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Theoretical investigations of phase separation in polyelectrolyte solutions have so far assumed that
the effective charge of the polyelectrolyte chains is fixed. The ability of the polyelectrolyte chains
to self-regulate their effective charge due to the self-consistent coupling between ionization
equilibrium and polymer conformations, depending on the dielectric constant, temperature, and
polymer concentration, affects the critical phenomena and phase transitions drastically. By
considering salt-free polyelectrolyte solutions, we show that the daughter phases have different
polymer charges from that of the mother phase. The critical point is also altered significantly by the
charge self-regularization of the polymer chains. This work extends the progress made so far in the
theory of phase separation of strong polyelectrolyte solutions to a higher level of understanding by
considering chains which can self-regulate their charge. © 2010 American Institute of Physics.
�doi:10.1063/1.3328821�

I. INTRODUCTION

Theoretical formulation of phase behavior of polyelec-
trolyte solutions has been a difficult challenge, primarily due
to the long-ranged nature of chain connectivity and electro-
static interaction, and the nonlinear coupling between the
polymer charge and counterions. All of the theories1–14 of
coexistence of polyelectrolyte phases, formulated so far, with
varying levels of approximations, have the common key as-
sumption that each polyelectrolyte chain maintains the same
constant effective charge for all coexisting phases at all al-
lowed ranges of temperature, polyelectrolyte concentration,
and salt concentration. This assumption cannot be correct
in view of the large body of literature, based on theoretical
arguments,15–30 computer simulations,31–38 and
experiments,39–56 on the effective charge of polyelectrolyte
chains even in homogeneous systems �with one thermody-
namic phase�.

Basically, the polyelectrolyte conformations are altered
by counterion condensation, which in turn is a balance be-
tween the electrostatic attraction between the counterion and
ionized polymer segments and the translational entropy of
counterions in the volume surrounding the polymer. The ex-
tent of counterion condensation is affected by many factors
including the nature of the counterion �size and valency�,
concentration of added salt, polymer concentration, solvent
dielectric constant, and temperature. This effect has been ad-
dressed abundantly in the literature by considering isolated
chains,16 polyelectrolyte brushes,19 and gels.20 The response
of the polyelectrolyte to differing degree of counterion con-
densation, as the experimental conditions such as the tem-
perature and ionic strength are varied, has been addressed in
the contexts of phase transitions of brush heights, volume
transitions of gels, and coil-globule transitions of single

chains. In general, this response can be highly nonlinear. In
particular, theoretical considerations by Khokhlov and
Kramarenko20 for the volume transitions of gels have shown
that the counterion condensation can lead to a cascade of gel
collapse. As the counterions condense, the gel volume de-
creases with a consequent decrease in the effective dielectric
constant of the gel, which in turn allows more binding of
counterions inside the gel. This cascade results in a sharp
volume transition from a swollen gel into essentially a dry
gel. There have also been manifestations of the same effect
in several other situations involving brushes24,25 and single
chains.23,26–30 In addition to these theoretical arguments,
computer simulations31–38 and experiments39–56 have shown
clearly that the effective charge of the polymer varies as the
experimental variables change.

In light of the recognition that the polymer charge can
vary when polymer concentration, temperature and other ex-
perimental parameters are changed, the assumption of a con-
stant polymer charge throughout the phase diagram is erro-
neous. The polymer charge must be allowed to regulate itself
in computing the phase diagram. To the best of our knowl-
edge, self-regularization of polymer charge during phase
separation is not yet addressed, in spite of the crowded lit-
erature on polyelectrolyte solutions. The primary goal of the
present paper is a construction of polyelectrolyte phase be-
havior by accounting for the charge regularization of the
chains as the temperature and composition of the solution are
changed. The simplest situation of salt-free polyelectrolyte
solutions is considered in this paper. It turns out that charge
regularization plays a significant role and drastically modi-
fies the phase behavior computed with fixed polymer charge.

