤ a4,

(39)

(40)

Equation (35) gets substituted into a discretized Eq.(30) using the trapezoidal rule of
integration, and simplified using Eqs.(34) & (36),

(41)

Using a backward difference scheme for the time derivative, the discretized form of Eq.(32),
using Eqs.(33)&(37), becomes
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(42)

Initial guesses are provided for the contact edges ai (t) and an iterative scheme is used
whereby the 2m + 2 equations in Eqs.(39)–(42) are solved linearly for the unknown
functions ξ (t), ηk (t), p0 (t), δ(t) (k = 1 to m) at each time step. Iterative refinements are
performed until Eq.(34) is satisfied within a given tolerance at the current time step. In
summary, there are two nested loops in this numerical scheme: 1) the iterative loop on ai (t);
and 2) the time incrementation loop. For numerical efficiency, advantage is taken of the
problem symmetry about x = 0.

Friction Coefficient Prediction
Cartilage being a porous-permeable solid matrix saturated with fluid, in our biphasic
boundary friction model proposed earlier [13] the friction force (Wτ) developed during
boundary contact of two biphasic bearing surfaces is assumed to result primarily from solid-
to-solid interactions at the contact interface. In its simplest embodiment analogous to
Amonton’s law, this model assumes that the friction force is only proportional to the portion
of the total normal force transmitted by solid-to-solid contact, given by

(43)

where φs0,φs1 represent the solid area (and volume) fractions of the opposing bearing
surfaces, respectively (alternatively, 1 − φs = fluid area fraction or porosity). In this
expression, Wb is the total normal load transmitted across the contact interface where
boundary biphasic contact occurs and  is the resultant of the interstitial fluid pressure
over the same contact region (all taken positive in compression). For the current problem,
these are given by

(44)

The physical interpretation of Eq.(43) follows from the recognition that the interstitial fluid
pressure at the contact interface, pa (x,t), supports load across the interface wherever fluid
interacts with fluid or with solid, i.e., over the contact area fraction (1 − φs0φs1); thus, the

actual normal load supported by the fluid is , and the remainder from the total
load is the normal load supported by solid-to-solid contact. (Note that these expressions
properly reduces to expected limits as either of φs0,φs1 reduces to zero in the limit of a pure
fluid, or unity in the limit of a pure solid.) Neglecting the friction resulting from viscous
effects in the fluid (i.e., fluid-fluid and fluid-solid interactions), the friction force can be
modeled in its simplest form as
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(45)

where μ eq is the equilibrium friction coefficient (after the interstitial fluid pressure has
subsided within the tissue). However, in the presence of a trapped lubricant pool, boundary
contact occurs only over the ranges a1≤ x ≤ a2 and a3 ≤ x≤ a4, yet the pressurized lubricant
contributes to the total load supported across the interface by an amount

(46)

while frictional effects in the range a2 < x< a3 are also considered negligible. Hence the
effective friction coefficient across the entire contact interface is given by

(47)

This equation differs from our previously proposed model by the addition of the load  to
the denominator, representing the contribution from the trapped lubricant pool. Everything
else being equal, this equation confirms the expectation that pressurization of a trapped
lubricant will help further reduce the friction coefficient, above and beyond the biphasic
effect where interstitial fluid pressurization supports load across the boundary contact
interface.

Model Parameters
Representative material constants for the cartilage layer are taken to be μs = 0.25 MPa, λ = 0
MPa, and k = 2×10−15 m4/N.s; a typical layer thickness of b = 1 mm is assumed [35].
Typical values for the radius of the indenter are taken to be R = 0.1, 0.2, and 1.0 m, and for
the load intensity, W = 0.25, 0.5, and 1.0 kN/m. To investigate the effect of the initial size of
the trapped lubricant pool, the height and width of the ripple are varied in the range α = 1 to
5 μm and λ = 0.1 to 1 mm, respectively. The typical domain for the numerical analysis is
taken to be 2L = 8(a4 − a1), with the number of mesh intervals n = 2048 or 4096 (a power of
2 for the FFT analysis). For the contact creep analysis, 50 logarithmic increments in time are
employed ranging from 10 ms to 10,000 s.

For the friction simulations, the solid area fraction of the impermeable indenter is unity
while that of the cartilage layer is assumed to be 0.20 (i.e., 80% water content, thus φs0φs1 =
0.20); the equilibrium friction coefficient, μ eq, is taken to be 0.30 [8,11].

