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Hemodynamic Forces, Vascular Oxidative Stress,
and Regulation of BMP-2=4 Expression
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Abstract

Changes in the hemodynamic environment (e.g., hypertension, disturbed-flow conditions) are known to pro-
mote atherogenesis by inducing proinflammatory phenotypic alterations in endothelial and smooth muscle cells;
however, the mechanisms underlying mechanosensitive induction of inflammatory gene expression are not
completely understood. Bone morphogenetic protein-2 and -4 (BMP-2=4) are TGF-b superfamily cytokines that
are expressed by both endothelial and smooth muscle cells and regulate a number of cellular processes involved
in atherogenesis, including vascular calcification and endothelial activation. This review considers how hemo-
dynamic forces regulate BMP-2=4 expression and explores the role of mechanosensitive generation of reactive
oxygen species by NAD(P)H oxidases in the control of BMP signaling. Antioxid. Redox Signal. 11, 1683–1697.

Introduction

In the past decades, it has been established that vascular
inflammation and atherosclerosis develop in hemody-

namically well-defined regions. The facilitating role of
pressure=wall tension in this context is undeniable: despite
uniform levels of circulating proatherogenic factors (LDL,
homocysteine, cigarette smoke constituents, etc.), atheroscle-
rosis is limited to arteries characterized by high pressure=wall
tension, whereas it never develops in low-pressure vascular
beds (pulmonary circulation, arterioles, or veins). More-
over, hypertension has been recognized as an independent
risk factor for atherosclerosis. In the late 1960s, Caro et al. (11)
also called attention to the association of low-shear-stress
areas with early atherosclerotic lesion localization in human
arteries. This led to the hypothesis that low time-averaged
wall shear stresses, such as found at atherosclerosis-prone
vascular curvatures and branch points, might promote the
localized attachment and infiltration of platelets and mono-
cytes as well as atherogenic lipoproteins into the arterial
wall. This original working concept invoked rheologic factors
per se as the critical determinant of vulnerability of the vessel
wall.

During the last two decades, major refinements have
emerged in our understanding of how hemodynamic forces
regulate vascular homeostasis. It has become established that
changes in hemodynamic forces acting on both endothelial
and smooth muscle cells activate cellular signaling pathways,
translating biomechanical stimuli into biologic responses.
During normal vascular homeostasis, laminar shear stress
maintains an antiinflammatory, antiatherogenic phenotype of
endothelial cells. In contrast, adverse changes in the hemo-
dynamic environment, in particular a combination of low
shear stress and high pressure, elicit proinflammatory phe-
notypic changes favoring atherogenesis (including endothe-
lial activation, proinflammatory cytokine expression, smooth
muscle hypertrophy, hyperplasia, migration and differentia-
tion, and extracellular matrix reorganization).

The mechanisms by which disturbed flow conditions and
high pressure act as potent proatherogenic forces have been
the subject of intense studies in this field (74, 75). This review
focuses on the emerging evidence that reactive oxygen species
(ROS) play a central role in vascular mechanotransduction
and discusses the potential link between alterations in he-
modynamic environment, expression of bone morphogenetic
proteins, and vascular inflammation.
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Activation of NAD(P)H Oxidases in Endothelial
and Smooth Muscle Cells by Hemodynamic Forces

Potential vascular sources of ROS include NAD(P)H oxi-
dase, nitric oxide synthase (NOS), xanthine oxidase, cyto-
chrome P450, cyclooxygenase, and mitochondria. In recent
years, increasing evidence has accumulated that production
of ROS, particularly Od�

2 and H2O2, through activation of
vascular NAD(P)H oxidases, plays a central role in vascular
mechanotransduction. The activities of other oxidases in the
vessel wall appear less likely to influence signaling systems
under baseline physiologic conditions, although some of them
may be also upregulated by adverse hemodynamic condi-
tions (84). Endothelial and smooth muscle cells express dif-
ferent NAD(P)H oxidases that consist of multiple oxidase and
regulatory subunits. In phagocytic cells, the gp91phox (Nox-2)
oxidase subunit has been reported to be activated by stimu-
lation of the assembly of p47phox, p67phox, and p40phox regula-
tory subunits and activation of the small G protein rac, which
bind to the cell membrane–bound NOX-2-p22phox complex.
Many of the NAD(P)H oxidase subunits expressed in neu-
trophils (p22phox, p47phox, p67phox, NOX-2, and Rac) are ex-
pressed in the vascular tissue. However, the vascular and
neutrophil NAD(P)H oxidases differ: whereas the neutrophil
oxidase releases large amounts of Od�

