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Abstract
Proteasome dysfunction has been repeatedly reported 
in alcoholic liver disease. Ethanol metabolism end-
products affect the structure of the proteasome, and, 
therefore, change the proteasome interaction with 
its regulatory complexes 19S and PA28, as well as its 
interacting proteins. Chronic ethanol feeding alters the 
ubiquitin-proteasome activity by altering the interaction 
between the 19S and the 20S proteasome interaction. 
The degradation of oxidized and damaged proteins is 
thus decreased and leads to accumulation of insoluble 
protein aggregates, such as Mallory-Denk bodies. 
Ethanol also affects the immunoproteasome formation. 
PA28a/b interactions with the 20S proteasome are 
decreased in the proteasome fraction isolated from 
the liver of rats fed ethanol chronically, thus affecting 
the cellular antigen presentation and defense against 
pathogenic agents. Recently, it has been shown that 
ethanol also affects the proteasome interacting proteins 
(PIPs). Interaction of the proteasome with Ecm29 and 
with deubiquitinating enzymes Rpn11, UCH37, and 
Usp14 has been found to decrease. However, the two 
UBL-ubiquitin-associated domain (UBA) PIPs p62 and 
valosin-containing protein are upregulated when the 
proteasome is inhibited. The increase of these UBL-UBA 

proteins, as well as the increase in Hsp70 and Hsp25 
levels, compensated for the proteasome failure and 
helped in the unfolding/docking of misfolded proteins. 
Chronic alcohol feeding to rats causes a significant 
inhibition of the proteasome pathway and this inhibition 
results from a decreases of the interaction between the 
20S proteasome and the regulatory complexes, PIPs, 
and the ubiquitin system components.
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INTRODUCTION
Proteasome dysfunction is well established in alcoholic 
liver injury. However, the mechanism by which ethanol 
feeding causes proteasome dysfunction is still unclear. 
Proteasome chymotrypsin-like activity decrease has been 
the major finding to explain the proteasome dysfunc-
tion and accumulation of  misfolded and ubiquitinated 
proteins in the liver of  chronic ethanol-fed animals. Pre-
vious studies reported by the author[1,2] have shown that 
the dysfunction of  the proteasome system in alcoholic 
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liver disease is caused by structural changes in the α type 
subunits of  the proteasome. However, the dysfunction 
of  the proteasome pathway in alcoholic liver disease is 
more complicated. There are multiple levels of  protea-
some activity and specificity regulation. The ubiquitin 
system and the proteasome interacting proteins (PIPs) 
are part of  the regulation of  proteasome activity and 
specificity. The effects of  ethanol feeding on the ubiq-
uitin system and the proteasome interacting protein are 
still unknown.

proteasome system
The proteasome system is a sophisticated, selective, and 
highly specific proteolytic pathway. It includes the 20S 
proteasome, also called the catalytic core particle (CP), 
the regulatory complexes, and interacting proteins. The 
catalytic core is formed by 28 subunits, arranged into 
four heteroheptameric rings made of  seven subunits 
each (7α7β7β7α). The α-type subunits form the exter-
nal rings, and the β subunits the internal rings.

CP BINDING TO THE 19S REGULATORY 
COMPLEX
The CP of  the proteasome system binds to the regulatory 
complex 19S to form the 26S proteasome (Figure 1). The 
26S proteasome is involved in the ubiquitin proteasome 
pathway (UPP), and is responsible for the ubiquitin-
targeted protein degradation[3] (Figure 1).

Cellular key proteins, such as cyclins, cyclin-depen-
dent kinase inhibitors, IκB, hypoxia-inducible factor-1α, 
Nrf2, and p53, are substrates for the 26S proteasome, 
and their ubiquitin-dependent degradation is highly con-
trolled[4-6].

The UPP is also responsible for the clearance of  
misfolded and oxidized proteins. Therefore , proteasome 
failure is the cause of  numerous diseases associated with 
poor clearance of  these often deleterious proteins.

