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Mutations of mitochondrial DNA are associated with a wide spectrum of disorders, primarily affecting the central nervous

system and muscle function. The specific consequences of mitochondrial DNA mutations for neuronal pathophysiology are not

understood. In order to explore the impact of mitochondrial mutations on neuronal biochemistry and physiology, we have used

fluorescence imaging techniques to examine changes in mitochondrial function in neurons differentiated from mouse embryonic

stem-cell cybrids containing mitochondrial DNA polymorphic variants or mutations. Surprisingly, in neurons carrying a severe

mutation in respiratory complex I (510% residual complex I activity) the mitochondrial membrane potential was significantly

increased, but collapsed in response to oligomycin, suggesting that the mitochondrial membrane potential was maintained by

the F1Fo ATPase operating in ‘reverse’ mode. In cells with a mutation in complex IV causing �40% residual complex IV activity,

the mitochondrial membrane potential was not significantly different from controls. The rate of generation of mitochondrial

reactive oxygen species, measured using hydroethidium and signals from the mitochondrially targeted hydroethidine, was

increased in neurons with both the complex I and complex IV mutations. Glutathione was depleted, suggesting significant

oxidative stress in neurons with a complex I deficiency, but not in those with a complex IV defect. In the neurons with complex I

deficiency but not the complex IV defect, neuronal death was increased and was attenuated by reactive oxygen species scav-

engers. Thus, in neurons with a severe mutation of complex I, the maintenance of a high potential by F1Fo ATPase activity

combined with an impaired respiratory chain causes oxidative stress which promotes cell death.
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Introduction
The most prominent and disabling features in patients with mito-

chondrial disease are often due to neuronal dysfunction and neu-

rodegeneration (Taylor and Turnbull, 2005). The clinical

presentation is extremely variable, ranging from focal deficits

such as optic neuropathy to more global disease such as dementia

and ataxia (McFarland et al., 2007). Only a limited number of

neuropathological studies are available and these show widespread

evidence of neuronal loss and dysfunction (Oldfors et al., 1990;

Sparaco et al., 2003; Betts et al., 2004). Currently, however, we

have limited information on the mechanisms involved in these

patterns of neuronal dysfunction and neurodegeneration.

Understanding these pathological mechanisms is crucial if we are

to develop strategies to treat or prevent the development of

symptoms in patients with mitochondrial disease.

Mitochondrial disease may result from defects of either the

nuclear or mitochondrial genome and there is an increasing rec-

ognition of the importance of these disorders. For example, mito-

chondrial DNA (mtDNA) disorders affect a minimum of 1 in

10 000 adults in the UK (Schaefer et al., 2008). Other reports

suggest that the burden of disease may be much more

common. A study of more than 3000 sequential umbilical-cord

blood samples, taken to investigate the birth prevalence of patho-

genic mtDNA mutations, showed that one mitochondrial tRNA

mutation, the m.3243A4G MTTL1 gene mutation, was present

in the general population at a frequency of 0.14% (Elliott et al.,

2008). The m.1555A4G mitochondrial RNA mutation associated

with aminoglycoside deafness is present in 1 in 200 individuals

from two separate populations (Bitner-Glindzicz et al., 2009;

Vandebona et al., 2009). Furthermore, strikingly similar mitochon-

drial abnormalities and mitochondrial respiratory chain deficient

cells are also present in patients with Alzheimer’s disease

(Bender et al., 2008), Parkinson’s disease and in normal brain

ageing (Bender et al., 2006; Kraytsberg et al., 2006). Therefore

establishing the pathophysiological mechanisms underlying

mtDNA disease may have important implications for other

common forms of neurodegeneration.

There are many different possible approaches to understanding

the mechanisms involved in mitochondrial neurodegeneration, ran-

ging from post-mortem studies in patients (Oldfors et al., 1990) to

the creation of animal models of human disease (Inoue et al., 2000;

Fan et al., 2008; Tyynismaa and Suomalainen, 2009). The latter

approach has many attractions but for mtDNA mutations it is prov-

ing challenging, at least in part because of difficulty in manipulating

the mitochondrial genome. In addition, there is now good evidence

that many pathogenic mtDNA mutations are not transmitted

(Stewart et al., 2008), thus limiting the availability of mice that

can be studied. The approach we have taken is to use cybrid tech-

nology to generate embryonic stem cells that contain pathogenic

mtDNA mutations (Kirby et al., 2009). These embryonic stem cells

can then be differentiated into neurons and glia, and their bio-

chemical and physiological properties investigated. These cell lines

also offer a major advantage in terms of cell imaging, which

enables a comprehensive analysis of the impact of mtDNA muta-

tions specifically on neuronal and glial metabolism and physiology.

The biochemical consequences of mtDNA defects have been

explored on several different cell types, but there have been rel-

atively few studies on neurons (Wong et al., 2002), the main

site of the neuropathology and subsequent clinical features. In

the present study, we have performed an analysis of the mito-

chondrial metabolism of neurons containing mtDNA mutations

that generate either a mild defect of complex IV or a severe

defect of complex I (Kirby et al., 2009). Our studies show very dif-

ferent biochemical phenotypes and responses between the two

cell lines and both are different from control cell lines. These

studies give an important insight into potential mechanisms and

approaches to treatment of neurodegeneration due to mtDNA

mutations.