2 outside the cell in
bursts, the vascular counterparts continuously produce low
levels of Od�

2 in the intracellular compartment. In vascular
endothelial and smooth muscle cells, both Nox-2 and its ho-
mologues Nox-1 and Nox-4 subunits are expressed (37, 40,
127). Furthermore, vascular NAD(P)H oxidase activity is
supported by both NADH and NADPH (37, 40, 89).

Several lines of evidence suggest that hemodynamic forces
can either directly or indirectly activate vascular NAD(P)H
oxidase-derived ROS production (74, 75). Ample indications
suggest that hypertension is associated with an increased
activity of vascular NAD(P)H oxidases [reviewed in refer-
ences (9, 68, 130)]. Although earlier studies attributed this
largely to circulating neurohumoral factors, such as angio-
tensin II (35, 91, 103), by now it has become evident that ox-
idative stress is present in virtually all forms of hypertension
(4, 103), including low-renin hypertension (69, 112), despite
differences in plasma levels of circulating vasoactive factors
[for a detailed discussion of the topic, please see references
(68, 127, 128)].

A primary role for high intraluminal pressure itself in the
promotion of vascular NAD(P)H oxidase–dependent Od�

2

generation is supported by the observations that in rats with
aortic banding, increases in vascular Od�

2 production are ob-
served exclusively in blood vessels proximal to the coarctation
that are exposed to high pressure, but not in distal normo-
tensive vascular beds, despite the presence of the same cir-
culating factors throughout the vascular tree (128). Direct
evidence for high pressure–induced, NAD(P)H oxidase–
dependent oxidative stress has come from studies showing
that exposure of isolated arteries to high pressure in an or-
ganoid culture system elicited significant Od�

2 and H2O2 (Fig.
1) production (76, 127) and endothelial dysfunction (55).
Short-term increases in pressure in vivo also impair endothe-
lial function (23, 36, 67, 139) by activating ROS-dependent
mechanisms (67). It is likely that cellular stretch due to in-
creased wall tension is the primary mechanical stimulus for
NAD(P)H oxidase activation, because exposure of isolated

arterial rings to in vitro stretching also activates vascular
NAD(P)H oxidase–dependent Od�

2 generation (97), mimick-
ing the effects of high pressure. Moreover, increased pro-
duction of ROS has been detected in cultured endothelial and
smooth muscle cells subjected to in vitro stretching (39, 50, 51).
Importantly, aging appears to potentiate high pressure–
induced Nox activation and Od�

2 production in peripheral
arteries (61). In whole vessels, mechanically induced ROS
comprise not only Od�

2 but also H2O2 (21, 96), indicating that a
significant portion of NAD(P)H oxidase–derived Od�

2 is likely
dismutated by superoxide dismutase (SOD) isoforms, which
vascular cells express abundantly.

The underlying mechanisms by which high pressure=wall
tension–related cell stretch elicits NAD(P)H oxidase activa-
tion probably involve increases in [Ca2þ]i and phosphoryla-
tion and activation of PKCa (127). PKC-dependent serine
phosphorylation of the regulatory p47phox subunit (126) re-
sults in its translocation from the cytosol to the membrane
oxidase subunits (97), activating NAD(P)H oxidase function.
The long-term presence of high pressure may also affect PKC
expression in some vascular beds (98). It is of note that the
activation of Nox-1 and Nox-4 in response to hemodynamic
forces may differ. Nox-4 does not seem to be regulated by
PKC phosphorylation of p47phox, and Nox-1 and Nox-4 are
likely to be expressed in different cellular compartments (41,
49) [reviewed recently in reference (130)].

