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ABSTRACT

Conditional ablation of Indian hedgehog (Ihh) in the murine
uterus results in mice that are sterile because of defects in
embryo implantation. We performed microarray analysis on
these mice at the time point at which the Ihh target genes are
induced by the administration of exogenous hormone to mimic
Day 3.5 of pregnancy. This analysis identified 863 genes altered
by the conditional ablation of Ihh. Of these, genes that regulated
the cell cycle were overrepresented. In addition, genes involved
in epidermal growth factor (EGF) and estrogen (E2) signaling
were found to be deregulated upon Ihh ablation. Furthermore,
upon conditional ablation of Ihh, 15-mo-old mice exhibited
hallmarks of estrogenized uteri, such as cystically dilated glands
and hyalinized stroma. Thus, Ihh regulates embryo implantation
by having an impact on the cell cycle, EGF signaling, and E2
signaling.
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INTRODUCTION

A critical event in the establishment of a successful
pregnancy is embryo implantation in which the blastocyst
attaches to and invades through the luminal epithelium of the
uterus and into the stroma [1]. The ovarian steroid hormones,
estrogen (E2) and progesterone (P4), acting through their
cognate receptors, the estrogen receptor (ESR1) and the

progesterone receptor (PGR), are necessary for these events
in early pregnancy [2]. On Day 0.5 (d0.5; 0.5 ¼ vaginal plug)
of pregnancy in mice, a preovulatory surge of E2 stimulates
uterine epithelial cell proliferation. Upon formation of the
corpus luteum, there is an increase in P4 levels, resulting in
uterine stromal cell proliferation on d2.5. On d3.5, there is an
acute spike of E2, which in combination with the luteal P4,
maintains uterine stromal cell proliferation, which renders the
uterus receptive to the implanting embryo. Implantation can
only occur if the uterus is receptive to the incoming blastocyst
and there is a defined ‘‘window of receptivity’’ during which
E2 is the primary determinant [3]. Embryo implantation in the
mouse occurs on d4.5. Female Pgr knockout (PgrKO) mice are
sterile due to a failure in embryo implantation, demonstrating
the critical role of P4 signaling in this process [4]. To
mechanistically understand how P4 exerts its effect during
embryo implantation, downstream target genes of uterine PGR
need to be identified.

Indian hedgehog (Ihh), which is a member of the Hedgehog
family of ligands, was identified as a P4-regulated gene in the
uterus [5, 6]. Hedgehog signaling has been shown to be
important for the development of multiple tissues, including
(but not limited to) the limbs, cerebellum, bone, cartilage,
gonads, and heart [7]. Deregulation of hedgehog signaling has
also been implicated in cancers, such as basal cell carcinoma,
medulloblastoma, pancreatic cancer, prostate cancer, and lung
cancer [8]. Ihh is expressed in the mouse uterine luminal
epithelium in the preimplantation period, with its highest
expression on d2.5, whereas its downstream target genes,
patched 1 (Ptch1) and chicken ovalbumin upstream promoter
transcription factor II (COUP-TFII, official symbol Nr2f2), are
expressed in the uterine stroma, with their highest expression
on d3.5 during the ‘‘window of receptivity’’ [5, 6, 9]. In the
human endometrium, IHH expression significantly decreases
during the transition from the early to the mid secretory phase,
which is associated with a downregulation of cellular division
[10].

Ihh has been shown to be critical for uterine function
because conditional ablation of Ihh (PRcre/þIhhf/f, official allele
symbols Pgrtm2(cre)Lyd/þ Ihhtm1Blan) in the mouse uterus results
in infertility due to a failure of embryo implantation [11].
Rather than successful apposition and attachment of the
blastocyst to the uterine luminal epithelium, embryos in the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus were found to be floating in
the uterine lumen. This was partly due to increased expression
of mucin 1 (Muc1) in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus, the
loss of which is necessary for successful embryo implantation
[12]. In addition to the attachment defect, the Pgrtm2(cre)Lyd/þ
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Ihhtm1Blan uterus failed to undergo the decidualization reaction
due to deficient preparation in the preimplantation period, as
seen by decreased stromal cell proliferation and decreased
vascularization of the stromal compartment [11]. Examination
of genes known to be involved in embryo implantation, such as
homeobox A10 (Hoxa10) and leukemia inhibitory factor (Lif ),
revealed them to be unaltered by Ihh ablation. Interestingly,
whereas the epidermal growth factor (EGF) ligands heparin-
binding epidermal growth factor (Hbegf ) and amphiregulin
(Areg) were not altered in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus,
one of their receptors, epidermal growth factor receptor (Egfr),
was significantly reduced in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan

subepithelial stroma. These data demonstrate a critical role for
Ihh in the preimplantation period and suggest that Ihh regulates
multiple pathways during this critical time point.