Materials and methods
Cell lines used in this study were described in detail by Kirby et al.

(2009). All cybrids were derived from ES-1 (CC9.3.1). Control cell lines

were the parental embryonic stem-cell line ES-I and a cybrid (Cy1-I)

with a polymorphic variant (m.9821Adel) in the mitochondrial tRNA

gene for arginine (MTTR). The polymorphic cell line provides an

important control for the process of derivation of the cybrids.

Cybrids with altered electron transport chain function were Cy2-I

and Cy3-I. Cy2-I harbours the m.6589 T4C mutation in one of the

three mtDNA genes encoding complex IV subunits (MTCO1) and

causes a mild complex IV deficit (�40% residual complex IV activity).

Cy3-I has two mutations in mtDNA genes encoding different

complex I subunits (m.13887Cins in MTND6 and m.12273G4A in

MTND5) and causes a severe complex I defect (510% residual com-

plex I activity).

Differentiation into neurons
Parental embryonic stem cells and cybrids were differentiated into

neurons using the 4+/4– method (Bain et al., 1995) as described by

Kirby et al. (2009) which also gives full details of markers of differen-

tiation. Cultures were maintained on poly-D-lysine/laminin coated cov-

erslips. Studies were performed on differentiated neurons 7–9 days

post plating.

Imaging cytosolic free calcium
concentration, mitochondrial membrane
potential, reactive oxygen species
generation and glutathione
concentration
Cells were loaded for 30 min at room temperature with 5 mM fura-2

AM (Molecular Probes, Eugene, OR) and 0.005% Pluronic in a

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered

salt solution composed of (mM): 156 NaCl, 3 KCl, 2MgSO4, 1.25

KH2PO4, 2 CaCl2, 10 glucose and 10 HEPES, pH adjusted to 7.35

with NaOH. For simultaneous measurement of cytosolic free calcium

concentration ([Ca2+]c), and mitochondrial membrane potential (�wm),

rhodamine 123 (10mM, Molecular Probes, Eugene, OR) was added

into the cultures during the last 15 min of the fura-2 loading period.

For measurements of �wm, cells were loaded with 25 nM tetra-

methylrhodamine methylester for 30 min at room temperature and

the dye was present at the same concentration in all
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solutions throughout the experiment. In these experiments tetra-

methylrhodamine methylester is used in the ‘redistribution mode’

(Duchen et al., 2003) to assess �wm, and therefore a reduction in

mitochondrial localized tetramethylrhodamine methylester fluorescence

represents mitochondrial depolarization.

Fluorescence measurements of fura-2 and rhodamine 123 loaded

cells were made using an epifluorescence inverted microscope

equipped with a 20�fluorite objective. [Ca2+]c and �wm were mon-

itored in single cells using excitation light provided by a Xenon arc

lamp, the beam passing through a monochromator (Cairn research,

Kent, UK) to select wavelengths sequentially at 340, 380 and

490 nm (Cairn Research, Kent, UK) with bandwidths of 10 nm.

Emitted fluorescence light was reflected through a 515 nm long-pass

filter to a frame transfer cooled charge-coupled device camera

(Hamamatsu Orca ER). All imaging data were collected and analysed

using software iQ (Andor, Belfast, UK). The fluorescence data were

acquired at intervals of 5–10 s. The fura-2 data have not been cali-

brated in terms of [Ca2+]c because of the uncertainty arising from the

use of different calibration techniques. Accumulation of rhodamine

123 in polarized mitochondria quenches the fluorescent signal, in

response to depolarization the fluorescence signal is dequenched; an

increase in rhodamine 123 signal therefore signals mitochondrial depo-

larization. Wherever possible, we have normalized the signals between

resting level (set to 0) and a maximal signal generated in response to

the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

(FCCP) (1 mM; set to 100%) (Abramov and Duchen, 2008).

For measurement of mitochondrial reactive oxygen species produc-

tion, cells were pre-incubated with mitochondrially targeted hydroethi-

dine (5 mM, Molecular Probes, Eugene, OR) for 10 min at room

temperature. For measurement of cytosolic reactive oxygen species

production, dihydroethidium (2 mM) was present in the solution

during the experiment. No preincubation (‘loading’) was used for dihy-

droethidium to limit the intracellular accumulation of oxidized

products.

Tetramethylrhodamine methylester measurements were made using

a Zeiss 510 UV-VIS confocal laser scanning microscope equipped with

a META detection system and a 40� oil immersion objective. Illumi-

nation intensity was kept to a minimum to avoid phototoxicity and the

pinhole set to give an optical slice of �2 mm. Tetramethylrhodamine

methylester was excited using the 543 nm laser line and fluorescence

measured using a 560 nm long-pass filter. For hydroethidine and mito-

chondrially targeted hydroethidine measurements a ratio of the oxi-

dized/reduced form was measured: the 543 nm laser line and 560 nm

long-pass filter were used to excite the oxidized form (ethidium) while

excitation 351 nm and measurement at 405–470 nm was used to mea-

sure changes in the reduced form (hydroethidium). All data presented

were obtained from at least five coverslips and two to three different

cell preparations.