RESULTS
Total normal surface traction, − pa (x,t) + ta (x, t), is presented in Figure 2 for the early time
(t = 0.01 sec.), and intermediate time when the volume of lubricant has depleted (t = 500
sec.) and the near equilibrium time (t = 10,000 sec.) when the fluid pressure is essentially
zero (input parameters for this case are: W = 0.5 kN/m, R = 0.1 m, α = 2.5 μm, λ = 0.5 mm);
as expected, in the region of the trapped lubricant, the total traction is homogeneous and
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equal in magnitude to the lubricant pressure p0 (t). A plot of the normal fluid flux (Figure 3)
shows that the lubricant always flows out of the pool into the biphasic layer in the range a2
(t) < x< a3 (t), while interstitial fluid flows out of the cartilage layer outside of the contact
region (x< a1 (t), x> a4 (t)); the equilibrium response of the contact creep problem is
achieved when the fluid flux and interstitial fluid pressure reduce to zero. The individual
components pa (x, t) and t a (x, t) of the surface traction are displayed at selected time points
in Figure 4; as long as the lubricant pool is sustained, the elastic traction and fluid pressure
exhibit relatively large gradients as x → a2 and a3 ← x. A close-up of the surface normal
displacement profile near the ripple is shown for select time points in Figure 5; over time,
the width of the lubricant pool decreases as fluid flows into the cartilage. The volume V(t) of
the lubricant pool decreases with time until the pool collapses, as demonstrated in Figure 6
for various radii of curvature R, Figure 7 for various load intensities W, and Figure 8 for
various choices of the ripple dimensions α and λ. Given the same ripple dimensions and
applied load, increasing the indenter radius of curvature increased the sustainability of the
lubricant pool from t = 2.8 s for R = 0.1 m to t = 35.6 s for R = 1 m; conversely, for given
ripple dimensions and indenter radius of curvature, increasing the load produced shorter
times to lubricant pool collapse, from t = 4.9 s at W = 0.25 kN/m to t = 1.6 s for W = 1.0 kN/
m; as might be expected, larger ripples required longer times to lubricant depletion, from t =
0.4 s for the smallest ripple (α = 1 μm, λ = 0.1 mm) to t = 115 s for the largest (α = 5 μm, λ =
1 mm). The time response of the normal approach δ(t) for various ripple dimensions is
shown in Figure 9; no noticeable differences can be observed in this variable for various
ripple dimensions.

The total fluid load support for various ripple configurations is shown in Figure 10.
Increasing the dimensions of the ripple region increased the fluid load support. Combining
this result with predictions of the solid-to-solid load  over the biphasic region, the
effective friction coefficient μeff is calculated from Eq.(47) and shown in Figure 11. Greater
fluid load support and reduced solid-to-solid load as found with the larger ripple (α = 5 μm,
λ = 1 mm) decreased the minimum effective friction coefficient for longer durations than
with the smaller ripples.

DISCUSSION
The objective of this study was to investigate what would happen to a pool of lubricant
trapped at the contact interface of a rippled indenter with a biphasic cartilage layer. This
investigation falls within a broader effort to understand the mechanism of lubrication in
diarthrodial joints. It had long been observed that the frictional response of articular
cartilage is time-dependent, with the friction coefficient achieving very small values (e.g.,
~0.001–0.08) in the early time response under the action of a constant load, but eventually
reaching a considerably larger value (e.g., ~0.15–0.42) over several thousand seconds of
loading [7,8,9,11,19 36,37]. McCutchen [7,8] postulated that this time-dependent response
should be attributed to the transient pressurization of the interstitial water of cartilage, and
our recent study [13] formulated this concept within the context of the biphasic theory for
cartilage [10], as embodied in Eq.(47) with . Contrary to the weeping hypothesis
however, the current analysis demonstrates that lubricant fluid trapped between a rigid
impermeable surface and a porous-permeable cartilage layer flows monotonically into the
cartilage during contact creep; no fluid flow from the cartilage into the lubricant pool is
observed. Combined with the squeeze-film lubrication analyses of earlier studies [28–32],
which investigated the pattern of fluid flow prior to contact between the surfaces, this result
is in better agreement with the premise of the boosted lubrication theory of Walker et al.
[16]. Nevertheless, the lubricant flow direction does not affect the fundamental role of
interstitial fluid pressurization in reducing friction at the contact interface.