The phase behavior of polyelectrolyte solutions has en-
countered several theoretical attempts with varying approxi-
mations. The notable theories are from Khokhlov and
Nyrkova,1 Warren,5 Gottschalk et al.,6 Mahdi and de la
Cruz,7 and Muthukumar.12 The translational entropy of dis-
sociated counterions was recognized by Khokhlov and
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Nyrkova1 to contribute significantly to the phase behavior
and an effective reduction in the apparent degree of polymer-
ization �N� of the polymer. By adopting the same approach,
coexistence and spinodal curves were calculated by Warren.5

In these theories, volume of counterions and their electro-
static correlations, and conformational fluctuations of the
chains were ignored. The volume of counterions was in-
cluded in the work of Gottschalk et al.,6 but still ignoring
fluctuations in charge density and polymer density. The ef-
fect of polymer fluctuations was partially addressed by
Mahdi and de la Cruz7 within the random phase approxima-
tion �RPA� for salt-free polyelectrolyte solutions. This work
led to rather strange predictions such as liquid-liquid coex-
istence for N�30 and liquid-gel coexistence for N�30. This
surprise can be traced12 to the inadequacy of RPA for salt-
free solutions. By recognizing that a reasonable candidate for
the free energy of polyelectrolyte solutions should reduce, in
the least, to the Flory–Huggins theory57 for uncharged poly-
mers and to the Debye–Hückel theory58 of the restricted
primitive model59,60 for simple electrolyte solutions without
any polymer chains, a theory12 of polyelectrolyte phase be-
havior was derived by Muthukumar. In this work, contribu-
tions from conformational fluctuations of polymers were also
included. We build on the latter theory to address the poly-
mer charge regularization.

The essential elements of the model used in the present
study are as follows. The polyelectrolyte solution is taken as
an incompressible system consisting of the polyelectrolyte,
its counterions, and the solvent. The concentrations of the
counterions and the polymer are connected by the condition
of electroneutrality. The counterions, polymer segments and
the solvent molecules are assumed to have comparable vol-
umes. The charged entities interact with the extended
Debye–Hückel potential and the polymer-solvent interac-
tions are prescribed by the Flory–Huggins � parameter. In
addition, fluctuations associated with counterion distribu-
tions and polymer conformations are included. This model is
the same as in Ref. 12, for a fixed degree of ionization. As
pointed out above, this model recovers the Flory–Huggins
theory when charges and fluctuations are suppressed and the
Debye–Hückel-Restricted-Primitive-Model for simple elec-
trolytes when the degree of polymerization is unity. On top
of our previous model, we now allow the degree of ioniza-
tion to be a variable. Here, the free energy of the model of
Ref. 12 is modified by adopting another model for counter-
ion adsorption equilibrium introduced earlier by Muthuku-
mar in Ref. 29. In this model, the counterion adsorption is
controlled self-consistently by adsorption energy associated
with each ion-pair, translational entropy of unadsorbed coun-
terions, the entropy associated with different ways of form-
ing ion-pairs among all potential charged polymer segments,
and polymer conformations. It has been recognized61 for
some time that the dielectric constant in the neighborhood of
the polymer backbone can be significantly different from that
in the bulk solution. In view of this, we take the energy of
the ion-pair formed by the counterion and a polymer segment
to be stronger by a factor of the dielectric mismatch between
the polymer backbone and the bulk, instead of the uniform
Bjerrum energy for ion-pairs in the bulk. Another way of

accounting for the local variations of the dielectric constant
is to assume an average bulk dielectric constant which is the
concentration-weighted average of dielectric constants of the
solvent and polymer, as was done in Ref. 20. In our model,
as the counterion adsorption is local, the local dielectric con-
stant appears in the adsorption energy. Another feature of the
present theory is that both the electrostatic interaction
strength �defined through the Bjerrum length �B� and the
Flory–Huggins � parameter change together as the tempera-
ture is varied instead of independent changes in �B and �.

We show below that the allowance of charge regulariza-
tion significantly alters the critical point and the phase dia-
gram, in comparison with those computed in all other previ-
ous works where the polymer charges are assumed to be the
same throughout the phase separation. There occurs a feed-
back mechanism between charge regularization and thermo-
dynamic immiscibility between the polymer and solvent. In
fact, the daughter phases have different polymer charges
from that of the mother phase after phase separation.

II. THEORY

The present theory is an extension of our earlier work on
polyelectrolyte solutions,22 phase behavior with fixed
polymer charge,12,14 and counterion adsorption29 on flexible
polyelectrolyte chains. The theoretical basis for the underly-
ing assumptions in the model is discussed in Refs. 12, 14, 22,
and 29 and only a brief description is given below.

We consider a solution of n polyelectrolyte chains, each
with N segments of length �, and ns uncharged solvent mol-
ecules, with the total volume �. Each of the polymer seg-
ments is assumed to carry one negative charge and the cor-
responding counterions are monovalent positive charges. The
degree of ionization � of the chain is a variable and there are
�nN counterions in the solution, satisfying the electroneu-
trality condition. We assume that the solvent molecules, seg-
ments, and counterions have the same molar volume �3 and
that the solution is incompressible.