Glutathione measurements
To measure glutathione, cells were incubated with 50 mM monochlor-

obimane (MCB) (Molecular Probes, Eugene, OR). As MCB reacts with

glutathione in a reaction catalyzed by gluthatione-s-trasferase, gener-

ating a fluorescent adduct, cells were incubated with the dye in

HEPES-buffered salt solution at room temperature for 40 min, or

until a steady state had been reached before images were acquired

for quantitation (Keelan et al., 2001). The cells were then washed with

HEPES-buffered salt solution and images of the fluorescence of the

MCB-glutathione adduct were acquired using the cooled

charge-coupled device imaging system as described using excitation

at 380 nm and emission at 4400 nm.

Cell-death experiments
Cells were stained simultaneously with 20 mM propidium iodide, which

is excluded from viable cells but exhibits a red fluorescence following a

loss of membrane integrity, and 4.5 mM Hoechst 33342 (Molecular

Probes, Eugene, OR), which stains all nuclei and yields blue fluores-

cence to UV illumination, to count the total number of cells. Using

phase contrast optics, a bright field image allowed identification of

neurons, which show a quite distinct morphology compared with the

flatter glial cells and also lie in a different focal plane, above the glial

layer. A total number of 600–800 neurons or glial cells were counted

in 20–25 fields of each coverslip. Each experiment was repeated five or

more times, using separate cultures.

Statistical analysis
Statistical analysis was performed with the aid of Origin 8 (Microcal

Software Inc., Northampton, MA, USA) software. Means

expressed� SEM.

Results

Effect of mtDNA mutations on
mitochondrial membrane potential
Mutations of mtDNA affecting subunits of mitochondrial com-

plexes impair the efficiency of respiration and as a result might

be expected to alter the �wm. However, in the severe mutant cells

Cy3-l (Fig. 1A and B), both stem cells and differentiated cells

(neurons and glial-like cells) showed a significantly increased tetra-

methylrhodamine methylester signal (suggesting an increase in

�wm). Relative to the parental cell line ES-I (taken as 100%) the

measurements of tetramethylrhodamine methylester signal inten-

sity were 144� 8% for neurons (n = 112), 140� 7% for glial cells

(n = 89; P50.001 for both cell types). In the stem cells there was

also an increased �wm (127� 8%) (n = 44 cells; P50.05) com-

pared with control cell lines, but this was significantly lower than

for differentiated cells, suggesting a different possible mechanism.

In Cy1-I and Cy2-I cells, values of tetramethylrhodamine methyl-

ester fluorescence were not significantly different from the control

ES-I cells either as differentiated cells or as undifferentiated stem

cells (Fig. 1A and B).

Mechanism of maintenance of
mitochondrial membrane potential in
cells with severe complex I deficiency
To investigate how a mutation that severely impairs complex I

activity can not only maintain �wm but also be associated with

a value greater than seen in control cells, we explored the roles of

different mitochondrial mechanisms in the maintenance of mem-

brane potential. In cells with normal oxidative phosphorylation,

�wm is maintained by the proton pumping activity of the respira-

tory chain. However if oxidative phosphorylation is impaired, the

F1Fo-ATP synthase (complex V) may reverse, hydrolyse ATP and

pump protons across the inner membrane, so maintaining �wm

(e.g. McKenzie et al., 2007). Application of oligomycin (2 mg/ml),
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the inhibitor of the F1Fo-ATP synthase, caused a profound

decrease in �wm in CY3-I neurons, with a decrease in the tetra-

methylrhodamine methylester signal by 58� 5%, (n = 82; Fig. 1E).

Oligomycin either increased or did not affect �wm in the other cell

lines (Fig. 1C and D). Thus, in CY3-I cells, in response to the

impaired activity of the respiratory chain, the F1Fo complex

switched to ATP consumption mode which maintained �wm.

Despite carrying the same mtDNA mutation, the response of the

undifferentiated CY3-I stem cells to oligomycin was different

compared with the differentiated neuronal CY3-I cells (Fig. 1F).

In the undifferentiated cells, application of oligomycin increased

tetramethylrhodamine methylester fluorescence by 7.4� 0.4%

(n = 99), in contrast to the depolarization seen in the differentiated

cells. Tetramethylrhodamine methylester fluorescence was then

significantly reduced by the subsequent addition of rotenone (by

38.2� 4.1%), indicating a fall in �wm. A relatively large further

decrease in signal, in response to FCCP, then suggested that com-

plex II activity must also be relatively active as a donor of electrons
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Figure 1 Characteristics of mitochondrial membrane potential (�wm) in cells with mitochondrial mutations. (A–B) Neurons and astrocytes

with severe mutation in complex I (CY3-I) showed a significant increase (P50.001) in �wm compared with control cells. The mitochondrial

potential in cells with a mutation in complex IV (CY2-I) showed no significant difference from control. Non-differentiated CY3-I cells also

exhibited a 26% increase (P50.05) in tetramethylrhodamine methylester (TMRM) fluorescence (i.e. an increased �wm) compared with

controls. In control and CY2-I neurons (C–D), oligomycin did not affect �wm; rotenone induced a partial depolarization; FCCP induced

complete depolarization. In CY3-I neurons (E), oligomycin caused a mitochondrial depolarization. In the CY3-I stem cells (F) the �wm was

not maintained by reverse electron flow since oligomycin did not cause mitochondrial depolarization. �P50.05; ��P50.001.