In addition to their role in pressure-induced signal trans-
duction, ROS are likely to participate in the mechan-
otransduction of other modalities of blood flow, such as
pulsatility and oscillatory shear stress. Previous studies have
shown that pulsatile stretch increases Od�

2 production in
human coronary artery smooth muscle cells (50) and in cul-
tured rabbit aortas (115). Moreover, in porcine coronary ar-
terioles exposed to pulsatile flow, the bioavailability of NO
seems to be decreased as a result of increased Od�

2 generation
(115). Disturbed flow conditions also were shown to increase
endothelial ROS production (53, 72, 120), likely via stimula-
tion of NAD(P)H oxidases (13, 58). Oscillatory shear stress is a
particularly potent stimulus of Od�

2 production in cultured
endothelial cells (24, 44, 58, 84).

Many existing hypotheses seek to explain how increased
production of ROS affects vascular function and pheno-
type. According to the free radical theory of aging (43),
chronic oxidative stress leads to the accumulation of oxida-
tive damage to cellular constituents, resulting in a progres-
sive decline in cellular function and ultimately to cellular
senescence. Other laboratories emphasize the potential vaso-
active effects of ROS, including degradation of vasodilator
NO by Od�

2 (10) or vasomotor effects elicited by H2O2 or both
(17, 81, 88, 142). In addition to eliciting macromolecu-
lar damage and exerting direct vasoactive effects, ROS can
activate signaling pathways involved in vascular inflamma-
tion and atherogenesis. Importantly, accumulating evidence
from experimental and clinical studies indicates that
NAD(P)H oxidase activation plays a central role in athero-
genesis and other pathophysiologic conditions, in part by
regulating cell proliferation and inflammatory gene expres-
sion. This review discusses available data on the link be-
tween hemodynamic forces, NAD(P)H oxidase activation,
and regulation of a novel class of proinflammatory cytokines
that may play an important pathophysiologic role in athero-
genesis.
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Role of Bone Morphogenic Proteins in Vascular
Physiology and Pathophysiology

Bone morphogenetic proteins (BMPs) are members of the
TGF-b superfamily. The first hint of the existence of BMPs
came from the early clinical observations that bone formed in
transplanted tissues. Subsequently it was discovered that a
number of tissues possess various ‘‘osteogenic proteins,’’ or
BMPs, that could induce new bone formation (132). After the
purification and sequencing of the first BMPs in the late 1980s

(82, 143), identification of the BMP family grew rapidly, and
today it is known to comprise >30 cytokines, based on se-
quence homology. Although the name BMP is descriptive of
one particular function, inducing ectopic bone or cartilage
formation, it is quite misleading; BMPs play important roles in
diverse cell types. Vascular endothelial and smooth muscle
cells both express BMP receptors and secrete BMPs (28, 110,
113, 114, 140). Among them, BMP-2 and BMP-4 (which are
closely related by their amino acid sequence and act on the
same receptor) have been shown to regulate a host of cellular

FIG. 1. Mapping the relation between pressure, ROS production, and BMPs in the context of hypertensive vascular
remodeling. (A) Exposure of isolated rat femoral arteries to high pressure (160 mm Hg) in vitro significantly increases
vascular H2O2 generation (measured with the homovanillic acid=horseradish peroxidase method). Data are expressed as
mean� SEM. n¼ 4–5 for each group; *p< 0.05 vs. control, #p< 0.05 vs. high-pressure treated). (B) Time course of H2O2

(10�4 M)-induced BMP-2 mRNA expression in CAECs (real-time QRT-PCR). Data are expressed as mean� SEM (n¼ 4 for
each time point). Figures were redrawn based on data presented in reference (21). (C) Treatment of CAECs (24 h) with BMP-2
(10 ng=ml) and BMP-4 (10 ng=ml) significantly increases H2O2 production [measured with the DCF fluorescence method
(129)]. (D) Proposed scheme for a common redox-sensitive pathway leading to activation and nuclear translocation of NF-kB
in endothelial cells induced by an increased H2O2 production due to the activation of the NAD(P)H oxidase by inflammatory
cytokines and high pressure. Binding of NF-kB to its target sequences promotes the expression of BMP-2, which induces
proatherogenic phenotypic changes in endothelial cells.
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functions (110, 114, 140, 153), including cardiovascular de-
velopment (153), angiogenesis (1, 31, 47), neovascularization
in tumors (71), vascular calcification (56, 108–110, 125, 137,
151, 152), and smooth muscle cell chemotaxis in response to
vascular injury (140).

