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 Complex quantitative traits such as obesity are infl u-
enced by both genetic and environmental factors. More-
over, evaluation of the genetic contribution identifi es gene 
products and their interactions in biological pathways, aid-
ing in overall understanding of these complex traits. We 
have previously identifi ed signifi cant associations between 
genomic variants and complex traits in the Oji-Cree, an 
isolated Canadian First Nations population ( 1, 2 ). The Oji-
Cree are an ideal population to study association of ge-
netic factors with complex traits because their background 
genetic and environmental variation is relatively low. 

 Apolipoprotein (apo) C-I is a protein constituent of chy-
lomicrons, VLDL, and HDL ( 3 ). Apo C-I is a member of 
the human apo C family, which also includes apo C-II and 
apo C-III. In contrast to other extensively investigated apo-
lipoproteins such as apo E, B, and AI, and even apo C-II 
and C-III, the physiological role of apo C-I is less well estab-
lished. In vitro, apo C-I has been suggested to be positively 
involved in HDL metabolism through activation of LCAT 
( 4 ), inhibition of HL ( 5, 6 ), and inhibition of cholesteryl 
ester (CE) transfer protein (CETP) activity ( 7 ). Using in 
vivo models of apo C-I-defi cient and apo C-I-over-expressing 
mice, apo C-I has also been suggested to have a positive 
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 Clinical characteristics and biochemical analysis 
 Body weight, height, waist circumference, and blood pressure 

were measured by standardized procedures ( 26 ). For waist cir-
cumference measurement, the natural waist was considered as 
the minimal circumference between the umbilicus and the xi-
phoid process. Hypertensive individuals were defi ned as those 
subjects having either blood pressure exceeding 130 mmHg (sys-
tolic) and/or 80 mmHg (diastolic), or those taking antihyper-
tensive medications. Measurements of fasting blood analyses, 
including glucose, cholesterol, TGs, and leptin were performed 
as described elsewhere ( 26 ). 

 Genetic analysis of APOC1 T45S 
 Leukocyte DNA was prepared as described elsewhere ( 30, 31 ) 

and was used for genotype analysis. Genotypes for  APOC1  codon 
45 (T45S, exon 3) were determined using PCR. Exon 3 was am-
plifi ed following established procedures ( 31 ) using primers 5 ′  
GGG AGG TAG CTG CAC ACA GT and 3 ′  GGT GTG GGA AAT 
TTC AGA GG, followed by amplicon digestion using endonu-
clease  BsmAI  (New England Biolabs Inc., Ipswich, MA), as per 
manufacturer’s recommendations. The digested fragments were 
electrophoresed in a 2% agarose gel. Using this restriction isotyp-
ing, the smaller (65 bp and 89 bp) and larger (154 bp) fragments 
represented the T45 and S45 variants, respectively. 

 HTGW case defi nition 
 According to Lemieux et al. ( 32 ), subjects have a HTGW if 

they present with both of the following:  1 ) abdominal obesity, 
defi ned by waist circumference  �  90 cm, and  2 ) hypertriglycer-
idemia, defi ned by plasma TG concentration  �  2 mmol/L. On 
the other hand, National Cholesterol Education Program Adult 
Treatment Panel (NCEP ATP) III guidelines for HTGW is 
gender-specifi c such that the waist circumference cut-off for 
males is >102 cm and >88 cm for females ( 33 ). 

 MetS case defi nition 
 According to the NCEP ATP III criteria ( 33 ), metabolic syn-

drome (MetS) was identifi ed if a subject had  � 3 of:  1 ) increased 
waist circumference [>102 cm (>40 inches) for men, >88 cm (>35 
inches) for women];  2 ) elevated plasma triglycerides [ � 1.69 
mmol/L ( � 150 mg/dl)];  3 ) low plasma HDL cholesterol [<1.04 
mmol/L (<40 mg/dl) for men, <1.29 mmol/L (<50 mg/dl) for 
women];  4 ) increased blood pressure ( � 130 mmHg systolic and/
or  � 85 mmHg diastolic) or on antihypertensive drug treatment; 
and  5 ) impaired fasting glucose [ � 6.1 mmol/L ( � 110 mg/dl)]. 