The total free energy density of the solution, defined as
the total Helmholtz free energy per unit volume in units of
kBT �Boltzmann’s constant times the temperature�, has the
following contributions: �i� translational entropy of polymer
chains, dissociated counterions, and solvent molecules �fs�,
�ii� entropy of adsorbed counterions �fsa�, �iii� hydrophobic
interaction between the polymer backbone and solvent �f��,
�iv� electrostatic interaction between polymer segments �fel�,
�v� gain in energy due to the formation of ion-pairs accom-
panying counterion adsorption �fad�, �vi� fluctuations of dis-
sociated counterions �f fl,i�, and �vii� conformational fluctua-
tions of the polymer chains �f fl,p�.

The free energy density due to the entropy of mixing of
the polymer, solvent, and counterions is given by the familiar
form,

fs =
�

N
log � + �c log �c + �s log �s, �1�

where � ,�c, and �s are the volume fractions of the polymer
��=nN�3 /��, counterions ��c=�nN�3 /��, and solvent
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��s=ns�
3 /��. These volume fractions are related by the in-

compressibility constraint,

� + �c + �s = 1, �2�

and along with the electroneutrality constraint,

�c = �� , �3�

there is only one independent variable for defining the com-
position of the solution.

Since �1−��N counterions are adsorbed to each chain on
an average and there are N ! / ���1−��N�!����N�!� ways of
formation of ion-pairs, the free energy density associated
with the entropy of adsorbed counterions, with the Stirling
approximation, is

fsa = �� log � + �1 − ��log�1 − ���� . �4�

All nonlinear effects resulting from possible cooperative fea-
tures associated with placement of counterions along the
polymer contour are ignored in the present model.

The hydrophobic interaction energy between the poly-
mer backbone and solvent is taken from the Flory–Huggins
theory as

f� = ���s, �5�

where � is the usual chemical mismatch parameter represent-
ing the mutual local interaction energies among solvent mol-
ecules and polymer segments �if they were to be uncharged�.
Since most of the polyelectrolyte backbones are immiscible
with the polar solvents typically used in polyelectrolyte so-
lutions, � is about 0.5 or higher.57 We further assume that
there are no enthalpic contributions from counterion-solvent
interactions.

The electrostatic interaction energy among all polymer
segments is obtained by the following mean field argument.
For a single chain of contour length L=N�, the intrachain
electrostatic energy is

Fel

kBT
=

�2

2
�

0

L ds

�
�

0

L ds�

�
V�R�s� − R�s��� , �6�

where V�R�s�−R�s��� is the pairwise electrostatic energy be-
tween the segments s and s� located at R�s� and R�s��, re-
spectively. Assuming the Debye–Hückel approximation for
V, with the screening due to the counterions,

V�r� =
�B exp�− �r�

r
, �7�

where the strength of the interaction is the Bjerrum length
�B,

�B =
e2

4�	0	kBT
, �8�

where e, 	0, and 	 are the electronic charge, permittivity of
the vacuum, and the dielectric constant of the solvent, re-
spectively. The range of the interaction is given by the Debye
length �−1, where

�̃2 = 4��̃B�� , �9�

with �̃��� and �̃B��B /�. Combining Eqs. �6�–�8� and rep-
resenting V�r� as its Fourier transform, we get

Fel

kBT
= 2��2�B�

0

L ds

�
�

0

L ds�

�
� d3k

�2��3

eik·�R�s�−R�s���

�k2 + �2�
. �10�

The two limits of �=0 and �R
1 �where R is the average
radius of gyration of the chain� can be readily identified from
Eq. �10�. For �2 large, the k-integral becomes a delta func-
tion in �R�s�−R�s��� and for �=0, it is 1 /4��R�s�−R�s���,

Fel

kBT
= �

2��2�B

�2 �
0

L ds

�
�

0

L ds�

�
��R�s� − R�s��� , �R 
 1

�2�B

2
�

0

L ds

�
�

0

L ds�

�

1

�R�s� − R�s���
, � = 0. 	