Role of BMPs in vascular inflammation
and atherogenesis: role of Nox oxidases

Recent studies reported a striking upregulation of BMP-2=4
in atheroprone regions and atherosclerotic lesions (28, 113,
114, 118, 140). With in vitro and ex vivo approaches, BMP-2=4
also were shown to exert proinflammatory effects by inducing
expression of adhesion molecules and enhancing monocyte
adhesion (18, 113, 114). Prolonged BMP-4 infusion in C57Bl6
and apolipoprotein-null mice impairs endothelium-depen-
dent vasodilation and induces arterial hypertension in an
NAD(P)H oxidase–dependent manner (87). Activation of
BMP signaling either by overexpression of the BMP-2=4 in
vascular cells or by administration of recombinant BMPs re-
sults in endothelial dysfunction, oxidative stress (by activat-
ing NAD(P)H oxidases), and an enhanced monocyte
adhesiveness to the endothelium (18, 21, 113, 114). Vascular
BMP signaling also has been linked to vascular calcification
during atherogenesis (28, 52, 108, 110) and calciphylaxis (38),
as well as to calcific stenosis of the aortic valves (90, 117, 145).

Aging is known to increase the risk for atherosclerosis by
promoting vascular inflammation and upregulating Nox-
oxidase–derived ROS production (22). It has been proposed
that alterations in the vascular expression=activity of BMP
antagonists may lead to unopposed BMP-2 activity in aging
(118), which may contribute to age-related oxidative stress
and promote arterial calcification. BMP-2=4 is thought to
signal primarily by activating the mothers against dec-
apentaplegic (Smad) and mitogen-activated protein kinase
(MAPK) pathways, although evidence suggests that BMP-2=4
may also activate NF-kB (18, 114). In that regard, it is im-
portant that aging is known to increase basal NF-kB activity in
the vasculature, which may sensitize endothelial cells to the
proinflammatory effects of BMPs (22). Future studies should
elucidate the role of BMP-receptor subtypes and the interac-
tion between downstream signaling mechanisms induced by
BMPs, which mediate their proinflammatory effects.

Many lines of evidence thus suggest that BMPs may func-
tion as proinflammatory, prohypertensive, and proathero-
genic mediators in the vessel wall. So far, our understanding
of the factors that regulate vascular BMP-2=4 expression
supports this premise. For example, we have shown that in
coronary arterial endothelial cells, expression of BMP-2 is
upregulated by proinflammatory stimuli, such as TNF-a and
H2O2, by activation of NF-kB (18, 21). Accordingly, in hy-
perhomocysteinemia, coronary artery inflammation and up-
regulation of TNF-a is associated with an increased BMP-2
expression (126). Type 2 diabetes also is associated with in-
duction of BMP-2 expression and activation of BMP-2–
dependent Msx2-Wnt programs in the aorta that contribute to
aortic calcium accumulation (2). Importantly, aortic BMP-2
expression could be attenuated by treatment with the TNF-a–
neutralizing antibody infliximab (2). Because of the central
role of hemodynamic forces in atherogenesis, our review fo-
cuses on the role of shear stress and pressure=wall tension in
regulation of vascular BMP-2=4 expression.

Role of BMPs in vascular development, angiogenesis,
and stem cell commitment

Convincing data show that BMPs are involved in embry-
onic and adult blood vessel formation in health and disease
(25, 47, 71, 93, 94, 105, 154). In particular, the involvement of
the BMP-regulated Id family of helix–loop–helix transcription
factors in angiogenesis has been investigated extensively.
Nevertheless, some controversy exists regarding differences
between BMP-2 and BMP-4 on vascular cell proliferation and
the different roles that these BMPs my play in endothelial and
vascular smooth muscle cell physiology. Endothelial pro-
genitor cells express BMP-2=4 and BMP receptors (111).
However, published data suggest that BMP-2 enhances
commitment of mesodermal cells to a cardiomyogenic fate
(65, 80), whereas BMP-4 favors endothelial commitment of
embryonic stem cells (138). Such BMP-dependent signaling
pathways involved in embryonic development can be re-
activated in adults and may thus contribute to the reparative
effects of progenitor cell therapy after myocardial infarction
and critical leg ischemia.