 Quantitation of serum apo C-I concentration 
 Apo C-I levels were quantifi ed from frozen Oji-Cree serum 

samples by sandwich ELISA as described elsewhere ( 34 ). Briefl y, 
polyclonal rabbit anti-human apo C-I antibody (Academy Bio-
medical Co., Houston, TX) was coated overnight at 7°C onto 
96-well polystyrene plates (Nunc-Immuno MaxiSorp, NUNC, 
Rochester, NY) at a dilution of 1:200, followed by one wash with 
300 µL PBS per well. Each well was then blocked for 1 h at 26°C 
with 300 µL PBS containing 0.05% Tween 20 (PBST) and 0.5% 
BSA (Sigma, St. Louis, MO) and followed by one wash with 300 
µL PBS. Subsequently, serum samples (dilution, 1:8000) and apo 
C-I standard (dilution, 1-60ng/ml; Biomedical Co., Houston, 
TX) diluted with PBST and 0.1% BSA and, respectively, were 
added to each well and incubated for 1 h at 450 rpm at 26°C. 
Wells were then washed three times with 300 µL PBST and 0.5% 
BSA, followed by the addition of HRP-conjugated polyclonal goat 
anti-human apo C-I antibody (dilution, 1:8000; Academy Bio-
medical) diluted in PBST and 0.1% BSA. After two washes in 
PBST and one wash in PBS, color was developed by addition of 

relationship with LDL. Apo C-I has been observed to affect 
metabolism of apo B-containing lipoproteins by attenuat-
ing VLDL clearance by inhibiting LPL, directly ( 8 ) or indi-
rectly ( 9 ), and by inhibiting liver-specifi c LDL receptor 
(LDLR) ( 10 ) and LDLR-related protein (LRP) ( 11 ), as 
well as the peripheral tissue-specifi c VLDL receptor 
(VLDLR) ( 12 ). Overall, apo C-I has been shown to in-
crease the production of VLDL ( 13 ), triglyceride (TG) 
and cholesterol in mice ( 3, 8 ). 

 Human genetic studies have had limited success in bet-
ter elucidating the physiological role of apo C-I. This is 
due in part to the paucity of naturally-occurring human 
variants in apo C-I compared with numerous common and 
rare variants affecting the protein sequences of apo E, B, 
A-I, A-II, A-IV, A-V, C-II, and C-III ( 14 ). The human vari-
ants of these other apolipoproteins have often served to 
identify and specify key pathways and mechanisms for 
more intensive study ( 15 ). Common noncoding DNA vari-
ants of  APOC1  located in the promoter region were among 
the fi rst to have been reported for genes affecting lipopro-
tein metabolism ( 16, 17 ) with somewhat variable associa-
tions with plasma lipoproteins ( 18–20 ) and neurological 
phenotypes ( 21–24 ). One naturally occurring structural 
variant of apo C-I, namely T45S, was correlated with the 
clinical trait of increased body mass index (BMI) in Native 
Americans and Mexican descendants ( 25 ). Thus far, 
this variant has not been associated with biochemical traits 
nor has this association been replicated in other ethnic 
populations. 

 In the process of systematically screening candidate 
genes in lipoprotein metabolism for new DNA sequence 
variants in Canadian subpopulations, we identifi ed the 
nonsynonymous variant designated  APOC1  T45S in the 
Oji-Cree. We took advantage of this naturally occurring 
polymorphism to genotype Oji-Cree who were nondiabetic 
in order to detect associations with clinical and biochemi-
cal traits. We found that individuals with the  APOC1  T45S 
variant, when compared with other nondiabetic subjects, 
had lower indices for waist circumference, hypertriglycer-
idemic waist (HTGW) prevalence, percent body fat, as well 
as lower serum concentrations of leptin and apo C-I, the 
latter of which was measured using a newly developed 
quantitative assay. 