�11�

Thus, for �R
1, the electrostatic interaction is short-ranged,
analogous to the two-body excluded volume interaction, with
the strength 
�2�B /�2. In this limit, by assuming that the
monomer density is uniform, we get

Fel

kBT
=

2��2�B

�2

N2

�
, �12�

and the free energy density fel=Fel�
3 / �kBT�� is

fel =
2��2�̃B

�̃2 �2. �13�

In experimental systems relevant to the study of phase be-
havior, there are large enough numbers of counterions in the
system so that fel given by Eq. �13� would be adequate. This
expression has been used in our previous studies of polyelec-
trolyte phase behavior. However, one can be more careful by
using a crossover formula between the limits given in
Eq. �11�. Such a formula was derived in Ref. 22. From our
numerical work with this formula, it turns out that the cor-
rections from the crossover to the result of Eq. �13� are only
minor. The transparency of this conclusion may be seen from
the following argument. By averaging 1 / �R�s�−R�s��� in
Eq. �11� over the Gaussian chain statistics and performing
the s-integrals, we get

Fel

kBT
=

4

3��
�2�B

N2

R
, � = 0. �14�

The dependence of �2�BN2 /R is obvious even from a dimen-
sional analysis15 of Eqs. �6� and �7�. Rewriting the above
expression in terms of uniform monomer density,

fel =
�3Fel

�kBT
=

4

3��
�4�

3
1/3

�2�̃B�2�N

�
2/3

. �15�

We combine the limits of Eqs. �13� and �15� by the interpo-
lation formula,
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fel = 2��2�B�2
N2/3

�34/3�7/6

25/3
�2/3 + �̃2N2/3� . �16�

As is evident for large values of N of interest to polyelectro-
lytes, the corrections to Eq. �13� are only minimal. Neverthe-
less, we use Eq. �16� for the free energy density from
polymer-polymer electrostatic interactions in the present cal-
culation of phase diagrams.

The gain in free energy due to the formation of an ion-
pair associated with the adsorption of one counterion to a
charged segment is −e2 / �4�	0	�d�, where 	� is the local di-
electric constant and d is the dipole length between the
charge of the monomer and the counterion. In this prescrip-
tion, the dielectric constant varies rapidly from a low value
near the chain backbone to the high bulk value, as recog-
nized in the literature.61 We imagine a worm around the
chain backbone with radius d within which the dielectric
constant is 	� and outside it is 	. We write this ion-pair en-
ergy in terms of �B, by defining a parameter �, called the
dielectric mismatch parameter,

� �
	

	�

�

d
. �17�

The local dielectric constant in the region of counterion bind-
ing to the pendant charged groups of the polymer in aqueous
solutions is somewhat in the range61 of 5–10. Furthermore,
the distance d between the charged monomer and the coun-
terion in an ion-pair, can be larger than the distance between
two consecutive charges on the chain backbone. As a result,
the value of the parameter � is expected to be of order unity.
In view of the lack of adequate understanding of the polar-
ization forces at short distances, we take � only as a param-
eter. The total energy associated with ion-pairs from all ad-
sorbed counterions is

Fad

kBT
= − nN�1 − ��

e2

4�	0	�dkBT
= − nN�1 − ���̃B� , �18�

so that the adsorption energy density is

fad = − �1 − ����̃B� . �19�

The free energy density due to fluctuations in the density of
dissociated counterions, f fl,i, has already been derived12 by
solving the linearized Poisson–Boltzmann equation for non-
neutral charged plasma, as in the Debye–Hückel theory. The
result �details given in Ref. 12� is

f fl,i = −
1

4�
�log�1 + �̃� − �̃ +

1

2
�̃2� . �20�

This contribution is due to the Coulomb interactions between
the counterions in the cloud around the polymer chains. Note
that the above expression depends on the concentration of
only the dissociated counterions �through Eq. �9��, in spite of
its identical appearance to the Debye–Hückel expression for
symmetric electrolytes, with finite ion sizes and overall elec-
troneutrality. Also, Eq. �20� reduces to the Debye–Hückel
limiting law expression in the limit of �→0,

f fl,i→−����3 / �12��, as was derived in Ref. 22 by consider-
ing only the counterion cloud around polymer chains.

Finally, the free energy density due to fluctuations in
polymer density is expressed as follows. It is known from
scaling arguments15 that the free energy density of semidilute
polyelectrolyte solutions is proportional to �3/2 and �9/4, re-
spectively, in salt-free and highly salty solutions. A crossover
formula between these two limits, along with the numerical
prefactors, was derived in Ref. 22. This crossover description
is rather elaborate and it turns out from our numerical work
that polymer fluctuations play only a minor role in locating
the phase boundary. In view of this, we have used the fol-
lowing interpolation formula, as in Ref. 14:

f fl,p =

23/4

9
��

3
�3

2
−9/4

�4��2�̃B�3/4�9/4

�̃3/2 + 25/4��

3
�3

2
−3/4

�4��2�̃B�1/4�3/4

. �21�

The total free energy density f �in units of kBT� is the sum of
the above seven contributions,

f = fs + fsa + f� + fel + fad + f fl,i + f fl,p. �22�

In addition to the above contributions, there can be effects
arising from the dipole nature of the ion-pairs formed by
counterion adsorption. In general, these dipoles can interact
with other such dipoles and monopoles, which in turn can
make a hierarchy of multipole clusters. In the present study
dealing with polymer solutions, we assume that such higher
order interactions are sufficiently weak unlike in situations
pertinent to neat polyelectrolyte salts �such as crystalline
states, molten salts, and collapsed states�.