Further demonstration of the critical role of Ihh in the
preimplantation period was the female infertility defect
displayed by female mice with Nr2f2 ablation (either as
heterozygotes or conditional uterine ablation) [13, 14]. These
mice phenocopied the Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice in that
they exhibited defective embryo implantation with failed
embryo attachment and a reduced decidual response. Again,
this defect was due to improper preparation of the uterus, as
there were increased Muc-1 levels, decreased stromal cell
proliferation, and incomplete vascularization of the stroma. In
addition, ablation of Nr2f2 increased ESR1 levels in the
luminal epithelium, resulting in increased ESR1 activity in the
uterus, suggesting that Hedgehog signaling may be a critical
regulator of E2 signaling in the uterus.

Here, we have performed microarray analysis on the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uteri to identify the pathways
regulated by Ihh during embryo implantation [11, 15]. From
this analysis, we have identified multiple pathways as being
Ihh regulated in the uterus during the preimplantation period.
Among these, we observed a decrease in genes necessary for
cell cycle progression and a deregulation of the EGF signaling
pathway. Furthermore, we observed increased E2 signaling in
the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus, which resulted in a
pathological phenotype. Thus, we have demonstrated a critical
role for Ihh in the preparation of the uterus for the incoming
embryo in the preimplantation period as a mediator of cell
cycle progression as well as EGF and E2 signaling.

MATERIALS AND METHODS

Animals and Hormone Treatments

Mice were maintained in the designated animal care facility at Baylor
College of Medicine according to the institutional guidelines for the care and
use of laboratory animals. Mice were treated with an abbreviated protocol used
to elicit an artificial decidual response, as previously described [16]. Briefly, 6-
wk-old female wild-type, Pgrtm2(cre)Lyd/þ , Pgrþ/þIhhtm1Blan, and Pgrtm2(cre)Lyd/þ

Ihhtm1Blan mice were ovariectomized and rested for 2 wk before treatment with
three s.c. daily injections of 100 ng of E2 per mouse. After 2 days of rest, mice
were then treated with daily injections of 1 mg of P4 and 6.7 ng of E2 per mouse
s.c. for 2 days. Mice were killed 6 h after the last E2 plus P4 injection by cervical
dislocation while under anesthetic (Avertin [2,2-tribromoethyl alcohol]; Sigma-
Aldrich, St. Louis, MO). After tissue dissection, uterine tissues were placed in
4% paraformaldehyde or flash frozen and stored at �808C. Serum testosterone
levels were measured in 15-mo-old mice by radioimmunoassay by the University
of Virginia Center for Research in Reproduction Ligand Assay and Analysis
Core. Serum estradiol levels were measured in 3-mo-old mice using the Estradiol
Kit (no. 33540) for the Beckman Coulter Access 2 System (Beckman Coulter
Inc., Fullerton, CA).

RNA Isolation and Microarray Hybridization

Total RNA was extracted from uterine tissues using the Qiagen RNAeasy
total RNA isolation kit (Qiagen, Valencia, CA). The RNA was pooled from the

uteri of three mice per genotype. All RNA samples were analyzed with a
Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE) before microarray
hybridization. Microarray analysis was performed by the Baylor College of
Medicine Microarray Core Facility using Affymetrix murine genome 430 2.0
mouse oligonucleotide arrays (Affymetrix, Santa Clara, CA), as previously
described [17]. All experiments were performed in triplicate with independent
pools of RNA.

Data Analysis

Microarray data analysis was performed as previously described [17, 18].
DNA chip analyzer dChip was used to adjust arrays to a common baseline
using invariant set normalization [19]. To estimate expression, the PM-only
model developed by Li and Wong [20] and Li and Hung Wong [21] was used.
We selected differentially expressed genes in the Pgrþ/þIhhtm1Blan and
Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice using a two-sample comparison according to
the following criteria: lower boundary of 90% confidence interval of fold-
change greater than 1.2 and an absolute value of difference between group
means greater than 50. Differentially expressed genes were classified according
to Gene Ontology function using Affymetrix annotation (NetAffx; http://
affymetrix.com/index.affx), and pathway analysis was performed using
DAVID Analysis [22, 23] and Ingenuity Systems Software (Ingenuity Systems
Inc., Redwood City, CA).