800 | Brain 2010: 133; 797–807 A. Y. Abramov et al.



in these cells. The effects of oligomycin, rotenone and FCCP in

non-differentiated cells CY2-I (n = 76), ES-I (n = 41) and CY1-I

(n = 67) were equivalent to effects in the differentiated neuron

and glial cells.

Effects of substrates on the maintenance
of mitochondrial membrane potential
It has been shown that in some models, maintenance of the �wm

by ‘reverse’ ATPase activity can be corrected by giving additional

substrate, suggesting that substrate supply may be rate limiting

(Gandhi et al., 2009). Provision of additional substrate for

complex I (pyruvate, 5 mM) increased �wm in CY3-I cells (by

16.1� 1.1%, n = 101; P50.05), but methyl-succinate (5 mM) a

membrane-permeable analogue of succinate, the substrate for

complex II, induced a small but significant mitochondrial depolar-

ization in CY3-I neurons (by 19.1� 1.1%; P50.05). Additional

mitochondrial substrates did not change the effect of oligomycin

on �wm—application of the F1Fo-ATPase inhibitor increased

�wm in ES-I, CY1-I and CY2-I and collapsed �wm in CY3-I neu-

rons (Fig. 2A–D). Thus, the impaired maintenance of �wm by the

respiratory chain in CY3-I neurons is not due to lack of substrate

supply.

Calcium homoeostasis
Mitochondria play a significant role as a spatial calcium buffering

system in maintaining neuronal calcium homoeostasis (Duchen,

2000). Physiological stimuli do not damage mitochondrial function

in healthy cells but can increase the generation of reactive oxygen

species, which when associated with mitochondrial calcium over-

load can precipitate opening of the mitochondrial permeability

transition pore. In order to investigate the influence of the mito-

chondrial mutations on calcium homeostasis we measured [Ca2+]c

and �wm simultaneously using fura-2 and rhodamine 123, respec-

tively, following stimulation of cells with a variety of agonists to

raise [Ca2+]c. ATP (100 mM) was used to stimulate [Ca2+]c signals

in astrocytes via purinoceptors, and 50 mM KCl was used to

induce depolarization of the plasma membrane and open voltage
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Figure 2 Effect of mitochondrial substrates on mechanism of maintenance of �wm in cells with mitochondrial mutations. Application of

pyruvate (5 mM) or methyl succinate (5 mM) to neurons increased �wm, but increased substrate provision did not prevent the oligomycin

induced mitochondrial depolarization in CY3-I neurons (C). In the presence of pyruvate, methyl-succinate induced further hyper-

polarization of mitochondria in ES-I and CY1-I neurons (A, B, D), but a small mitochondrial depolarisation in CY3-I cells.

TMRM = tetramethylrhodamine methylester.
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gated calcium channels, which are primarily expressed in neurons.

Application of 50 mM KCl to all four cell lines produced a [Ca2+]c

signal on cells of neuronal phenotype, with no significant depolar-

ization of �wm (Fig. 3) as characterized before in primary neurons

(Keelan et al., 2001; Gandhi et al., 2009). Application of 100mM

ATP to glial cells in co-culture induced a [Ca2+]c signal with no

significant difference between groups of cells in amplitude or time

course (Fig. 3C–D). Raising [Ca2+]c with ATP also did not change

�wm in any of the cell lines. Thus, these mitochondrial mutations

did not induce pathological changes in their mitochondrial

responses to [Ca2+]c signals under these conditions.

Production of reactive oxygen species
in mitochondria
Mitochondria are widely believed to be an important source of

reactive oxygen species in a number of neurodegenerative disease

states. The increased generation of mitochondrial reactive oxygen

species by mitochondria with an impaired respiratory chain may be

a factor in cell dysfunction in the presence of mtDNA mutations

(Fukui and Moraes, 2008). We have tried to differentiate between

reactive oxygen species generated in the cytosol and in the mito-

chondrial matrix by using hydroethidine as a cytosolic indicator

compared with signals from the mitochondrially targeted hydro-

ethidine. The rate of reactive oxygen species production was

assessed by measuring the ratio of the rate of increase in red

fluorescence (oxidized hydroethidine or ethidium) and the rate

of disappearance of the UV induced blue hydroethidine fluores-

cence (see ‘Materials and methods’ section). In order to isolate

mitochondrial from other sources of reactive oxygen species gen-

eration, inhibitors of the nicotinamide adenine dinucleotide phos-

phate oxidase (apocynin, 1 mM or 0.5 mM diphenyleneiodonium)

and xanthine oxidase (oxypurinol, 10 mM) were used (Abramov

et al., 2007). The rates of reactive oxygen species generation

both in the cytosol and in the mitochondrial matrix were not

significantly different between control (ES-I) and CY1-I cells

(Fig. 4A). The rate of reactive oxygen species production in

CY2-I neurons was significantly higher both in the mitochondrial

matrix (1.5-fold compared withwith ES-I neurons; n = 121;

P50.05) and in the cytosol (1.8-fold increase in the rate com-

pared with ES-I; n = 161; P50.05; Fig. 4A). The severe mutation

in complex I (CY3-I neurons) was also associated with a significant

increase in the rate of reactive oxygen species production in both

the matrix (1.9-fold higher than ES-I; n = 178; P50.001; Fig. 4A)

and the cytosol (3.3-fold higher than ES-I; n = 195; P50.001;

Fig. 4A).