Conversely, the role of BMPs in NAD(P)H oxidase activa-
tion during angiogenesis and inflammatory gene expression
in endothelial progenitor cells is poorly understood. En-
dothelial progenitor cells exhibit notable antioxidant defenses
(27, 46), yet under conditions of increased oxidative stress,
their function seems to be compromised (12, 59). In particular,
increased NAD(P)H oxidase activation has been linked to loss
of endothelial progenitor cell function and impaired postis-
chemic neovascularization in diabetes (29) and in hyperten-
sion (150). It is thought that reduction of stem cell number or
activity can contribute to cardiovascular aging and impaired
angiogenesis in aged mammals, and considerable evidence
indicates that increased production of ROS, in part due to the
upregulation of NAD(P)H oxidases, underlies cellular dys-
function in the aged cardiovascular system [reviewed recently
elsewhere (22)]. Further studies are evidently needed the
better to elucidate the link between BMPs and NAD(P)H ox-
idase activation in endothelial progenitor cells under these
pathophysiologic conditions.

Differential prooxidant and prohypertensive effects
of BMPs in the pulmonary and systemic circulation

Genetic analysis of patients with primary pulmonary hy-
pertension indicates that BMP signaling plays an important
protective role in the pulmonary circulation. Studies in the
last decade have shown that multiple loss-of-function mu-
tations affecting BMP receptors (in both bmpr2 and alk1
genes) (26, 57, 70, 83, 123, 124) lead to monoclonal endo-
thelial cell growth in plexiform lesions in patients with idi-
opathic pulmonary arterial hypertension (73, 134). Although
it is now clear that mutations in the BMP receptors can
predispose to pulmonary hypertension, why such mutations
in the germline (i.e., passed along to all somatic cells from the
germinative cells) predispose only the pulmonary arteries
but not systemic arteries to hypertensive disease has yet to be
resolved.

It is believed that in pulmonary arteries, BMP signaling
exerts important vasoprotective effects controlling the balance
between proliferation and activation of apoptosis in endo-
thelial and smooth muscle cells (31, 32, 42, 101, 102, 122).
Importantly, recent experimental studies demonstrated that
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the expression and function of the BMP=Smad signaling axis
is perturbed in secondary pulmonary hypertension as well
(92). Thus, altered BMP signaling may contribute to the
pathogenesis of both primary and secondary forms of pul-
monary hypertension. In contrast, BMP-2 and BMP-4 function
as prooxidant and prohypertensive mediators in systemic
arteries (18, 64, 87, 113, 131), suggesting that BMP signaling
plays different roles in the pulmonary and systemic circula-
tions. Indeed, recent findings demonstrate that whereas
BMP-4 elicits significant endothelial dysfunction and NAD(P)H
oxidase activation in the systemic arteries, activating NF-kB
and increasing monocyte adhesiveness, the pulmonary ar-
teries are completely protected from such adverse functional
effects (19). We attribute the lack of BMP-4–induced endo-
thelial activation in pulmonary arterial endothelial cells to the
superior resistance of these cells to the prooxidant effects of
BMP-4 rather than to a lower expression of NAD(P)H oxidase
in the pulmonary vasculature (19). Importantly, pulmonary
arteries are known to be resistant to atherogenesis. Moreover,
it is likely that differential effects of BMP-4 on NAD(P)H ox-

idase activity are responsible for the selective systemic (but
not pulmonary) hypertension induced by high circulating
levels of BMP-4 (87). Previous findings showed that in en-
dothelial cells from the systemic circulation, BMPs activate
NAD(P)H oxidase via a pathway that involves PKC (18), and
evidence exists of association of the BMP-receptor complex
with PKC (45). Hence, the lack of BMP-4–induced NAD(P)H
oxidase activation in pulmonary arterial endothelial cells
could be due to the differential role of PKC in BMP signaling
in pulmonary and systemic arteries. It is also possible that
subsets of BMP receptors and modulators of BMP signaling
(BMP antagonists, co-receptors, etc.) are expressed differen-
tially in systemic and pulmonary endothelial cells, which
would activate discrete signaling pathways (19). Further
studies are needed to determine which receptor is responsible
for NAD(P)H oxidase activation in endothelial cells from
systemic arteries and whether the divergence in BMP-induced
ROS generation between systemic and pulmonary cells can be
explained by the differential expression of BMP receptors
and=or their downstream targets.