The parameters in the present model are the Bjerrum
length �B, Flory–Huggins parameter �, and the dielectric
mismatch parameter �, in addition to the experimental vari-
ables of temperature and polymer concentration. It is to be
noted that both �B and � are temperature dependent. As the
temperature is changed in an experiment, both �B and �
change simultaneously and not independently. Therefore, we
define a reduced temperature variable t using which both �B

and � can be expressed. We choose the inverse of �B to
identify the reduced temperature variable. Alternatively, the
inverse of � can be equally chosen to identify t. Furthermore,
in general, the dielectric constants of solutions depend on
temperature. In view of this, we combine all temperature
effects appearing in the definition of �B and define the re-
duced temperature t as

t �
�

4��B
. �23�

The temperature dependence of � is chosen in the present
study as

� �
�

2T
, �24�

where � is the Flory theta temperature. Rewriting this equa-
tion in terms of the reduced temperature,
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� �
a�

20�t
, �25�

where

a� =
10�	kB�

e2 . �26�

The parameter a� reflects the value of the � temperature and
is taken as a measure of the hydrophobic interaction between
the polymer and solvent. In general, a� is temperature depen-
dent due to the appearance of 	 in Eq. �26� and deviations
from the simple inverse temperature dependence of � as
given in Eq. �24�. The value of a� is of order unity.
For example, a�=1 for aqueous systems corresponding to
�=0.6. In the present study, we have explored the range of
0.5�a��1.0.

If the dielectric constant is uniform throughout the solu-
tion with the value 	 and if the length of the dipole in the
ion-pair is identical to the chemical distance between the
consecutive charges on chain backbone �defined as � here�,
then the dielectric mismatch parameter � is unity. Since the
local effective dielectric constant in the neighborhood of ion-
pair formation can be smaller than in the bulk and the length
of the dipole can be larger than monomer separation dis-
tance, � is expected to be larger than unity. In this study, we
have considered the range of 1���2. Finally, for the de-
gree of polymerization N, we have considered only one typi-
cal case with N=1000.

We have computed the coexistence curves by minimiz-
ing the free energy density. In the present system, there are
three components, viz., polyelectrolyte, counterion, and sol-
vent. The chemical potential of each of these components
must be equal in the coexisting phases. If a point �� ,�c ,�s�
lies inside the phase boundary, it will demix into two phases
with composition ��a ,�c

a ,�s
a� of the a-phase and composi-

tion ��b ,�c
b ,�s

b� of the b-phase. If x is the fraction of the
solution separating into the a-phase, then according to the
lever rule,

� = x�a + �1 − x��b, �27�

and there are two other similar lever rules for �c and �s.
Additionally, we take the degree of ionization in the a- and
b-phases as �a and �b, respectively. Thus, there are nine
variables �x ,�a ,�c

a ,�s
a ,�b ,�c

b ,�s
b ,�a, and �b� and five inde-

pendent constraints �incompressibility constraints: �a+�c
a

+�s
a=1=�b+�c

b+�s
b; electroneutrality constraints: �a

=�a�c
a ,�b=�b�c

b; and the lever rule from Eq. �27��. There-
fore, there are four independent variables. By performing the
four-dimensional minimization of free energy density of Eq.
�22�, for a set of values of t ,a�, and �, we have constructed
the phase diagram. The numerical procedure is carried out
with the downhill simplex algorithm.62

III. RESULTS AND DISCUSSION

We have computed the phase diagrams as plots of the
reduced temperature versus volume fraction of the polyelec-
trolyte for different values of the parameters a� and �. We
have allowed the degree of ionization of the polyelectrolyte

to self-regulate during the phase separation. Thus, for every
choice of a� ,�, and N, there are unique values of � ,�, and t
corresponding to the global free energy minimum of the sys-
tem. In contrast to the uncharged two-component polymer
solutions, the self-regulating degree of ionization acts effec-
tively as another order parameter for the system in addition
to the usual order parameter of polyelectrolyte concentration.
In view of this, our results of composition variation and the
variation in the degree of ionization are presented in terms of
two panels, as the reduced temperature is varied. The typical
results are given in Fig. 1 for a�=1 and N=1000, and three
values of � �1.0, 1.5, and 2.0�. Figure 1�a� is the usual de-
piction of the phase diagram as t versus � plots, whereas
Fig. 1�b� gives the accompanying variations in �.