The high rate of reactive oxygen species production in CY3-I

neurons may be a consequence of two features of the mitochon-

drial respiratory chain in these cells—a defect in complex I and a

higher �wm. To explore this we used additional substrate for com-

plex I, 5 mM pyruvate, and induced a 2.2-fold increase of the rate

0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 1 2 3 4 5 6

0
20
40
60
80

100
120

F
ur

a-
2 

ra
tio

ATP FCCP

R
h1

23
, %

Time (min)

CY1-I, astrocyte

0 1 2 3 4 5 6
-20

0
20
40
60
80

100
120

0.6
0.8
1.0
1.2
1.4
1.6
1.8

R
h1

23
, %

Time (min)

F
ur

a-
2 

ra
tio

CY3-I astrocyte

ATP FCCP

0.8

1.0

1.2

1.4

0 2 4 6 8 10
-20

0
20
40
60
80

100

F
ur

a-
2 

ra
tio

FCCP

50 mM KCl

CY3-I neuron

R
h1

23
, %

Time (min)

0.8

1.0

1.2

1.4

0 2 4 6 8 10
-20

0
20
40
60
80

100

F
ur

a 
-2

 r
at

io

50 mM KCl

FCCP

R
h1

23
, %

Time (min)

ES-I neuronA B

C D

Figure 3 Calcium homeostasis. Simultaneous measurements of [Ca2+]c and �Wm were made from neurons (A–B) and astrocytes (C–D) in

mixed culture co-loaded with fura-2 and rhodamine 123. Traces are shown from single cells in each case. Mitochondrial mutations did not

induce pathological changes in their mitochondrial responses to [Ca2+]c signals under these conditions.
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of increase of the hydroethidine ratio in ES-I cells (n = 153;

P50.001) but not in CY3-I neurons (n = 114; Fig. 4B and C).

Subsequent inhibition of complex I with 5mM rotenone

induced a further increase of reactive oxygen species production

in ES-I neurons (to 3.1-fold increase relative to the basal rate)

but a decrease in CY3-I cells, (from a 3.3-fold increase in the

basal rate in ES-I neurons to 1.5-fold increase in the rate

of CY3-I cells; P50.05; Fig. 4B and C). In the CY3-I cells the

effects of substrate and rotenone suggest that reactive

oxygen species generation in CY3-I neurons is sustained by the

high �wm.

In the CY2-I cells reactive oxygen species production was

increased in the presence of rotenone (to 289� 24% of basal

rate for CY2-I). Pyruvate also increased reactive oxygen species

generation in CY2-I cells (163� 11% of basal; n = 144) but sub-

sequent application of Wurster’s blue (TMPD; 200 mM)/ascorbate

(5 mM) inhibited reactive oxygen species production in CY2-I neu-

rons (to 106 � 6% of basal rate hydroethidine ratio). In the CY2-I
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Figure 4 Mitochondrial and cytosolic reactive oxygen species production in cells with mitochondrial mutations. CY3-I neurons displayed a

significantly higher basal rate of increase in mitochondrially targeted hydroethidine (Mitosox) and hydroethidine ratio, demonstrating a

higher basal production of intra-mitochondrial and extra-mitochondrial reactive oxygen species compared with control (A). Histogram

demonstrating percentage values of the rate of mitochondrially targeted hydroethidine or hydroethidine ratio compared with 100% for

control neurons. (B–E) show increase of �Wm by mitochondrial substrates (pyruvate and TMPD/ascorbate) or inhibition of complex 1 with

rotenone demonstrated the dependence of reactive oxygen species production on �Wm. �P50.05; ��P50.001.
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neurons the increased reactive oxygen species production is likely

to be due to defect in complex IV.

Glutathione measurements
Cell viability in response to increased reactive oxygen species gen-

eration is dependent on the efficiency of cellular antioxidant sys-

tems. Glutathione provides one of the major antioxidant

mechanisms in the CNS. Oxidative stress—the condition in

which the rate of reactive oxygen species generation overwhelms

antioxidant defence, is typically associated with glutathione deple-

tion and leads to CNS pathology (Dringen and Hirrlinger, 2003).