There are two major steps involved in the ubiquitin-
proteasome-dependent degradation pathway: (1) the 
enzymatic polyubiquitination of  protein substrates; and 
(2) the docking and recognition by the 26S proteasome 
prior to degradation. A cascade of  enzymes, including 
the ubiquitin-activating E1 enzymes, the ubiquitin-carrier 
protein E2 enzymes, and the ubiquitin-protein ligases 
E3, which conjugate the ubiquitin residues to the target 
protein substrate for degradation, are responsible for 
the ubiquitination of  the protein substrate[7]. There are 
at least four different E1s, 24 different E2s, and at least 
100 E3s ligases[8]. 

Several rounds of  ubiquitination yield an ubiquitin 
chain that includes at least four ubiquitin residues, which 
designates the target protein for degradation by the 26S 
proteasome. Once the polyubiquitinated protein is de-
livered to the 26S proteasome, the polyubiquitin chain 
is freed, and the ubiquitin residues are recycled. Several 

deubiquitinating enzymes play an important regulatory 
role in regenerating the ubiquitin protein[9], and in certain 
cases, represent a rate-limiting step for proteasome-me-
diated protein degradation[10]. When change occurs and 
interferes with these rounds of  ubiquitination, deleteri-
ous proteins accumulate and cause cellular dysfunction. 
For instance, mutation of  the E3 ligases and misreading 
of  ubiquitin have been reported to modify the ubiquitin 
system level and cause a significant inhibition of  protea-
some activity[11].

This great diversity in the ubiquitination system and 
in the interactions of  the CP with its regulatory com-
plexes reflects the complexity and the specificity of  the 
UPP. Disruption of  the UPP has been implicated in a 
wide range of  human diseases. Therefore, the protea-
some and ubiquitination components are highly attrac-
tive targets for pharmaceutical intervention.

CP BINDING TO THE PA28 REGULATORY 

COMPLEX
The 20S proteasome can also bind to the regulatory 
complex PA28 (also known as REG and 11S) to form 
the immunoproteasome (Figure 2). PA28 is a hetero-
meric complex of  28-kDa subunits. It binds to the cylin-
der end of  the 20S, thus opening the gate channel to the 
catalytic chamber[12,13].

The immunoproteasome forms under the influence 
of  high levels of  cytokines, such as interferon (IFN) γ[14]. 
The immunoproteasome formation also consists of  a 
replacement of  the catalytic β subunits of  the 20S pro-
teasome, i.e. chymotrypsin-like (β5), trypsin-like (β1), 
and peptidylglutamyl peptide-hydrolase, recently called 
caspase-like activity (β2), by the immunoproteasome sub-
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units LMP7, LMP2, and MECL-1, respectively[15,16]. This 
replacement is required for the cleavage site specificity of  
the immunoproteasome for efficient antigen processing 
and presentation by major histocompatibility complex 
class Ⅰ molecules[17,18]. However, despite the induction of  
the immunoproteasome subunits, if  the α subunits are 
modified, for instance by chronic ethanol feeding[1,2], the 
binding between the catalytic core 20S and the regulatory 
complex PA28 is blocked, and antigen presentation is 
thus lowered, which alters the host defense.

CP BINDING TO THE PA200 REGULATORY 
COMPLEX
The 20S proteasome CP also associates with other ac-
tivating complexes such as the HEAT-repeat protein 
PA200 (the homologue of  yeast Blm10)[19], which also 
opens the gate and stimulates peptide entry. PA200 is 
present within hybrid complexes (19S-20S-PA200), and 
is an ATP-independent proteasome regulatory complex. 
It is known to be involved mainly in the nucleus and 
DNA repair[20].

In summary, the role of  these different regulatory 
complexes, binding to the 20S proteasome CP, is to open 
the 20S proteasome gate at the α subunits, then to con-
fer specificity to the proteolytic activity of  the catalytic 
chamber formed by the β subunits. Numerous studies 
have focused on the effects of  chronic ethanol feeding 
on the ubiquitin-proteasome pathway (26S proteasome 
activity) and the consequence of  its dysfunction in liver 
cells[21,22]. These effects still need further understanding. 
Substantial studies need to be undertaken to elucidate 
the effects of  chronic ethanol feeding on the immuno-
proteasome and the nuclear proteasome, with respect to 
host defense and the epigenetic mechanism regulation. 