 METHODS 

 Study subjects 
 All subjects in the current study had formerly been partici-

pants in the original 1993–1995 Sandy Lake Health and Diabetes 
Project ( 26 ). The Oji-Cree community of Sandy Lake, Ontario, is 
located  � 2000 km northwest of Toronto, in the subarctic boreal 
forest of central Canada. Seven hundred twenty-eight members 
of this community (72% of the total population)  � 10 years of age 
participated in the original survey. Detailed information on de-
mographics, dietary habits, and physical fi tness of the study par-
ticipants has been previously reported ( 27–29 ). The studies were 
approved by the Sandy Lake First Nation Band Council and the 
University of Toronto Ethics Review Committee and signed in-
formed consent was obtained from all participants. 
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the S45/S45 genotype (  Table 2  ).  Because there were no 
S45 homozygotes, T45 was treated as a dominant allele for 
the purpose of subsequent analyses. Overall, the  APOC1  
T45S genotype frequencies in the Oji-Cree do not deviate 
signifi cantly from predictions of the Hardy-Weinberg 
equation. In addition, the allele frequencies for T45 and 
S45 carriers are indicated in  Table 2 . 

 The clinical and biochemical attributes and signifi cance 
of the nondiabetic Oji-Cree according to their  APOC1  ge-
notypes are shown in   Table 3  .  Signifi cance for each bio-
chemical or clinical trait was derived after adjustment for 
age and sex. There were no signifi cant differences ( P  > 
0.05) in any of the plasma lipid concentrations. In addi-
tion, there were no signifi cant between-genotype differ-
ences in the prevalence of MetS or in either mean (BMI) 
or waist-to-hip-ratio. The lower values in waist circumfer-
ence and NCEP-defi ned HTGW prevalence in S45 carri-
ers, compared with T45 homozygotes, was close to being 
statistically signifi cant with  P  = 0.070 ( P  = 0.066, using loga-
rithmic adjustment) and  P  = 0.077, respectively. There 
were signifi cant differences ( P  < 0.05) in percent body 
fat, serum leptin levels, and HTGW prevalence, with 
lower levels of these traits in the  APOC1  S45 carriers. In 
addition, we found that the  APOC1  S45 allele was associ-
ated with a signifi cantly lower serum apo C-I concentra-
tion ( P  < 0.0001). 

 DISCUSSION 

 The principal fi ndings of this study in nondiabetic Oji-
Cree subjects were signifi cant associations between the 
 APOC1  T45S polymorphism and variations in obesity indi-
ces, serum adipose-secreted hormone levels, and apo C-I 
levels. Specifi cally, in subjects carrying the  APOC1  S45 al-
lele we found:  1 ) lower waist circumference, including 
lower frequency of HTGW,  2 ) lower percent body fat,  3 ) 
lower serum leptin concentrations, and  4 ) lower serum 
apo C-I concentrations, using an ELISA-based quantitative 
method. Thus, the nonsynonymous T45S variant in  APOC1  
among the Canadian First Nations is associated with varia-
tions in adiposity, obesity, and lower serum apo C-I levels. 

 Human apo C-I, C-II, and C-III, are protein constituents 
of chylomicrons, VLDL, and HDL. Although much is 
known about the roles of the apo C-II and C-III in lipopro-
tein metabolism, less is known about the biological 
function(s) of apo C-I. The gene coding for human apo 
C-I,  APOC1 , is part of a 48-kb gene cluster on chromosome 
19. The gene cluster also includes  APOC2 ,  APOE , and the 
pseudo- APOC1’  gene ( 3, 35 ). The 4.7 kb  APOC1  gene is 

100 µL of freshly prepared substrate solution containing 10 mg 
o-phenylenediamine dihydrochloride (Pierce, Rockford, IL), 20 
ml sodium phosphate/citrate buffer, and 20 µL of 30% H 2 O 2 . 
The reaction was stopped after 20 min (450 rpm at 26°C) with 
100 µL of 2.0 M H 2 SO 4 . Color development was measured at 490 
nm using a microplate reader. 

 Statistical analysis 
 For this analysis, we studied a subset of Oji-Cree who were no 

closer than third-degree relatives to one another in order to con-
trol for confounding artifacts based on close kinship. SAS version 
9.1 (SAS Institute, Cary, NC) was used for all statistical compari-
sons. Data are presented as mean ± SD or as percentages for cat-
egorical variables. Logarithmic transformations (natural log) 
were used when data were not normally distributed. Transformed 
variables were used for parametric statistical analyses, but 
untransformed values were presented in tables.  P -values were 
adjusted for age and sex when comparing differences in demo-
graphic and laboratory characteristics between those with and 
those without the S45 allele, using either the general linear 
model or the logistic model. Statistical signifi cance was taken at a 
nominal  P  < 0.05 for all comparisons. 