MCB was used to measure glutathione status in non activated

neurons and glial cells from co-culture. Differences between the

level of glutathione concentration in neurons and astrocytes is well

established (Keelan et al., 2001; Dringen and Hirrlinger, 2003) and

was observed in these differentiated stem-cell preparations, with a

level of MCB fluorescence in all groups of neurons at about 40%

of the signal in astrocytes in the same culture (Fig. 5). Despite the

higher rate of reactive oxygen species production that we have

measured in CY2-I neurons, the mutation in complex IV was not

associated with a significant change in glutathione concentration

in the neurons or astrocytes (Fig. 5). The severe mutation in com-

plex I (CY3-I) was not only associated with increased reactive

oxygen species production in mitochondria but also with a signif-

icant reduction in glutathione concentration in both neurons and

astrocytes. The level of MCB fluorescence in CY3-I neurons was

59� 4% of control (ES-I), and 62� 5% for astrocytes (P50.001

for both; n = 4 experiments; Fig. 5). Thus, the severe complex I

mutation in CY3-I cells induces oxidative stress.

Cell viability
The number of functional neurons and astrocytes in a co-culture

can be estimated by counting cells that show [Ca2+]c signals

in response to physiological stimuli, KCl or ATP, which give

characteristic and distinct responses in either neurons or astrocytes

(see above). The application of glutamate (50 mM) induced robust

[Ca2+]c responses in neurons (Fig. 6A), while 100 mM ATP gave

characteristic responses in astrocytes while neurons generally did

not respond to ATP (Fig. 6B). At 7 days in vitro, the cultures

showed relative proportions of neurons (74.6� 6.1%) to astro-

cytes (15.9� 0.9%) (ES-I, n = 297) and 71.3� 4.5% to

17.8� 1.1% (CY1-I, n = 320 cells). The co-cultures of CY2-I and

CY3-I cells contained more astrocytes than control ES-I cells

(24.7� 2.1% of astrocytes in CY2-I cells, n = 265; and

32.7� 2.9% in CY3-I with only 34.9� 2.1% neurons; n = 232

cells; Fig. 6C). With increasing time in culture, there was a pro-

gressive increase in cell death of neurons, resulting in a change in

the proportion between cell types (Fig. 6D). At 7 days in vitro the

CY2-I culture contained fewer neurons (82.6� 6.9% of control)

and even less in 12 days in vitro culture (64.6% of control in

7 days in vitro). The most dramatic loss of neurons was observed

in CY3-I culture, with 59.6� 4% of control cultures at 7 days

in vitro, but only 6.2� 0.4% at 12 days in vitro.

Considering the very high level of reactive oxygen species gen-

eration and low level of endogenous antioxidant in CY3-I neurons

we investigated the effect of antioxidants on neuronal survival.

Incubation of the CY3-I neurons with 200 mM manganese (III)

tetrakis (4-benzoic acid)porphyrin (MnTBAP; a superoxide dismu-

tase mimic and hydrogen peroxide scavenger) significantly

reduced the number of dead neurons (measured as a % of pro-

pidium iodide positive neurons at 14 days in vitro). Thus, the pro-

portion of dead neurons in untreated CY3-I culture was

45.5� 4.1%; n = 593 neurons; in cell cultures with MnTBAP pre-

treatment this fell to only 12.6� 1.1%, n = 651 neurons; (P50.01,

Fig. 6F). Therefore, overproduction of reactive oxygen species in

cells with severe mutation in the complex I is an important cause

of specific neuronal death.

Discussion
We believe our approach to understanding the mechanisms

involved in neurodegeneration due to mtDNA mutations has

given us valuable insight into the neuronal consequences of

these mutations. Whilst the majority of studies were performed

on neurons and glia, limited studies were also performed on undif-

ferentiated cells including exploration of one of the fundamental

properties of mitochondria, mechanisms involved in the main-

tenance of membrane potential. For the severe complex I muta-

tion there was a significant difference between undifferentiated

cells and differentiated cells, glia and neurons. This highlights

the need to study relevant models of disease whenever possible

if we are to understand the mechanism of neurodegeneration.

Mitochondrial membrane potential
Maintenance of a membrane potential is an essential property of

mitochondria. Cells lacking in mtDNA (rho0) maintain a modest

membrane potential despite being unable to perform any oxidative

metabolism. Discharge of the mitochondrial membrane potential

has a number of consequences for the cell, including apoptosis.
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We have found that a severe mutation in complex I changes the

mechanism of maintenance of mitochondrial membrane potential

in neurons and astrocytes. In control cells and cells with complex

IV mutation, �wm is maintained by the proton pumping activity of

the respiratory chain. The severe complex I mutation in neurons

and glia significantly impaired oxidative phosphorylation.

Hydrolysis of ATP by the F1Fo-ATPase (complex V) occurs under

these conditions, pumping protons across the inner membrane and

maintaining �wm. Remarkably, non-differentiated embryonic stem

cells with same mutation maintain mitochondrial membrane

potential by respiratory chain activity—thus, the properties that

determine the ability to maintain �wm via hydrolysis of ATP neu-

rons and glia seems to switch at the time of differentiation.

Considering the low glycolytic activity of neurons compared with

other cell types (Snyder and Wilson, 1983) enhanced consumption

of ATP in response to pathological situations such as seizures,
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common in patients with mitochondrial disease, might be poten-

tially harmful for neurons. This is of clinical relevance since epi-

lepsy is a very prominent feature of mtDNA disease, and there is

evidence that the stroke-like episodes seen in patients with the

mitochondrial encephalomyopathy, lactic acidosis and stroke-like

episodes (MELAS) syndrome are often associated with seizures

(Betts et al., 2006).