Real-Time RT-PCR Analysis

Total RNA was extracted from uterine tissues (n ¼ 7 per genotype) using
the Trizol reagent according to manufacturer’s instructions (Invitrogen,
Carlsbad, CA). Total RNA (1 lg) was reverse transcribed into cDNA with
M-MLV (Invitrogen) in a 20-ll volume. Expression levels of mRNA were
measured by real-time RT-PCR TaqMan analysis using the ABI Prism 7700
Sequence Detector System according to the manufacturer’s instructions (PE
Applied Biosystems, Foster City, CA). Real-time probes and primers were
purchased from Applied Biosystems; for a complete list, see Supplemental
Table S1 (all supplemental files for this article are available online at www.
biolreprod.org). All real-time RT-PCR was performed using independent RNA
sets. All mRNA quantities were normalized against 18S RNA using ABI rRNA
control reagents (Applied Biosystems). Statistical analyses used one-way
ANOVA followed by Tukey posthoc multiple range test with the Instat package
from GraphPad (San Diego, CA).

Immunohistochemistry

Uteri were fixed overnight in 4% paraformaldehyde (vol/vol), followed by
thorough washing in 70% ethanol, and tissues were processed, embedded in
paraffin, and sectioned. Uterine sections from paraffin-embedded tissue were
cut at 5 lm and mounted on silane-coated slides, deparaffinized, and rehydrated
in a graded alcohol series. Sections were preincubated with 10% normal goat
serum in PBS (pH 7.5) and then incubated with anti-CCND1 (1:500;
NeoMarkers, Fremont, CA), anti-MCM3 (1:500; Santa Cruz Biotechnology,
Santa Cruz, CA), or anti-ERa (ESR1; 1:200; DAKO, Carpinteria, CA) in 10%
normal serum in PBS (pH 7.5). On the following day, sections were washed in
PBS and incubated with biotinylated secondary antibody (5 ll/ml; Vector
Laboratories, Burlingame, CA) for 1 h at room temperature. Immunoreactivity
was detected using the DAB Substrate kit (Vector Laboratories); immunore-
activity was visualized as intense brown staining. Masson trichrome staining
was performed by the Baylor College of Medicine Center for Comparative
Medicine Comparative Pathology Laboratory using standard protocols.

RESULTS

Identification of Indian Hedgehog-Regulated Genes During
Embryo Implantation

Previously, we generated mice in which Ihh was condition-
ally ablated in the murine uterus using the Pgrcre mouse model
(Pgrtm2(cre)Lyd/þ Ihhtm1Blan) [11, 15]. These mice were found to
be infertile, demonstrating an inability of the uterus to undergo
embryo attachment and decidualization. To identify the
pathways that Ihh regulates during these processes, we
performed high-density DNA microarray analysis on the uteri
from these mice. Ihh expression is highest on d2.5 of
pregnancy, whereas the expression of its downstream target
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genes Ptch1 and Nr2f2 is highest on d3.5 of pregnancy, which
is just prior to embryo implantation [5, 6]. For this reason, our
microarray analysis was conducted at this time point. However,
to avoid variability due to the presence of a dormant blastocyst
[24] or variations in staging of pregnancy due to differing times
of coitus, we simulated d3.5 of pregnancy by administering
ovariectomized mice with exogenous steroid hormones using a
modification of the protocol used to induce a decidual response
(see Materials and Methods) [16]. We had previously
determined that 30 h after the first E2 plus P4 injection used
in the artificially induced decidual response gave full activation
of the Ihh signaling pathway (Fig. 1) [9]. Total RNA extracts
were subjected to microarray analysis using the Affymetrix
mouse genome 430 2.0 arrays. This analysis revealed 429 and
434 transcripts whose abundance was significantly increased or
decreased, respectively, in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus
compared with Pgrþ/þIhhtm1Blan controls. A complete list of
the genes whose transcripts increase or decrease in abundance
can be found in Supplemental Tables S2 and S3, respectively.
To determine which pathways are regulated by Ihh at this time
point, we performed pathway analysis using DAVID Analysis
and Ingenuity Systems Software [22, 23]. A complete list of
the significantly regulated pathways can be found in Supple-
mental Table S4. The altered pathways included (but were not
limited to) those involved in the cell cycle, WNT signaling,
MAPK signaling, TGFB signaling, JNK signaling and EGF
signaling (Supplemental Table S4). These pathways have all
been implicated in embryo implantation, suggesting that Ihh is
a critical mediator of multiple aspects of making the uterus
receptive to an incoming embryo [1, 2]. To begin to dissect out
these pathways, we first examined those shown to be
previously involved in the phenotypes of the Pgrtm2(cre)Lyd/þ