 RESULTS 

 The baseline clinical and biochemical attributes of the 
410 unrelated nondiabetic Oji-Cree subjects are shown in 
  Table 1  .  This subset of the Oji-Cree had nearly even distri-
bution of males and females. In addition to the traits indi-
cated, their MetS status and their HTGW values were also 
recorded in  Table 1 . 

 In this sample of Oji-Cree, 348 had the  APOC1  T45/T45 
genotype, 62 had the T45/S45 genotype, and none had 

 TABLE 1. Baseline clinical and biochemical traits of male and 
female nondiabetic Oji-Cree 

Measurement Males Females

n 192 217
Age, y 26.9 ± 13.2  a  23.7 ± 11.5
Triglycerides, mmol/L 1.32 ± 0.73 1.17 ± 0.46
Total cholesterol, mmol/L 4.43 ± 1.01 4.45 ± 0.71
LDL cholesterol, mmol/L 2.58 ± 0.87 2.34 ± 0.60
HDL cholesterol, mmol/L 1.25 ± 0.29 1.28 ± 0.26
apo A-I, g/L 1.46 ± 0.22 1.48 ± 0.21
apo B, g/L 1.05 ± 0.32 0.94 ± 0.21
BMI, kg/m 2 24.7 ± 4.93  a  25.8 ± 5.80
Percent body fat, % 24.4 ± 9.00  b  39.3 ± 11.8
WHR—iliac crest 0.95 ± 0.07  a  0.94 ± 0.05
WHR—natural waist 0.91 ± 0.07  a  0.86 ± 0.05
Waist circumference, cm 89.9 ± 14.0  a  86.5 ± 13.2
Leptin, ng/ml 6.70 ± 6.77  a  18.8 ± 11.6
Apo C-I, µg/ml 220.7 ± 62.8   c   203.9 ± 38.8  d  
MetS, % 1.86 ± 0.35 1.87 ± 0.34
HTGW, % 1.84 ± 0.36 1.96 ± 0.19
HTGW–NCEP waist, % 1.91 ± 0.28 1.96 ± 0.19

BMI, body mass index; WHR, waist to hip ratio; MetS, diagnosis 
of metabolic syndrome using the National Cholesterol Education 
Program Adult Treatment Panel III criteria ( 34 ); HTGW, diagnosis 
of ‘hypertriglyceridemic waist”; HTGW-NCEP waist, diagnosis of 
hypertriglyceridemic waist using cut values from the National 
Cholesterol Education Program Adult Treatment Panel III criteria 
( 34 ).

  a   n = 193.
  b   n = 191.
  c   n = 77.
  d   n = 102.

 TABLE 2. Genotype and allele frequencies in Oji Cree 

Genotype Frequencies  a  Allele Frequencies

T45/T45 T45/S45 S45/S45 T45 S45

Male 166 (0.86) 27 (0.14) 0 (0) 0.93 0.07
Female 182 (0.84) 35 (0.16) 0 (0) 0.92 0.08
Total 348 (0.85) 62 (0.15) 0 (0) 0.92 0.08

  a   percent in their respective populations given in parentheses.
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T45S polymorphism in independent samples were nec-
essary ( 25 ). 

 Our results in a Canadian First Nation population indi-
cate that the apo C-I T45S variant has the opposite effect, 
so that S45 carriers had lower percent body fat and BMI. 
This ‘fl ip-fl op’ association has been previously reported 
across different ethnic groups because differences in the 
genetic background and/or environment cause heteroge-
neous effects due to the same variant ( 40 ). Impact of mul-
tiple loci may also affect association, causing the fl ip-fl op 
phenomenon ( 40 ). In addition, our study was carried out 
in 424 individuals, which was a larger study than that re-
ported in the initial study of Native American subjects. 

 In vitro studies using, for instance, ligand blotting as-
says, artifi cial bilayer vesicles, and cultured fi broblasts have 
shown that apo C-I has an inhibitory and/or stimulatory 
effect on many receptors and enzymes involved in lipopro-
tein metabolism, suggesting a complex role for apo C-I in 
human disease ( 3, 10, 11, 41 ). One such example is the 
potential HDL-raising effect that apo C-I has by regulating 
the activity of HL, CETP, as well as LCAT, a protein known 
to esterify cholesterol in HDL such that it increases HDL 
levels and particle size ( 4 ). 