Soltz et al. Page 12

J Biomech Eng. Author manuscript; available in PMC 2010 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For the analyzed ripple size most representative of the smallest scale of cartilage surface
roughness (α = 1 μm, λ = 0.1 mm), the current study demonstrates that the lubricant pool
gets depleted in 0.4 s only. This result suggests that the smallest asperities of the articular
surface do not play a significant beneficial role in trapping lubricant and in enhancing
lubrication. However, according to some earlier literature studies, cartilage exhibits different
levels of topographical variations between the primary anatomic contours and the smallest
surface asperities [15], some of which may correspond more closely to the upper range of
ripple parameters employed in this study (α = 5 μm, λ = 1 mm), in which case the time to
lubricant depletion is in excess of two minutes. These higher durations suggest that under
physiological loading conditions when intermittent loads are applied over periods of a few
seconds, the lubricant pools may remain viable. More recent studies of the measurement of
articular surface structure using stylus and laser profilometry, confocal microscopy and
atomic force microscopy [19,20,21] have supported earlier reports of articular surface
roughness. In particular, using laser profilometry, Forster and Fisher [19] measured a
cartilage surface roughness of Ra = 0.8 μm over a 800×800 μm region in one specimen;
using conventional stylus profilometry over a length of 800 μm, the surface roughness (Ra)
over eight specimens averaged 1.6±0.9 μm, while the mean of maximum peak-to-valley
heights (Rtm) was 5.6±2.6 μm. While the AFM study of Jurvelin et al. [18], performed over
regions of 80×80 μm or less, discounted the existence of surface structures detected in the
earlier SEM literature, our own recent AFM study of immature bovine cartilage has
confirmed the existence of surface asperities ranging from 2 to 6 μm, with an average
surface roughness of Ra = 0.6 μm over a 100×100 μm region [21]. Therefore, these recent
studies support the earlier literature on the existence of articular surface structures over
larger scales, which may help trap lubricant pools.

For the smallest ripple dimensions, it is interesting that the time for lubricant depletion is of
the same order of magnitude as the squeeze-film time in the lubrication analysis of Hlavacek
[31] where the synovial fluid turns into a gel upon sufficient ultrafiltration of its low
molecular weight solvent, both analyses dealing with the flow of lubricant into cartilage.
Hlavacek [30–32,38] has found that the fluid flux normal to the articular surface varies as wy
~ t−1/2, and a curvefit of the fluid flux response at the center of the trapped lubricant pool in
the current study (Figure 3) finds a dependence of wy ~ t−0.47, confirming Hlavacek’s earlier
finding. In contrast, the analyses of Hou et al. [28] and Jin et al. [29] predict a slower rate of
fluid flow across the cartilage surface, which Hlavacek attributes to their omission of the
jump in fluid pressure upon instantaneous loading [38].

Having established that the lubricant pool is transient, it becomes of interest to determine to
what extent it may contribute to decreasing the effective friction coefficient, even if for a
short period of time. In recent friction experiments of bovine articular cartilage cylindrical
plugs against glass, subjected to creep loading [37], it has been observed that the minimum
value μmin of the effective friction coefficient μeff averages μmin = 0.02 (with a range of
0.001–0.08) while the equilibrium friction coefficient averages μeq = 0.21 (with a range of
0.15–0.42). According to Eq.(47), in the absence of a trapped lubricant pool ( ), it
follows that for these mean values,

(48)

In this expression it is recognized that the minimum value of the effective friction
coefficient is achieved when the fluid load support is at its maximum (immediately upon
loading, for a creep analysis, as evident from Figure 10, or from experimental studies [5,6]).
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It becomes apparent that for glass against cartilage (φs0φs1 ~ 0.2), unlike the case of
cartilage-against-cartilage (φs0φs1 ~ 0.04), it is not possible to satisfy Eq.(48) for any value
of the fluid load support since . This finding thus motivates the analysis of the
effect of a trapped lubricant pool based on the following argument. When two bearing
surfaces approach each other upon loading, it is possible to separate the response into three
phases: (1) A squeeze film response where there is no contact occurring between the bearing
surfaces [28–32]; this case is idealized in the current friction model by the limiting
conditions φs0φs1→ 0, , and μmin, μeff → 0. (2) A mixed lubrication regime
where contact occurs at micro-asperities, trapping lubricant in pools; this case is modeled by
Eq.(47) with . (3) A boundary lubrication regime where trapped lubricant pools have
been depleted, but where a transient response in the friction coefficient is still observed,
modeled by Eq.(47) with . It is surmised here that the experimental measurements of
μmin typically occur some time during the mixed lubrication phase of this response. As can
be observed from the results in Figure 11, even the idealized case of a single ripple reduces
the theoretically predicted value of the minimum friction coefficient and works toward
eliminating the apparent inconsistency between theory and experiments resulting from Eq.
(48) for the case of cartilage-against-glass. If multiple ripples were to be modeled, as would
be straightforward by following the above methodology, it is expected that even greater
agreement between theory and experiments would occur. Consequently, it is likely that
trapped lubricant pools play an essential role in helping to reduce the frictional coefficient
and wear under physiological loading conditions, particularly in the early time response.