Let us first consider the results for �=2. The critical
point is at t�=0.022,��=0.176 and ��=0.065. For reduced
temperatures below t�, two phases, viz., polymer-poor
a-phase �represented by blue diamonds� and polymer-rich
b-phase �represented by blue filled circles� coexist. Above t�,
the solution is homogeneous. The three vertical lines �solid,
dashed, and dotted� joining the coexistence curve in Fig. 1�a�
denote the temperature quenches in the homogeneous phase
until the coexistence curve is reached. The solid line is the
quench at the critical composition. The dashed and dotted
lines are for polyelectrolyte concentrations below and above,
respectively, the critical volume fraction. Naturally, the vol-
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(b)
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FIG. 1. Temperature-concentration �a� and temperature-charge �b� phase
diagrams for a polymer solution with variable degree of ionization. Param-
eters are the following: N=1000, a�=1.0, and �=1.0, 1.5, and 2.0. Vertical
lines correspond to the homogeneous phase for �=2.0: �=0.085 �dashed�,
�=�c=0.176 �solid�, and �=0.300 �dotted�. Higher concentration corre-
sponds to lower degree of ionization. Critical points are given by black dots.
The lowest curve in �a� is for fixed charge �c=0.23 �chosen to be the value
at the critical point with variable charge� at �=1.0.
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ume fraction of the polymer does not change as the tempera-
ture is reduced in the homogeneous phase. However, as the
adsorption energy associated with the adsorption of counte-
rions to polymer segments becomes more attractive as the
temperature is lowered, more and more ion-pairs will form
with a consequent effect of reducing the degree of ionization
of the polymer. This is clearly seen in Fig. 1�b�. Based on our
model, the calculated value of � is 0.131 for �=0.176 �criti-
cal volume fraction� at the initial temperature of the quench,
t=0.028. As the temperature is decreased, the value of �
decreases progressively as given by the solid blue line in Fig.
1�b� until it reaches the critical point with ��=0.065. Fur-
thermore, as the polyelectrolyte concentration increases, the
effect of dielectric mismatch from lowered local dielectric
constant around polymer backbone becomes more pro-
nounced with a consequent result of enhanced ion-pair for-
mation �i.e., lowered degree of ionization�. This is clearly
evident from Fig. 1�b� by comparing the values of � for �
=0.085, 0.176, and 0.3 at the initial temperature of the
quench �t=0.028�. The corresponding values of � are 0.183,
0.131, and 0.098. Thus, in our model, the degree of ioniza-
tion decreases with polymer concentration in the homoge-
neous phase. In addition, as discussed above, � decreases
with t for each of these concentrations in the homogeneous
phase. Please note the switch in the ordering of the dashed
and dotted lines in Figs. 1�a� and 1�b�.

For temperatures below t�, two phases with volume frac-
tions �a �dilute phase� and �b �concentrated phase� coexist.
As seen in Fig. 1�b�, the value of � is not uniform. The
values of � in the daughter phases are different from the
value in the mother phase. As shown in Fig. 1�b�, � is higher
in the dilute phase �blue diamonds� and lower in the concen-
trated phase �blue filled circles�. This is fully expected in
view of the dependence of � on � in the homogeneous
phase. Furthermore, the temperature dependence of � in the
dilute phase turns out to be quite rich. As the temperature is
lowered, the degree of ionization in the dilute phase in-
creases unlike in the homogeneous phase. This is due to
faster decrease in polymer concentration in the dilute coex-
isting phase which in turn leads to an increase in � and
overcompensating the expected decrease with lowering tem-
perature. The cooperative �antagonistic� dependence of � on
t in the dilute phase �blue diamonds in Fig. 1�b�� is reflected
by the opposite curvature to that of � on t �blue diamonds in
Fig. 1�a��. Also, if we were to consider extremely low tem-
peratures where the polymer concentration of the coexisting
dilute phase is below the overlap concentration, then � in
this phase decreases with temperature. For such low tem-
peratures, our calculations give that the �-t curves for the
dilute branches in Fig. 1�b� turn around with the opposite
slope �not shown in Fig. 1�b��. For the coexisting concen-
trated phase, the polymer concentration increases �blue filled
circles in Fig. 1�a�� with a reduction in temperature. Both a
reduction in temperature and an increase in concentration
lead synergistically to a decrease in �, as is seen with the
blue filled circles in Fig. 1�b�. The curvature of this branch of
the coexistence curve has the same sign as the corresponding
branch �concentrated phase� in Fig. 1�a�. As a reminder, the

dense phase of the coexistence curve is the right hand side
branch in Fig. 1�a� and the left hand side branch in Fig. 1�b�
and vice versa for the dilute phase.