Calcium handling
An interesting observation is the normal calcium handling by the

cell lines under the experimental conditions used. Calcium ions are

central to neuronal function, transducing electrical activity into

molecular signals. In addition, altered cytosolic Ca2+ regulation

underlies entry into various cell-death pathways. Consequently,

factors that shape the Ca2+ transients are likely to assume great

importance in normal neuronal function. A key role in this regard

is played by mitochondria. The �wm provides a powerful driving

force to accumulate Ca2+ from the cytosol (Vasington and

Murphy, 1962; Carafoli et al., 1964; Crompton and Heid,

1978). Agents which uncouple �wm prevent mitochondria from

taking up Ca2+ and thus alter the time course of cytosolic Ca2+

transients in neurons (Werth and Thayer, 1994) and astrocytes

(Boitier et al., 1999). The preservation of �wm in all cell lines

under the conditions used is the likely explanation of the normal

calcium handling in these cell lines.

Mitochondrial reactive oxygen species
It has been widely reported that inhibition of complex I and

enhanced �wm are classical inducers of reactive oxygen species

generation in mitochondria (Abramov et al., 2007). The severe

complex I deficient cells demonstrated unique combination of

impaired complex I and high �wm—combination of both factors

dramatically increased production of reactive oxygen species into

both the mitochondrial matrix and the cytosol. Excessive genera-

tion of free radicals induced glutathione depletion in both neurons

and astrocytes, impairing neuronal viability as glutathione deple-

tion leaves the neurons vulnerable to damage by oxidative stress.

We believe this is the mechanism by which neurons die more than

the astrocytes although features of mutations in complex I

appeared in both cell types. Astrocytes contain far higher levels

of glutathione than neurons (Dringen and Hirrlinger, 2003) and

supply amino acid precursors for neuronal glutathione synthesis.

Neurons depleted of glutathione die, probably through an inability

to withstand their intrinsic pro-oxidants (Vesce et al., 2005). In

contrast, astrocytes can sustain adequate ATP synthesis by glyco-

lytic metabolism, seem not to be as significantly damaged by loss

of mitochondrial function, and are also far more resistant to oxi-

dative stress than are the neurons.

In conclusion, we have explored the mechanism of neuronal

involvement with two different mtDNA mutations. These muta-

tions were different both in terms of the site of the genetic defect

and the severity of the biochemical defect—which probably

reflects the different biochemical phenotype of these cells. In the

cells with severe complex I deficiency there is evidence of marked

cell loss which is entirely compatible with the neuropathological

changes seen in patients with mtDNA disease. Interestingly this

cell loss was decreased in the presence of antioxidants suggesting

a role for reactive oxygen species in the cell death. This might

have important implications for the management of patients

with mtDNA disease where current treatment options are very

limited.

Acknowledgements
Sadly during the writing of this article Denise Kirby died after a

short illness and the authors would like to dedicate this article to

this outstanding scientist and great colleague.

Funding
Wellcome Trust, UK NIHR Biomedical Research Centre for Ageing

and Age-related disease award to the Newcastle upon Tyne

Hospitals NHS Foundation Trust, Newcastle University Centre for

Brain Ageing and Vitality supported by BBSRC, EPSRC, ESRC and

MRC; Ruth L. Kirschstein NRSA (NINDS, NIH, USA) (to T.K.S.);

National Health and Medical Research Council of AUSTRALIA

(NHMRC) CJ Martin Postdoctoral Training Fellowship (to

D.M.K.). Work in the Duchen lab is supported by grants from

the Wellcome Trust and MRC.

References
Abramov AY, Duchen MR. Mechanisms underlying the loss of mitochon-

drial membrane potential in glutamate excitotoxicity. Biochim Biophys

Acta 2008; 1777: 953–64.

Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms gen-

erate oxygen free radicals in neurons and contribute to cell death

during anoxia and reoxygenation. J Neurosci 2007; 27: 1129–38.

Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH,

et al. High levels of mitochondrial DNA deletions in substantia nigra

neurons in aging and Parkinson disease. Nat Genet 2006; 38: 515–7.

Bender A, Schwarzkopf RM, McMillan A, Krishnan KJ, Rieder G,

Neumann M, et al. Dopaminergic midbrain neurons are the prime

target for mitochondrial DNA deletions. J Neurol 2008; 255: 1231–5.
Betts J, Jaros E, Perry RH, Schaefer AM, Taylor RW, Abdel-All Z, et al.

Molecular neuropathology of MELAS: level of heteroplasmy in indivi-

dual neurones and evidence of extensive vascular involvement.

Neuropathol Appl Neurobiol 2006; 32: 359–73.

Betts J, Lightowlers RN, Turnbull DM. Neuropathological aspects of

mitochondrial DNA disease. Neurochem Res 2004; 29: 505–11.

Bitner-Glindzicz M, Pembrey M, Duncan A, Heron J, Ring SM, Hall A,

et al. Prevalence of mitochondrial 1555A–4G mutation in European

children. N Engl J Med 2009; 360: 640–2.

Boitier E, Rea R, Duchen MR. Mitochondria exert a negative feedback on

the propagation of intracellular Ca2+ waves in rat cortical astrocytes.