Ihhtm1Blan uterus [11].

Cell Cycle Genes Are Deregulated by Ablation of Ihh

Analysis of the differentially regulated genes demonstrated
that 23 genes that regulate cell cycle progression were
significantly decreased in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus.
Among these altered genes were the components of the
mitosis-promoting factor, cyclin B1 (Ccnb1); cell division
cycle 2 homolog A (Cdc2a/CDK1); the minichromosome
maintenance (MCM) family of proteins that are involved in
DNA replication; and cyclin D1 (CCND1), a protein necessary
for uterine cell proliferation [25–27]. Both Ccnb1 and Cdc2a
were reduced in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus (Fig. 2A).
The mRNA expression level of Mcm5, a member of the MCM
family of proteins, was also significantly reduced, as was that
of Ccnd1 (Fig. 2A). These changes in gene expression of the
cell cycle genes were not affected by the presence of Cre in the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice, because Pgrtm2(cre)Lyd/þ mice
displayed the same expression of Ccnb1, Cdc2a, Ccnd1, and
Mcm5 as wild-type mice (Supplemental Fig. S1A). CCND1
protein was primarily located in the uterine stroma, with some
staining in the glandular epithelium of the Pgrþ/þ Ihhtm1Blan

uterus (Fig. 2B). Although CCND1 levels were comparable in
the epithelial cells of the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus, they
were reduced in the uterine stroma when compared to Pgrþ/þ

Ihhtm1Blan uteri (Fig. 2B). In addition, another member of the
MCM family of proteins, MCM3, was reduced in the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan stroma compared with Pgrþ/þ

Ihhtm1Blan mice (Fig. 2C). MCM3 exhibited robust expression
in the luminal and glandular epithelium of both genotypes. This
deregulation of genes involved in cell cycle progression may
explain the stromal cell proliferation defect observed in the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus [11].

EGF Signaling Is Altered by Ihh Ablation

Previously, we demonstrated that the EGF ligands,
amphiregulin (Areg) and heparin-binding epidermal growth
factor (Hbegf), were unaltered by Ihh ablation, but that the
epidermal growth factor receptor (EGFR/ERBB1) was lost in
the subepithelial stroma [11]. In addition, we now show that
Ihh ablation alters the expression of the other members of the
ERBB receptor family, with V-ERB-B2 avian erythroblastic
leukemia viral oncogene homolog 2 (Erbb2/Her2) and V-ERB-
B2 avian erythroblastic leukemia viral oncogene homolog 3
(Erbb3/Her3) being significantly reduced and V-ERB-B2
avian erythroblastic leukemia viral oncogene homolog 4
(Erbb4/Her4) significantly increased (Fig. 3). In addition, a
disintegrin and metalloproteinase domain 12 (Adam12) ex-
pression was significantly reduced. ADAM12 has been shown
to be involved in the processing of HBEGF to generate its
active form [28]. The expression of Egfr, Erbb2, Erbb3, Erbb4,
and Adam12 was unaffected in the Pgrtm2(cre)Lyd/þ uteri
compared with wild-type controls (Supplemental Fig. S1B).
Therefore, Ihh regulates the EGF signaling pathway not by
regulating the expression of the ligands but by regulating the
expression of the receptors that bind the ligands and the
enzymes responsible for processing the ligands.