The role of the dielectric mismatch parameter is illus-
trated by the blue ��=2.0�, red ��=1.5�, and black ��=1.0�
curves in Figs. 1�a� and 1�b�. The above discussed features
are the same for each of these sets. The critical point depends
on �. The values of t, �, and � at the critical point are t�

=0.022, ��=0.1736, and ��=0.0658 for �=2.0; t�=0.019,
��=0.209, and ��=0.118 for �=1.5; and t�=0.015, ��

=0.246, and ��=0.233 for �=1.0. As the value of the dielec-
tric mismatch parameter � increases, the counterion adsorp-
tion is favored more with a resultant decrease in �. This then
leads to reduced entropy of free counterions and interseg-
ment electrostatic repulsion. As a result, the region in the
parameter space for the existence of stable homogeneous
phase is reduced.

We now compare the results with charge regularization
against the hypothetical situation of assuming constant poly-
mer charge at all concentrations and temperatures during
phase separation. The lowest curve in Fig. 1�a� �green tri-
angles denoting the dilute phase and green circles denoting
the concentrated phase� is the coexistence curve if � were
fixed at the value of 0.233 for a�=1, �=1, and N=1000. For
this case, the critical values of t and � are 0.014 and 0.213,
respectively. This value of � was chosen to be the critical
value of � with charge regularization for the same values of
other parameters �black curves in Figs. 1�a� and 1�b��. It is
clear from a comparison between the black and green curves
in Fig. 1�a� that the coexistence curve with fixed charge is
significantly different from that with charge regularization.
Of course, the analog of the black curve in Fig. 1�b�, for
fixed charge, is a vertical line at �=0.233 �not shown�. In
fact, almost any coexistence curve can be arbitrarily made up
for fixed �, depending on the choice of �.

As discussed above, the shape of the coexistence curve
for the � variable is different from that for the � variable,
due to the interdependence of counterion adsorption on tem-
perature and polymer concentration. By defining � and �
as the differences in � and � between the coexisting phases,
their dependencies on temperature are plotted in Fig. 2�a�,
where the role of � is shown. The same data of Figs. 1�a� and
1�b� are combined for �=1.0, 1.5, and 2.0, a�=1.0, and N
=1000. The opposite curvatures of the curves for � and �
are evident, as already discussed above. As the dielectric
mismatch parameter � increases, the instability of the homo-
geneous phase is enhanced due to the increased counterion
adsorption. Based on the numerical data presented in
Fig. 2�a�, the order parameter � vanishes as the reduced
temperature approaches the critical temperature t�, approxi-
mately according to the expected mean-field law, �

�t�− t�1/2. Similar analysis of the numerical data for �
versus �t�− t� has not been successful in obtaining a critical
exponent, due to insufficient numerical accuracy near the
critical point, although this exponent appears to be less
than 0.5.

We have also investigated the role of the Flory–Huggins
parameter on the phase diagram by computing the coexist-
ence curves for a�=1.0, 0.7, and 0.5 and keeping �=2.0 and
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N=1000. Instead of presenting all computed coexistence
curves, we present only the critical points and the tempera-
ture dependencies of � and �. The critical points for a�

=1.0, 0.7, and 0.5 are, respectively �t�=0.022,��

=0.1736,��=0.0658�, �t�=0.0173,��=0.1286,��=0.03�,
and �t�=0.0136,��=0.0825,��=0.0101�. Not surprisingly,
phase separation is promoted as the chemical mismatch pa-
rameter a� increases. The cooperative nature of the various
contributions from the hydrophobic effect, local dielectric
constant mismatch, polymer concentration, and temperature
to the extent of counterion adsorption is reflected in the
shapes of � versus t curves in Fig. 2.

IV. CONCLUSIONS

We have computed the phase behavior of salt-free solu-
tions of flexible polyelectrolytes using a model that allows
the polymer charge to self-regulate during phase separation.
In the present model, counterion adsorption to polymer seg-
ments is mediated self-consistently by local dielectric con-
stant near the polymer backbone being different from the
bulk value, translational entropy of free counterions, and
polymer conformations. The consequences of the combined
effects from the electrostatic and hydrophobic interactions
are included.