J Cell Biol 1999; 145: 795–808.

Carafoli E, Rossi CS, Lehninger AL. Cation and anion balance during

active accumulation of Ca++ and Mg++ by isolated mitochondria.

J Biol Chem 1964; 239: 3055–61.
Crompton M, Heid I. The cycling of calcium, sodium, and protons across

the inner membrane of cardiac mitochondria. Eur J Biochem 1978; 91:

599–608.

Dringen R, Hirrlinger J. Glutathione pathways in the brain. Biol Chem

2003; 384: 505–16.

806 | Brain 2010: 133; 797–807 A. Y. Abramov et al.



Duchen MR. Mitochondria and calcium: from cell signalling to cell death.
J Physiol 2000; 529 Pt 1: 57–68.

Duchen MR, Surin A, Jacobson J. Imaging mitochondrial function in

intact cells. Methods Enzymol 2003; 361: 353–89.

Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic
mitochondrial DNA mutations are common in the general population.

Am J Hum Genet 2008; 83: 254–60.

Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, et al. A

mouse model of mitochondrial disease reveals germline selection
against severe mtDNA mutations. Science 2008; 319: 958–62.

Fukui H, Moraes CT. The mitochondrial impairment, oxidative stress and

neurodegeneration connection: reality or just an attractive hypothesis?
Trends Neurosci 2008; 31: 251–6.

Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K,

et al. PINK1-associated Parkinson’s disease is caused by neuronal vul-

nerability to calcium-induced cell death. Mol Cell 2009; 33: 627–38.
Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, et al.

Generation of mice with mitochondrial dysfunction by introducing

mouse mtDNA carrying a deletion into zygotes. Nat Genet 2000;

26: 176–81.
Keelan J, Allen NJ, Antcliffe D, Pal S, Duchen MR. Quantitative imaging

of glutathione in hippocampal neurons and glia in culture using mono-

chlorobimane. J Neurosci Res 2001; 66: 873–84.

Kirby DM, Rennie KJ, Smulders-Srinivasan TK, Acin-Perez R,
Whittington M, Enriquez JA, et al. Transmitochondrial embryonic

stem cells containing pathogenic mtDNA mutations are compromised

in neuronal differentiation. Cell Prolif 2009; 42: 413–24.
Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW,

Khrapko K. Mitochondrial DNA deletions are abundant and cause

functional impairment in aged human substantia nigra neurons.

Nat Genet 2006; 38: 518–20.
McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease–its impact,

etiology, and pathology. Curr Top Dev Biol 2007; 77: 113–55.

McKenzie M, Liolitsa D, Akinshina N, Campanella M, Sisodiya S,

Hargreaves I, et al. Mitochondrial ND5 gene variation associated
with encephalomyopathy and mitochondrial ATP consumption. J Biol

Chem 2007; 282: 36845–52.

Oldfors A, Fyhr IM, Holme E, Larsson NG, Tulinius M.

Neuropathology in Kearns-Sayre syndrome. Acta Neuropathol (Berl)

1990; 80: 541–6.

Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW,

et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol

2008; 63: 35–9.

Snyder CD, Wilson JE. Relative levels of hexokinase in isolated neuronal,

astrocytic, and oligodendroglial fractions from rat brain. J Neurochem

1983; 40: 1178–81.

Sparaco M, Simonati A, Cavallaro T, Bartolomei L, Grauso M, Piscioli F,

et al. MELAS: clinical phenotype and morphological brain abnormal-

ities. Acta Neuropathol (Berl) 2003; 106: 202–12.

Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A,

et al. Strong purifying selection in transmission of mammalian mito-

chondrial DNA. PLoS Biol 2008; 6: e10.

Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human dis-

ease. Nat Rev Genet 2005; 6: 389–402.
Tyynismaa H, Suomalainen A. Mouse models of mitochondrial DNA

defects and their relevance for human disease. EMBO Rep 2009; 10:

137–43.
Vandebona H, Mitchell P, Manwaring N, Griffiths K, Gopinath B,

Wang JJ, et al. Prevalence of mitochondrial 1555A–4G mutation in

adults of European descent. N Engl J Med 2009; 360: 642–4.
Vasington FD, Murphy JV. Ca ion uptake by rat kidney mitochondria and

its dependence on respiration and phosphorylation. J Biol Chem 1962;

237: 2670–7.
Vesce S, Jekabsons MB, Johnson-Cadwell LI, Nicholls DG. Acute glu-

tathione depletion restricts mitochondrial ATP export in cerebellar

granule neurons. J Biol Chem 2005; 280: 38720–8.
Werth JL, Thayer SA. Mitochondria buffer physiological calcium loads in

cultured rat dorsal root ganglion neurons. J Neurosci 1994; 14:

348–56.
Wong A, Cavelier L, Collins-Schramm HE, Seldin MF, McGrogan M,

Savontaus ML, et al. Differentiation-specific effects of LHON muta-

tions introduced into neuronal NT2 cells. Hum Mol Genet 2002; 11:

431–8.

Neurodegeneration due to mtDNA mutations Brain 2010: 133; 797–807 | 807