Ihh Acts to Repress E2 Signaling in the Uterus

From the microarray analysis, we observed an increase in
Esr1 expression which was validated by real-time RT-PCR
analysis (Fig. 4A). Therefore, we wanted to determine whether
there was increased ESR1 activity in the Pgrtm2(cre)Lyd/þ

Ihhtm1Blan uterus. Therefore, we compared the list of differen-
tially regulated genes in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus to
the genes identified as being E2 regulated in wild-type mice by
Hewitt et al. [29]. This analysis revealed that 20 (2.3%) of the
863 genes altered in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan array are in
common with genes identified as being altered in the uteri of
wild-type mice treated with E2 (Supplemental Table S5). A
selection of these E2-regulated genes was validated by real-
time RT-PCR analysis (Fig. 4A). In this independent sample
set, we again observed increased expression of the E2 target
gene Muc1, confirming our previous finding. Analysis of these
genes in the Pgrtm2(cre)Lyd/þ mouse compared with controls
revealed no alteration in the mRNA expression level for the
majority of genes; however, the expression ofDcaf6 was

FIG. 1. Schematic of microarray analysis experimental design. Micro-
array analysis was performed using an abbreviated artificial decidual
response protocol in which the uteri were harvested 30 h after the first E2
plus P4 injection. Each vertical bar marks 1 day. E, estrogen injection (100
ng); Rest, no injection; eP, estrogen plus progesterone injection (6.7 ng
and 1 mg, respectively).
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significantly increased, albeit not to the magnitude of the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice (1.4-fold in the Pgrtm2(cre)Lyd/þ

uteri vs. 3.2-fold in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uteri), and
the expression of Prlr was significantly reduced, which is
opposite to that of the Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice
(Supplemental Fig. S1C). Because ESR1 is located in both
the epithelium and stroma of the uterus, we wanted to

determine whether there was a compartment-specific effect of
Ihh ablation on E2 signaling. ESR1 protein remained
unchanged in the uterine stroma or glandular epithelium, but
it was markedly increased in the uterine luminal epithelium of
the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus compared with controls
(Fig. 4B).

Because unopposed E2 signaling is a hallmark of uterine
diseases, we wanted to determine whether the increased E2
signaling observed in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice
resulted in a pathological condition. Therefore, we examined
the histology of untreated, intact Pgrþ/þIhhtm1Blan and
Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice at 15 mo of age and observed
that 50% of the Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice (n ¼ 12)
displayed an abnormal appearance. Microscopically, the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uteri had increased numbers of
cystically dilated endometrial glands compared with the control
Pgrþ/þ Ihhtm1Blan mice (Fig. 5A). These dilated endometrial

glands were typically lined by flattened epithelial cells and

contained cellular debris within the glandular lumens. In

addition, the endometrial stroma from the Pgrtm2(cre)Lyd/þ

Ihhtm1Blan uteri contained foci of homogeneous eosinophilic

staining, which is indicative of stromal hyalinization. Staining

FIG. 2. Cell cycle genes are deregulated
by Ihh ablation. A) Real-time RT-PCR
analysis of cell cycle genes (Ccnb1, Cdc2a,
Mcm5, Ccnd1). The results represent the
mean 6 SEM. *P , 0.05; **P , 0.01. B)
Immunohistochemical analysis of CCND1
in Pgrþ/þ Ihhtm1Blan (left) and Pgrtm2(cre)Lyd/þ

Ihhtm1Blan (right) mice. Positive staining is
seen by a brown signal. Nuclei were
counterstained with hematoxylin. C) Im-
munohistochemical analysis of MCM3 in
Pgrþ/þ Ihhtm1Blan (left) and Pgrtm2(cre)Lyd/þ

Ihhtm1Blan (right) mice. Positive staining is
seen by a brown signal. Nuclei were
counterstained with hematoxylin. Original
magnification of insets 340.

FIG. 3. EGF signaling is altered by ablation of Ihh. Real-time RT-PCR
analysis of the EGF signaling genes Egfr, Erbb2, Erbb3, Erbb4, and
Adam12. The results represent the mean 6 SEM. *P , 0.05; ***P , 0.001.
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for Masson trichrome indicated increased collagen deposition

in the endometrial stroma of the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uteri

(Fig. 5B). These results are consistent with previous findings

on chronic treatment of E2 in mice [30]. This phenotype was

not due to altered ovarian function as the mice exhibited

normal serum testosterone (63.93 6 6.37 ng/dl [Pgrþ/þ

Ihhtm1Blan] and 60.01 6 3.86 ng/dl [Pgrtm2(cre)Lyd/þ Ihhtm1Blan])

and estradiol (2.22 6 0.55 ng/dl [Pgrþ/þIhhtm1Blan] and 1.91

6 0.48 ng/dl [Pgrtm2(cre)Lyd/þ Ihhtm1Blan]) levels. Thus, Ihh acts

as a critical mediator of E2 signaling such that its loss results

not only in altered uterine receptivity but also a pathological

condition.