WHAT ARE THE PIPS?
As much as the proteasome is complex, it does not work 
alone. There is an orchestra of  proteins involved in the 

regulation of  the proteasome activity. An increasing num-
ber of  PIPs have been reported, which indicates that the 
20S proteasome CP is a dynamic structure that interacts 
with specific proteins for specific functions. Therefore, 
any interference with the 20S proteasome and with its 
interacting proteins would affect the proteasome specific 
functions. 

It has been a decade since Verma et al[23] have report-
ed and analyzed PIPs. These authors used a one-step af-
finity method to purify intact 26S proteasome and its in-
teracting proteins from budding yeast cells, and reported 
the existence of  PIPs. These newly discovered PIPs were 
classified in four groups that include proteasome sub-
units, chaperone, transcription, and ribosomal proteins. 
New methods to purify the proteasome were then devel-
oped. Scanlon et al[24] have used the GST UBL (ubiquitin-
like domain as an affinity chromatography matrix), and 
purified the proteasome from human cell lines. These 
authors have classified the 26S PIPs into four groups of  
proteins that include de-ubiquitinases, ubiquitin ligases, 
ubiquitin domain-containing proteins and conjugating/
ubiquitin, and proteins involved in DNA repair. Using 
the GST UBL matrix to purify the PIPs has helped find 
proteins dominantly related to the proteasome and ubiq-
uitination systems; probably because of  the affinity of  
UBL for the ubiquitin-proteasome pathway.

Among identified PIPs are a number of  abundant cel-
lular proteins, such as heat shock proteins (Hsps), elonga-
tion factors, and ribosomal proteins. The Hsps interac-
tion with the proteasome is highly specific because they 
are induced to compensate for the proteasome failure, 
when the proteasome activity is decreased. In higher eu-
karyotes, it has been shown that Hsc70/Hsp70 members 
facilitate the delivery of  aggregation-prone substrates for 
degradation by interacting with the proteasome through 
an adaptor protein[25,26]. Along with Hsp70, Hsp27 assists 
in the unfolding of  the proteins designated for degrada-
tion by the proteasome[27]. In addition, Hsp90 family 
members have been suggested to play a role in the pro-
teasome structural integrity and assembly through their 
interactions with the 26S proteasome[28].

Other proteins work upstream of  the ubiquitin 
system to recognize, unfold, shuttle, dock, and deubiq-
uitinate the protein substrate designated for degrada-
tion. The chaperone system Bip/PDI is associated with 
endoplasmic reticulum (ER)-associated degradation[29]. 
Other proteins that contain a ubiquitin-associated do-
main (UBA), such as Rad23 and p62, are involved in 
carrying and docking the protein substrates at the pro-
teasome[30]. These interacting proteasome partners differ 
in their biological roles, and are chosen to interact with 
the proteasome according to their specific cellular func-
tion. Therefore, different chaperone members may play 
distinct roles in modulating protein degradation by the 
proteasome.

A great number of  yet-to-be-identified proteins 
can mediate ubiquitin recognition at the proteasome. 
UBL-UBA domain-containing proteins associate with 
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substrates designated for degradation, as well as with 
subunits of  the proteasome, thus regulating the proper 
turnover of  proteins. The best known UBL-UBA pro-
teins of  PIPs are Cdc48/p97/valosin-containing protein 
(VCP), which present misfolded ER-proteins to the pro-
teasome. P62, also called sequestosome 1, is also involved 
in presenting ubiquitinated proteins to the proteasome 
(Figure 3).

VCP and P62 have been reported to be involved in 
cytokeratin 8/cytokeratin 18 aggregate sequestration and 
Mallory-Denk body (MDB) formation in alcoholic liver 
disease[31] (Figure 3). Both proteins are significantly up-
regulated when the proteasome activity is inhibited using 
PS-341, thus indicating that these proteins play a crucial 
role in proteasome activity[32]. 

The 26S stabilizing protein, Ecm29, has been found in 
the fraction of  the purified proteasome, and is well estab-
lished as a PIP. Ecm29 tethers the proteasome CP to the 
19S regulatory particle, and confers stability of  19S-20S 
binding in yeast[33]. It may play a crucial role in the 26S 
proteasome dysfunction in alcoholic liver disease[34].