 New insights into the metabolic properties of apo Cs 
have been provided by the technologies of gene targeting 
through human transgenic mice and knockout mice mod-
els. Human  APOC1 –transgenic animals (on a wild-type or 
 APOE -defi cient background) have been used to elucidate 
several roles in lipoprotein metabolism, such as inhibition 
of LPL ( 8, 13) , inhibition of apo E-mediated lipid clear-
ance via LRP ( 12 ), and blocking the binding of VLDL to 
the VLDLR ( 12 ). These roles have been associated with hy-
perlipidemia and increased atherosclerotic lesion develop-
ment ( 9 ). In addition to hyperlipidemia,  APOC1 -transgenic 
animals exhibit several abnormalities, consisting of ele-
vated plasma free fatty acid levels, infl ammatory skin disor-
ders, atrophic sebaceous glands, and subcutaneous adipose 
tissue ( 42 ), which suggests an additional role for apo C-I in 
epidermal lipid synthesis as well as adipose tissue forma-
tion. Because transgenic mice over-expressing  Apoc1  de-
velop hyperlipidemia ( 43 ), a hypolipidemic phenotype was 
expected in  Apoc1  null mice. However,  Apoc1  null mice on 
a high-fat and high-cholesterol diet developed hypercho-
lesterolemia due to impaired in vivo hepatic uptake of 
VLDL ( 44 ). In addition, a recent study demonstrated that 
 Apoc1  null mice had decreased serum HDL concentration 
( 43 ). In contrast, human  APOC1  transgenic mice have in-
creased HDL concentrations due to inhibition of scaven-
ger receptor class B type 1, a protein receptor that facilitates 
the fl ux of HDL through the plasma membrane ( 45 ). 

 Overall, in vitro, in vivo, and clinical evidence demon-
strates that apo C-I inhibits the uptake of TG-rich lipopro-
teins via hepatic receptors and as a consequence, the 
presence of apo C-I on the lipoprotein particle may prolong 
their residence time in the circulation and subsequently 
 facilitate their conversion to LDL ( 3 ). Apo C-I also func-
tions to activate LCAT, which exhibits two activities in 
 normal plasma:  � -LCAT activity leads to mature-HDL pro-
duction whereas  � -LCAT activity has a positive effect on 

primarily expressed in the liver, with lower amounts ex-
pressed in the lung, skin, testes, and spleen ( 35 ). The 
pseudo- APOC1’  gene 7.5 kb downstream from  APOC1  has 
no detectable mRNA products in any tissue ( 35 ).  APOC1  
gene expression is regulated by an array of elements found 
throughout the whole  APOE/C1/C2  gene cluster, such as 
the hepatic control region ( 36 ). The 6.6 kDa apo C-I pro-
tein is a polypeptide of 57 amino acid residues with resi-
dues 7 to 24 and 35 to 53 of apo C-I having importance in 
binding lipoproteins ( 37, 38 ). 

 Little is known about naturally occurring mutations 
in the  APOC1  gene contributing to lipid-related abnormal-
ities in humans. Dumon et al. ( 39 ) reported a patient with 
chylomicronemia who had a naturally occurring mutation 
in  APOC1  resulting in a defi ciency of apo C-I. However, 
this patient concurrently suffered from apo C-II defi ciency 
due to an  APOC2  defect, which was more likely to have 
been the cause of the chylomicronemia ( 39 ). Mass spec-
trometry studies elucidated the fi rst structural nonsynony-
mous variant of apo C-I T45S that was observed to have 
increased N-terminal truncation and increased in vitro 
 distribution to the VLDL fraction in Native Americans and 
Mexicans ( 25 ). From mass spectrometry identifi cation of 
the apo C-I T45S polymorphism in 228 Native Americans 
and in fi ve sibling pairs of Mexican ancestry, S45 was 
 associated with elevated BMI ( 25 ). The authors com-
mented that more comprehensive studies of the  APOC1  

 TABLE 3. Clinical and biochemical traits of nondiabetic Oji-Cree 
according to  APOC1  T45S genotypes 