FIG. 4. Estrogen signaling is increased by
Ihh ablation. A) Identification of E2- and
Ihh-regulated genes during embryo implan-
tation. Genes differentially regulated by Ihh
were compared to genes regulated by E2 in
wild-type mice identified by Hewitt et al.
[29]. B) Real-time RT-PCR analysis of E2-
regulated genes. The results represent the
mean 6 SEM. *P , 0.05; **P , 0.01. B)
Immunohistochemical analysis of ESR1 in
Pgrþ/þ Ihhtm1Blan (left) and Pgrtm2(cre)Lyd/þ

Ihhtm1Blan (right) mice. Positive staining is
seen by a brown signal. Nuclei were
counterstained with hematoxylin. Original
magnification of insets 340.

FIG. 5. Examination of 15-mo-old mice.
A) Hematoxylin-eosin staining of 15-mo-old
Pgrþ/þ Ihhtm1Blan (left) and Pgrtm2(cre)Lyd/þ

Ihhtm1Blan (right) mice. B) Masson trichrome
staining of 15-mo-old Pgrþ/þ Ihhtm1Blan (left)
and Pgrtm2(cre)Lyd/þ Ihhtm1Blan (right) mice.
Blue signal indicates collagen. Red signal
indicates muscle. Black signal indicates
nuclei. Original magnification of insets
340.
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DISCUSSION

Ihh has been shown to be critical for normal adult uterine
function as conditional ablation of Ihh in the uterus renders
mice infertile due to defective embryo attachment and
decidualization [11]. The highest expression of Ihh is on d2.5
of pregnancy in the uterine epithelium, whereas that of its
target genes Ptch1 and Nr2f2 is highest on d3.5 in the uterine
stroma [5, 6]. Previously, we determined that these gene
expression changes could be mimicked by the administration of
exogenous hormones such that the highest expression of the
Ihh target genes correlated with 30 h after the first E2 plus P4
injection in the artificially induced decidual reaction [9, 16].
We performed microarray analysis at this time point to
determine which pathways are regulated by Ihh at the time of
embryo implantation and identified 863 Ihh-regulated genes. In
the analysis, we used whole uterus to extract the RNA, which
may have limited the number of genes identified because Ihh
signaling is focally activated in the subepithelial stroma, which
makes up a relatively small proportion of the total cell
population. Nonetheless, we observed an alteration in multiple
pathways, including cell cycle progression, EGF signaling, and
E2 signaling (Fig. 6). Although the Pgrtm2(cre)Lyd/þ Ihhtm1Blan

uterus exhibited decreased vascularization, we did not observe
a significant alteration in genes involved in this process,
possibly because of the relative abundance of the vasculature in
comparison with the epithelial or stroma cells in the uterus. For
the majority of genes examined, these changes in gene
expression were not due to the presence of Cre, because
wild-type and Pgrtm2(cre)Lyd/þ mice exhibited similar gene
expression patterns (Supplemental Fig. S1). However, for
Dcaf6 and Prlr the expression levels differed in the
Pgrtm2(cre)Lyd/þ uteri compared with controls, although not in
the same magnitude or direction. Despite the loss of one Pgr
allele, the Pgrtm2(cre)Lyd/þ mouse is phenotypically normal, and
no changes in P4-regulated gene expression have been
observed. In addition, neither Dcaf6 nor Prlr has been shown
to be P4 regulated in the uterus by microarray analysis
[17]. Therefore, these changes in gene expression in the

Pgrtm2(cre)Lyd/þ mouse model may be due to those particular
genes having increased sensitivity to Cre expression [31].