More recently, Kautto et al[35] have developed a rapid 
method of  26S proteasome isolation using chromatog-
raphy, and have identified over 100 proteins in the pro-
teasome purified fraction, including the 26S proteasome 
and 32 proteasome subunits. 14-3-3-like proteins have 
been identified to interact with the proteasome, and also 
have been classified as PIPs. In our laboratory, when 
chromatography and high salt concentration purification 
was used, only a few proteins were identified by mass 
spectrometry, which indicates that the salt disrupted the 
proteasome interactions with its associating proteins. 
The identified proteins included the 14-3-3 proteins, the 
kinases protein kinase A (PKA) and transglutaminase, 
and the phosphatases PP2A and PP1[36]. 

The role and function of  the 14-3-3 proteins, in the 
regulation of  proteasome function, remain to be eluci-
dated. This protein has been identified by mass spec-
trometry in the 20S fraction purified chromatographi-
cally with a high salt gradient, which reflects the strength 

of  14-3-3 interaction with the 20S proteasome. 14-3-3, 
which is a major scaffolding protein and a phospho-
binding protein in the cell, plays a major role in cellular 
mechanisms, such as signal transduction and regulation 
of  transcription factors[37-39]. A pilot study has shown 
that chronic ethanol feeding increases the interaction of  
14-3-3 with the 20S proteasome, probably to regulate the 
20S proteasome ratio of  phosphorylation/dephosphory-
lation to modulate the proteasome activity changes due 
to ethanol feeding[36].

The proteins kinases associated with the 20S pro-
teasome, such as casein kinase Ⅱ[40], transglutaminase 
(TG2), and PKA also co-isolated with the 20S protea-
some through multiple chromatographic steps and high 
salt concentration, as well as the phosphatases PP2A and 
PP1[41,42]. These proteins regulate the 20S proteasome 
activity via phosphorylation/dephosphorylation and 
are believed to regulate also the 20S proteasome bind-
ing to its regulatory complexes. TG2 has been found in 
the fraction of  highly purified 20S proteasome[36], and is 
known to be responsible for stabilizing macromolecular 
assemblies[43,44]. It is possible that TG2 is involved in 
the stabilization of  the proteasome macromolecules via 
its kinase activity. These kinases and phosphatases are 
crucial for the function of  the different types of  protea-
somes because they regulate the phosphorylation of  the 
α type subunit of  the proteasome, thus determining the 
binding of  the 20S proteasome to its regulatory com-
plexes (Figure 4). 

Similarly to PKA, TG2 and PP2A, the enzyme 
δ-aminolevulinate dehydratase (ALAD) has been iden-
tified by mass spectrometry in the highly purified 20S 
proteasome fraction[45]. ALAD, also called porphobilino-
gen synthase, is a cytosolic sulfhydryl-containing enzyme 
that catalyzes the condensation of  two molecules of  
aminolevulinic acid (ALA). It has been reported that 
blood ALAD activity is significantly decreased when rats 
are chronically fed ethanol, which indicates that ethanol 
feeding causes an alteration in blood[46] as well as liver 
ALAD activity[47].
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When this enzyme is inhibited, the ALA accumu-
lates, which may impair heme biosynthesis and cause 
porphyria in the liver and pro-oxidant activity in the 
brain[48,49]. ALAD was among the first PIPs to be identi-
fied and its role in the proteasome pathway still needs to 
be clarified[50]. 

The recent and most productive method to investi-
gate the PIPs is the QTAX-based tag-team technique, as 
used by Guerrero et al[51,52]. These authors have identified 
at least 471 proteins in the network of  the proteasome 
from yeast. The first group of  proteins that have been 
characterized with high affinity was the ubiquitin recep-
tor proteins. The rest of  the identified proteins were 
grouped in the 35 distinct gene ontology protein com-
plexes that are involved in various biological processes, 
such as chromatin remodeling, metabolism, translation, 
DNA replication, endocytosis, and protein folding.

Another method to purify the proteasome is to use 
multiple centrifugation with ATP and a final glycerol 
gradient zonal centrifugation. This procedure separates 
the proteasomes and preserves its binding to its regula-
tory complexes and interacting proteins[34]. Then, mass 
spectrometry analysis is used to identify the PIPs, as 
well as to quantify their levels, and thus their interaction 
with the proteasome. The PIPs identified with the other 
above-mentioned method have also been characterized 
by our approach, and in addition, the effects of  chronic 
ethanol feeding have been analyzed[34]. 