The key results are as follows:

�1� In the homogeneous phase, the polymer charge de-
creases with a reduction in temperature and an increase
in polymer concentration.

�2� The region of stable homogeneous phase decreases as
the dielectric mismatch parameter ��, Eq. �17�� or the

Flory–Huggins chemical mismatch parameter ��� in-
creases.

�3� The daughter phases have different degrees of ioniza-
tion, the higher concentration having the lower polymer
charge.

�4� In the dilute coexisting phase, the net increase in poly-
mer charge with lowering temperature is due to the
opposing forces for counterion adsorption from the de-
creasing polymer concentration and decreasing tem-
perature. In the concentrated coexisting phase, the de-
crease in polymer charge with lowering temperature is
dictated by the synergistic effects from increasing poly-
mer concentration and decreasing temperature.

�5� The allowance of charge regularization significantly af-
fects the critical point and the coexistence curve calcu-
lated with fixed polymer charge.

�6� Although polymer charge is not a conserved quantity
such as the polymer concentration, it behaves like an
additional order parameter. The critical exponent for
the disappearance of the discontinuity in the degree of
ionization as the temperature is increased toward the
critical temperature is different from that for the dis-
continuity in the polymer concentration.

There are several avenues where the present model
needs to be extended and its predictions critically validated.
The foremost is the experimental relevance. For the salt-free
polyelectrolyte solutions discussed in the present study, the
critical value of the reduced temperature t is in the range of
0.015–0.023 for 1.0���2.0 and 0.5�a��1.0. Given the
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FIG. 2. Gaps between daughter phases in degrees of ionization ��=�A−�B� �top� and concentration ��=�A−�B� �bottom� vs reduced temperature �t� for
two cases: �a� a�=1.0 and �=1.0,1.5,2.0 and �b� �=2.0 and a�=1.0,0.7,0.5. N=1000.
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definition of the reduced temperature in Eq. �23�, for aqueous
solutions of flexible polyelectrolytes of the type sodium
polystyrene sulfonate at room temperature ��B /�
3.0�, t is
about 0.0265. This means that for such salt-free aqueous so-
lutions, there is no phase separation, which is indeed consis-
tent with experiments. Therefore, in order to verify the pre-
dicted phase behavior, it is necessary to either choose a
different solvent with smaller dielectric constant �say with
half the value for water�, or polymers with more hydropho-
bic backbones.

Another alternative is to generalize the present theory to
experimental situations where phase separation is known to
occur.39–42,44–47,49–51,53–56 A particular example is the case of
aqueous solutions of sodium polystyrene sulfonate contain-
ing some divalent salts such as barium chloride.39,40,47,51,55

The system now becomes more complex with many compo-
nents: polymer, counterion, cation, and anion of the added
salt and solvent. The chemical potentials of each of these
components need to be equated in the coexisting phases. By
fixing the polymer charge, we have recently computed the
phase diagram14 for this multicomponent system by satisfy-
ing the Donnan equilibrium. However, in view of the impli-
cations of the present study, the polymer charge should be
allowed to self-regulate in constructing the phase diagrams.
This exercise is planned for the future as an extension of our
earlier work14 for salty polyelectrolyte solutions with fixed
charge to charge regularization. This would allow a compari-
son between our model and existing data on the five-
component systems. Furthermore, it would also be of interest
to explore the role of the ionic radii of counterions �from the
polymer and added salt�, representing the specificity of the
ions, on the phase diagrams. There is an opportunity to ad-
dress the ion specificity in our model, because the ionic ra-
dius appears as the dipole length in the definition of the local
dielectric mismatch parameter � �Eq. �17��.

On the theoretical side, the present model is only a mean
field theory despite the inclusion of fluctuations of counter-
ion density and polymer conformations. It suffers from all of
the weaknesses present in the Flory–Huggins theory of poly-
mer mixtures and the Debye–Hückel Restricted Primitive
Model of simple electrolytes. The consequences of composi-
tion fluctuations beyond the saddle point approximation must
be accounted for in order to capture the Ising critical behav-
ior, which is apparently seen in experiments.47,51 As the poly-
mer charge is an additional order parameter in phase sepa-
rating solutions, a new critical index corresponding to the
degree of ionization, might be needed in describing the criti-
cal phenomena of polyelectrolyte solutions.

As a final remark, it might be necessary to include mul-
tipole electrostatic interactions in the free energy of the sys-
tem, particularly at very low temperatures where one of the
coexisting phases approaches the limit of molten polyelec-
trolyte salts.
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