Trait
TT

n = 347
TS

n = 62  P 

Triglycerides, mmol/L
log triglycerides

1.25 ± 0.61 1.15 ± 0.57 NS (0.15)
NS (0.12)

Total cholesterol, mmol/L
log total cholesterol

4.28 ± 0.88 4.27 ± 0.84 NS (0.62)
NS (0.66)

LDL cholesterol, mmol/L
log LDL

2.45 ± 0.75 2.46 ± 0.72 NS (0.82)
NS (0.89)

HDL cholesterol, mmol/L
log HDL

1.26 ± 0.27 1.29 ± 0.29 NS (0.56)
NS (0.61)

BMI, kg/m 2 
log BMI

25.4 ± 5.5  a  24.7 ± 5.1 NS (0.15)
NS (0.17)

Percent body fat, %
log percent body fat

32.7 ± 12.9 30.0 ± 13.0  c   0.0081 
 0.0131 

WHR - iliac crest 0.94 ± 0.06  a  0.95 ± 0.06 NS (0.89)
WHR – natural waist
log WHR (natural)

0.88 ± 0.07  a  0.89 ± 0.07 NS (0.68)
NS (0.67)

Waist circumference, cm
log waist

88.5 ± 13.6  a  86.2 ± 13.8  NS (0.070) 
 NS (0.066) 

Leptin, ng/ml
log leptin

13.6 ± 11.9  a  10.7 ± 7.8  0.0065 
 0.029 

Apo C-I, µg/ml 221.7 ± 49.6  b  190.2 ± 47.7  d   <0.0001 
MetS, % 14.1 9.09 NS (0.24)
HTGW, % 10.4 3.23  0.047 
HTGW – NCEP waist, % 6.92 1.61  NS (0.077) 

BMI, body mass index; WHR, waist to hip ratio; HTGW, diagnosis 
of hypertriglyceridemic waist; HTGW-NCEP waist, diagnosis of hyper-
triglyceridemic waist using cut values from the National Cholesterol 
Education Program Adult Treatment Panel III criteria ( 33 ); NS, not 
signifi cant with nominal  P  > 0.05. Data are means ± SD.  P -values are 
adjusted for age and sex. The P-values in bold indicates the difference 
observed for the trait is signifi cant or close to signifi cant.

  a   n = 348.
  b   n = 119.
  c   n = 59.
  d   n = 60.
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 Therefore, our study suggests that the S45 variant in the 
Canadian First Nations results in lower concentrations of 
apo C-I and leptin, which may lead to lower percent body 
fat and waist circumference. However, a previous study has 
suggested the S45 variant to have greater N-terminal trun-
cation and preferential distribution to the VLDL fraction 
compared with the  APOC1  T45 variant ( 47 ); increased 
concentration of apo C-I was recently observed to be asso-
ciated with decreased visceral fat in men with MetS ( 48 ). 

 Based on the studies thus far, apo C-I seems to promote 
HDL as well as LDL production due to its effects on CETP 
and on remnant lipoprotein clearance and LCAT activity. 
A prospective study of a genotype-determined concentra-
tion will be required to prove this, as circulating levels will 
be affected by increasing or decreasing lipoprotein con-
centrations. Further biochemical studies are required to 
uncover the effects of the T45S polymorphism on the 
structure and distribution of apo C-I in Canadian First Na-
tions and other ethnicities using mass spectrometry and 
plasma distribution of apolipoproteins in order to under-
stand the clinical consequences of this variant. In addition, 
long-term prospective studies might help to clarify the 
long-term effect of this structural variant on the propen-
sity for obesity and diabetes. Overall, such studies using 
geographically isolated populations help further elucidate 
the physiological role of this relatively poorly defi ned pro-
tein in complex metabolic disorders. 

 In summary, although the precise function of apo C-I is 
unknown, the human genetic data presented herein sug-
gest a possible role for the  APOC1  S45 variant in obesity 
and adipocyte regulation as demonstrated by the decrease 
in body fat, waist circumference, decreased prevalence of 
HTGW, as well as a decreased serum leptin levels. More-
over, this is the fi rst demonstration of a direct relationship 
of  APOC1  genetic variation with the serum concentration 
of apo C-I.  
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