Proteasome activity is regulated at multiple levels. 
Chronic ethanol feeding, which causes dysfunction of  
the proteasome pathway, may also occur at the level of  
PIPs, which could lead to the failure of  the proteasome 
pathway in the liver of  alcoholic patients.

EFFECT OF ETHANOL ON THE PIPs
The regulatory control of  cellular protein levels by the 
UPP is essential because inhibition of  proteasome activ-

ity leads to the loss of  cellular regulation and develop-
ment of  many pathological disorders[53]. In experimental 
alcoholic liver disease, chronic ethanol feeding causes 
significant inhibition of  the 26S proteasome in liver 
cells[54-57], which results in accumulation of  oxidatively 
damaged and ubiquitinated proteins. 

Aggregates of  ubiquitinated proteins accumulate and 
form Mallory-Denk-like bodies[58], which are character-
istic of  alcoholic liver disease[59,60]. Ethanol-induced in-
hibition of  proteasome activity is also associated with a 
decrease in misfolded protein degradation at the ER[61,62], 
which leads to an increased demand on resident chaper-
ones, even though the chaperones and the docking pro-
teins, such as p62[31,32,63], are helping to unfold and deliver 
proteins designated to be degraded by the proteasome. 
The immunoproteasome activity is also altered in the 
liver of  alcoholic patients[64,65].

The cause of  the proteasome system failure in alco-
holic liver disease is not fully understood. The mecha-
nism that causes the failure of  the 26S proteasome to 
remove the oxidized and damaged protein resides in 
the incapacity of  the 20S proteasome to bind the 19S 
regulatory complex[53]. The proteasome system is under 
a sophisticated regulation that prevents uncontrolled 
proteolysis in the cell. The binding between the regula-
tory complex 19S and the 20S proteasome occurs via a 
phosphorylation/dephosphorylation-dependent interac-
tion between the α subunits at the 20S and the ATPase 
subunits at the 19S lid, which leads to the opening of  the 
channel at the α subunit, which favors the translocation 
of  protein substrate to the catalytic chamber. The α sub-
units of  the 20S proteasome play a crucial role in pro-
teolysis mediated by the ubiquitin-proteasome pathway. 
They form the gate to the catalytic chamber, which is 
composed of  the β subunits. Köhler et al[66] have shown 
that the amino-terminal sequences of  α subunits block 
this channel, thus keeping the opening of  the protea-
some in the closed state, i.e. when the 20S proteasome 
is not bound to an activator[67]. Therefore, any modifica-
tions of  the phosphorylation level at the α subunits, i.e. 
modifications caused by ethanol treatment, lead to the 
closed state of  the proteasome because of  the dissocia-
tion of  20S and 19S. Post-translational modifications 
at the proteasome subunit have been reported as one 
mechanism that causes this proteasome inhibition in al-
coholic liver disease[1]. Consequently, there is a decrease 
in 26S formation, thus leading to a decrease in ubiquitin 
protein degradation[1].

In inflammatory and infectious conditions, the in-
duction of  the pro-inflammatory cytokines, such as 
tumor necrosis factor α and IFNγ, causes the three cata-
lytic subunits of  the 20S proteasome CP to be replaced 
by their IFNγ-inducible counterparts, LMP2, LMP7, 
and MECL-1, which results in alternatively assembled 
immunoproteasomes[14,68]. The assembly of  the immu-
noproteasome consists of  the binding of  the catalytic 
core that carries the inducible subunits with the regula-
tory complex PA28. The immunoproteasomes possess 
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enhanced proteolytic activity, and are expressed consti-
tutively by professional antigen-presenting cells, includ-
ing B cells[69]. It is well known that the host defense is 
reduced in alcoholic liver disease[64]. This is possibly due 
to the failure of  the immunoproteasome assembly. Re-
cently, it has been shown that chronic ethanol feeding 
causes a decrease in the binding between the 20S cata-
lytic core and the regulatory complex PA28; binding that 
is required for the immunoproteasome function, despite 
the induction of  the immunoproteasome subunits[34]. 
Results from the latest study have indicated that, similar 
to the mechanism that causes 26S proteasome dysfunc-
tion, the immunoproteasome is also altered in alcoholic 
liver disease. Post-translational modifications of  α-type 
subunits are the key mechanism that regulates the bind-
ing of  the 20S proteasome catalytic core to its regula-
tory complexes 19S or PA28. Phosphorylation/dephos-
phorylation of  these subunits is known to regulate their 
interaction with the 19S ATPases subunits, and thus, 
26S formation[70]. Chronic ethanol feeding alters α-type 
subunit phosphorylation[1]. It is possible that the immu-
noproteasome assembly is regulated via the interaction 
between the 20S and the α and β subunits of  the PA28 
regulatory complex. 