Stromal cell proliferation is a P4-driven process critical for
embryo implantation and subsequent decidualization, and Ihh
has been shown to be critical for this proliferation, as the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus exhibited decreased stromal
cell proliferation [11, 32]. In the human endometrium,
expression of IHH is correlated with cell division as its
expression decreases from the early to mid secretory phase,
when cellular division is also decreased [10]. Conversely, the
Hedgehog signaling axis has been shown to be overexpressed
in endometrial cancer and to act as a critical mediator of growth
in endometrial carcinoma cells [33]. CCNB1 and CDC2A
together form the mitosis-promoting factor, which phosphor-
ylates numerous proteins necessary for entry into mitosis [25].
PTCH1 has been shown to physically interact with CCNB1,
resulting in the inhibition of its nuclear localization, thereby
inhibiting entry into mitosis [34, 35]. In addition, we now show
that Ihh regulates the expression of these two critical proteins,
demonstrating an additional mechanism by which Hedgehog
signaling regulates entry into mitosis (Fig. 2A). Ccnd1 has
been shown to be critical for cell proliferation in the uterus as a
target of P4 inhibition of E2-induced proliferation [27, 36, 37].
Here, we show that Ihh regulates Ccnd1 expression in the
uterus, corroborating previous findings in Drosophila and
mouse cerebellar granule neuron precursors (Fig. 2A) [38, 39].
Interestingly, this loss of expression appears confined to the
uterine stroma, where the proliferation defect was observed in
the Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice (Fig. 2B) [11]. The MCM
family of proteins is characterized by their binding to
chromatin to regulate DNA replication. One of these proteins
is MCM5 (also known as CDC46), which has been shown to
be critical for replication in both yeast [40] and humans [26].
Here, we show that Ihh regulates the expression of Mcm5 (Fig.
2A). Another member of this family, MCM3, was also reduced
upon Ihh ablation, and this reduction appears confined to the
uterine stroma at this time point (Fig. 2C). Previously, the
localization of MCM3 has been shown to be regulated by
steroid hormones in the uterus, with E2 plus P4 treatment
resulting in strong stromal staining and weak epithelial staining
[41]. Many of the cell cycle genes regulated by Ihh, such as
Ccnd1, Mcm5, and Mcm3, have also been implicated in E2-
induced luminal epithelial proliferation at the time of
implantation (Supplemental Table S6) [41]. However, even
though we observed increased E2 sensitivity in the epithelium
of the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uteri, there was no difference
in epithelial proliferation when compared to controls. De-
creased proliferation was only observed in the endometrial
stroma. Thus, the changes in proliferation that were observed
were due to the direct action of Ihh ablation and not because of
the heightened E2 sensitivity of the epithelium.

Previously, we demonstrated that Ihh regulated the
expression of EGFR in the subepithelial stroma [11]. Here,
we show that Ihh also regulates the expression of the other
members of the ERBB family of receptors using real-time RT-
PCR analysis, with Erbb2 and Erbb3 being downregulated and
Erbb4 upregulated in the Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus (Fig.
3). These genes were not identified as being Ihh regulated by
microarray analysis, but this may be due to the false-negative
rate of the analysis. Previous work on the role of EGF signaling
in the uterus during embryo implantation examined the EGF
ligands Areg and Hbgef, neither of which was altered in the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus. Both Hbegf�/� and
Pgrtm2(cre)Lyd/þ Hbegf/f mice exhibit embryo implantation
defects, suggesting an important role for EGF signaling during
early pregnancy, whereas Areg�/� mice fail to exhibit a uterine

FIG. 6. Model of Ihh signaling in the uterus during preimplantation. Ihh
acts as a mediator of epithelial-stromal communication by mediating
multiple signaling pathways in the preimplantation period, such as cell
cycle progression, EGF signaling, and E2 signaling.
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phenotype, possibly because of compensation by the other
EGF ligands [42, 43]. Adam12, a known processor of EGF
ligands, was downregulated by ablation of Ihh (Fig. 2).
Recently, ADAM12 has been shown to be a critical regulator
of stromal cell decidualization, which is necessary for
successful embryo implantation [44]. ADAM12 has been
shown to process not only HBEGF but also Delta-like 1, a
ligand for the Notch receptors [28, 45]. In addition, ADAM12
has been shown to act in focal adhesion formation through the
b1 and b3 integrins (ITGB1 and ITGB3) and in transforming
growth factor-b (TGFB) signaling through interactions with the
TGFB type II receptor [46, 47]. All of these pathways have
been shown to be active during embryo implantation, and thus
Ihh through ADAM12 may regulate these pathways during
embryo implantation [48–50]. Thus, in the uterus, Ihh may be a
major mediator of not only EGF but also other signaling
pathways. Interestingly, its regulation of EGF signaling occurs
not at the level of ligand expression but at the receptor level
and also in the processing of the ligands.