The problem addressed in this study offers several levels of modeling and numerical
complexity, which have necessitated various simplifying assumptions. Based on order of
magnitude analyses, the contribution of lubricant viscosity was neglected in this problem.
Cartilage was modeled with the linear biphasic theory using an isotropic constitutive relation
for the solid matrix under small strains, with homogeneous material properties; experimental
studies suggest that cartilage behaves nonlinearly and anisotropically, and that its properties
are inhomogeneous through the depth. Thus, future studies may need to model these
properties. Because of the limitation of small strain theory, the load magnitudes applied in
the current analysis were sub-physiological; however increasing loads produced more rapid
lubricant depletion (Figure 7) and it is likely that a finite deformation analysis that could
model more realistic load magnitudes would confirm this trend. It was also assumed that the
dominant mechanism of friction in cartilage results from solid rubbing against solid, with
the viscosity of the lubricant contributing a negligible amount of frictional force [11,13,39].
Finally, boundary lubrication mechanisms were not directly modeled or explored in the
current analysis [40,41], though they are subsumed in the equilibrium coefficient μeq in Eq.
(47) [12,13].

In summary, this study offers a solution for the creep contact response between a rigid
impermeable indenter and a biphasic layer, with a trapped lubricant pool, which can help
explain the mechanism of lubrication of articular cartilage. In our earlier formulation of a
boundary friction model at the interface of solid-fluid mixtures, lubricant trapping was not
taken into account [13]. The current study represents a generalization of that model which
has interesting ramifications. First, it allows modeling of lubricant trapping due to surface
features, such as roughness or waviness, that produce an enclosure upon contact with
another surface, and which can potentially explain the very low friction coefficient of
cartilage observed upon loading. Second, it provides a formulation for the friction
coefficient that can account for the transition from a mixed lubrication regime to a boundary
lubrication regime, while still accommodating the porous nature of the bearing surfaces. We
conclude that the results presented in this study support the hypothesis that trapped lubricant
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decreases the effective area of contact between contacting surfaces while simultaneously
enhancing the fluid load support, thereby decreasing the initial friction coefficient following
load application, independently of squeeze-film lubrication effects.
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Figure 1.
(a) Geometry of the contact configuration for an impermeable indenter on a biphasic
surface. (b) The region at the center of contact contains the trapped lubricant
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Figure 2.
Total normal contact traction (a) for early time response (t = 0.01 sec) (b) an intermediate
time when the pool of lubricant has collapsed (t = 500 sec), and (c) near equilibrium
response (t = 10000 sec). For this case W = 0.5kN/m, R = 0.1 m, α = 2.5μm and λ = 500μm.
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Figure 3.
Normal fluid flux across the surface of the tissue. In the fluid pocket the flow is into the
tissue. At the periphery of the contact area the flow is into the joint spacing for the above
geometry. (Same parameters as in Figure 2.)
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Figure 4.
Interfacial fluid pressure, pa, and normal effective traction, ta, at several time points for the
above geometry. (Same parameters as in Figure 2.)
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Figure 5.
Surface displacement for selected early times inside the ripple region for the above
geometry.
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Figure 6.
Trapped lubricant volume changes over time various radii. W = 0.5kN/m, α = 2.5μm and λ =
500μm.
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Figure 7.
Trapped lubricant volume changes over time for various applied loads. R = 0.1 m, α = 2.5μm
and λ = 500μm.
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Figure 8.
Trapped lubricant volume changes over time for various parameters α and λ, with W =
0.5kN/m and R = 0.1m.
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Figure 9.
Variation of the normal approach between surfaces with time. W = 0.5kN/m and R = 0.1 m.
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Figure 10.
Time-dependent fluid support, W p/W (×100%), for various ripple dimensions and for no
ripple. W = 0.5kN/m, R = 0.1m.

Soltz et al. Page 26

J Biomech Eng. Author manuscript; available in PMC 2010 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Simulated effective friction coefficient, μeff, for various ripple dimensions and for no ripple.
W = 0.5kN/m, R = 0.1m.
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