Studies to date have focused on the changes that can 
occur either to the ubiquitin system, or to the protea-
somes subunits themselves. However, there is increasing 
evidence that this pathway is also regulated by other pro-
teins that are just as important as the ubiquitin-protea-
some pathway elements[71], and the regulatory complexes 
19S, PA28, or PA200.

It is now well established that PIPs are significantly 
involved in the regulation of  proteasome activity. How-
ever, the effect of  chronic alcohol feeding on these PIPs 
remains to be investigated. A change in the proteasome 
interaction with its interacting proteins or modulators, 
concomitant with the proteasome inhibition due to etha-
nol feeding, could result in significant inclusion body 

formation, a decrease in the anti-inflammatory and im-
mune responses, and apoptotic conditions that lead to 
liver cell injury. Therefore, it is important to determine 
the effects of  ethanol on the proteasome activity, espe-
cially the effects of  alcohol feeding on the PIPs. The 
UBA-UBL docking proteins p62 and VCP have been 
shown to be induced by chronic ethanol feeding, which 
reflects the failure of  the proteasome system to clear 
the accumulated damaged proteins[31,32]. Similar to the 
UBA-UBLA proteins, Hsps are also affected by alcohol 
intake[72], and are generally upregulated when the protea-
some is inhibited, mainly to compensate for proteasome 
failure[31,32].

Recently, the effect of  chronic ethanol feeding has 
been investigated on PIPs, and it has been shown that 
chronic ethanol feeding affects PIPs[34]. Most impor-
tantly, the level of  Ecm29, a PIP known to stabilize 
20S proteasome interaction with the 19S regulatory 
complexes[73], is decreased after ethanol feeding[34]. Pro-
teasomes that lack Ecm29 are prone to dissociate from 
their regulatory complex 19S[74] and most likely from the 
regulatory complexes PA28a/b and PA200. However, 
the mechanism of  the ethanol effect remains unknown. 
It is possible that the oxidative stress caused by alcohol-
induced detoxifying CYP2E1 is one of  the mechanisms 
that modifies the proteasome subunits[57] and impedes 
binding between the CP and Ecm29[74].

The deubiquitination system is also affected by 
chronic ethanol feeding. Enigmatically, the three deu-
biquitinases Rpn11, Usp14 and UCHL5 (Figure 5), are 
decreased in the 26S proteasome fraction that is purified 
from ethanol-fed animals[34]. Why the deubiquitination 
requires at least three enzymes and why alcohol feeding 
causes a decrease in the three enzymes is not known. 
However, a decrease in the proteasome activity and the 
deubiquitination process leads to serious cellular dys-
function that is reflected by accumulation of  the ubiqui-
tinated proteins that aggregate and form MDBs.
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CONCLUSION
Chronic ethanol feeding modifies the structure of  the 
proteasome subunits, but also alters proteasome interac-
tion with its proteins partners, thus contributing to seri-
ous dysfunction in liver cells. However, we are still at the 
very beginning of  understanding the effects of  chronic 
ethanol feeding on the proteasome pathway. The focus 
has been to determine the post-translational modifica-
tions of  the 20S proteasome α type subunits caused by 
ethanol feeding, because modification of  these subunits 
regulates the 26S proteasome and immunoproteasome 
formation. As Ecm29 is a key protein involved in 26S 
proteasome formation, and because it plays a crucial role 
in stabilizing these proteasomal macromolecules, ethanol-
induced Ecm29 downregulation merits further analysis. 
The determination of  the effect of  chronic ethanol 
feeding on the ubiquitination/deubiquitination system 
to maximize clearance of  the altered and ubiquitinated 
proteins and prevent MDB formation associated with 
alcoholic liver disease should also be the focus of  future 
research.
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