Estrogen signaling is critical to uterine function during early
pregnancy because it defines the window of receptivity [3].
High or sustained levels of E2 make the uterus refractory
toward embryo implantation. In the Pgrtm2(cre)Lyd/þ Ihhtm1Blan

uterus, we observed increased levels of ESR1 at both the
mRNA and protein levels with the protein markedly increased
in the uterine luminal epithelium, which was accompanied by
increased expression of E2-regulated genes (Fig. 4). To
identify these E2-regulated genes, our gene list was compared
to that from Hewitt et al. [29], in which microarrays were
performed on ovariectomized wild-type mice treated with E2.
We identified 19 genes induced by E2 in the Hewitt et al. data
set that were upregulated upon ablation of Ihh (Supplemental
Table S5). These results agree with previous findings in the
Pgrtm2(cre)Lyd/þ Nr2f 2tm1Vco mice, in which the E2-regulated
genes lactoferrin, component C3, and chloride channel-
activated 3 were upregulated [14]. Thus, the repressive actions
of Ihh on the luminal epithelium may occur through Nr2f 2 in
the uterine stroma. In addition, the E2 target gene Muc1 was
upregulated in both the Pgrtm2(cre)Lyd/þ Ihhtm1Blan and
Pgrtm2(cre)Lyd/þ Nr2f 2tm1Vco uterus [11, 14]. Muc1 is a
glycoprotein that lines the uterine epithelium and whose loss
is necessary for embryo attachment and subsequent implanta-
tion to occur [12]. It was previously shown to be E2 regulated,
although it failed to appear in the Hewitt et al. data set [12, 29].
Therefore, there may be additional E2-regulated genes that
were altered by Ihh ablation that were not identified in this
analysis. Thus, the Ihh signaling axis regulates embryo
implantation through a downregulation of E2 signaling.

Furthermore, at 15 mo of age, Pgrtm2(cre)Lyd/þ Ihhtm1Blan

uteri exhibit characteristics of an estrogenized uterus, such as
cystic glands and hyalinized stroma (Fig. 5). This phenotype
may be attributed to altered ovarian function as serum estradiol
and testosterone levels decrease with age because of atresia of
the ovarian follicles, and a defect in this decrease could result
in increased circulating estradiol levels [51]. However, we
detected serum testosterone and estradiol levels that were
comparable between Pgrþ/þ Ihhtm1Blan and Pgrtm2(cre)Lyd/þ

Ihhtm1Blan mice, indicating that ovarian function was not
affected by Ihh ablation. In addition, in our previous analysis of
the Pgrtm2(cre)Lyd/þ Ihhtm1Blan mice, we did not observe an
ovarian phenotype, likely because of the nonoverlapping
expression patterns of Ihh and Pgrtm2(cre)Lyd/þ in the ovary
[11, 15, 52]. An indirect hypothalmo-pituitary-ovarian action
may also be a potential reason for this phenomenon; however,
previously we observed normal serum progesterone levels, and
here we demonstrate normal serum testosterone and estradiol

levels, indicating that this axis is intact [11]. Thus, the observed
phenotype is likely due to the increased E2 signaling resulting
from Ihh ablation, suggesting that Ihh may also play a role in
endometrial dysfunction as aberrant E2 signaling is a hallmark
of uterine diseases such as endometriosis and endometrial
cancer [53–55]. Recently, IHH was identified as a gene
significantly downregulated in patients with endometriosis
[56]. Thus, the Ihh signaling axis may be an important
therapeutic target for these diseases as a potential means to
target increased E2 signaling.

In conclusion, conditional ablation of Ihh in the murine
uterus renders female mice infertile [11]. Microarray analysis
conducted at the point at which the Ihh target genes have their
highest expression identified 863 Ihh-regulated genes. Of these
genes, those that regulate the cell cycle, EGF signaling, and E2
signaling were identified and validated. Thus, Ihh affects
embryo implantation through its regulation of stromal cell
proliferation and inhibition of epithelial E2 signaling,
events that are necessary for successful embryo implantation.
In addition, the increased E2 signaling observed in the
Pgrtm2(cre)Lyd/þ Ihhtm1Blan uterus and the downregulation of
IHH observed in endometriosis suggest that Hedgehog
signaling may play a role in the development of endometrial
diseases, such as endometriosis and endometrial cancer.
Further examination of the role of Hedgehog signaling in the
uterus may open avenues for new treatments of these diseases.
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