FIG. 2. Interactions between BMPs and
their antagonists in hypertension. (A) Pro-
posed scheme showing that hemodynamic
forces may regulate the expression of both
BMP-2=4 and BMP antagonists in vascular
cells, which together will determine BMP ac-
tivity in the vasculature. (B) High pressure
may alter the expression of BMP-binding
proteins in coronary arteries of aortic banded
rats (n¼ 3). Data are expressed as relative
changes in mRNA expression, as compared
with vessels of sham-operated rats (n¼ 5).

FIG. 3. Downregulation of BMPs by shear stress is independent of CREB. (A) Time course of BMP-4 expression
downregulation in HCAECs in response to shear stress (10 dyn=cm2) or a cell-permeable cAMP analogue (0.3 mM 8-Br-
cAMP). Analysis of mRNA expression was performed with real-time QRT-PCR. Figure is redrawn based on data from
reference (129). (B) Representative Western blot and densitometric data showing the downregulation of CREB in HCAECs
[achieved with RNA interference by using proprietary siRNA sequences and the Amaxa Nucleofector Technology; Amaxa,
Gaithersburg, MD, as we previously reported (18, 21)] as a function of time after transfection. Data are expressed as
mean� SEM (n¼ 3 for each data point). *p< 0.05. (C) Knockdown of CREB did not prevent shear stress–induced
(10 dyn=cm2, for 2 h) and forskolin-induced (2 h) changes in BMP-4 expression in HCAECs (on day 3 after transfection).
Analysis of mRNA expression was performed with real-time QRT-PCR. b-actin was used for normalization. Data are
expressed as mean� SEM (n¼ 4 for each group). *p< 0.05 vs. no siRNA, #p< 0.05 vs. no shear stress=no forskolin.
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Regulation of BMP-2/4 Expression
by Pressure/Wall Tension

Regulation of vascular BMP expression by oxidative stress
and inflammatory stimuli prompted the speculation that
proatherogenic hemodynamic forces that increase endothelial
ROS production may also regulate BMP-2=4 expression. We
demonstrated that increased wall tension=high intraluminal
pressure is sufficient to induce BMP-2 expression in vitro, in
the absence of vasoactive circulating factors (21). This finding
has been confirmed by the observations that BMP-2 is upre-
gulated in forelimb arteries of aortic banded rats, which are
exposed to high pressure and exhibit an increased ROS pro-
duction (128), whereas normotensive arteries located down-
stream from the coarctation (but exposed to the same
circulating factors) exhibit a normal phenotype (21).

Strong evidence indicates that NF-kB plays a central role in
the regulation of endothelial BMP-2 expression. Increased
DNA-binding activity of NF-kB was shown to increase in
in vivo models of hypertension (3) and in cultured endothelial
and smooth muscle cells exposed to cyclic stretch (15, 51).
Furthermore, NF-kB binding site(s) are present in the pro-
moter region of the rat BMP-2 gene and in the 5’ flanking
region of the BMP-2 gene in mouse chondrocytes (34). The
NF-kB binding site is localized in an evolutionary highly
conserved region of the BMP-2 promoter (21), which explains
the similar NF-kB–dependent regulation of BMP-2 expression
in human and rat endothelial cells (18, 21). However, the
promoter regions of the human and mouse BMP-4 genes
differ from their BMP-2 counterparts because they lack an NF-
kB binding site (48). This could account for the preferential
regulation BMP-2 by TNF-a and H2O2 (18, 21). Hence, TNF-a
is known to induce BMP-2 in endothelial cells through
NAD(P)H oxidase–derived H2O2 production (18). Previous
studies by our laboratories and others also demonstrated that
high pressure similarly activates NAD(P)H oxidase, increas-
ing vascular Od�

2 and H2O2 production that leads to NF-kB
activation (21, 78, 79) and BMP-2 overexpression (21). It seems
that high pressure=cell stretch elicits rapid degradation of the
redox-sensitive NF-kB inhibitor IkBa (21, 78), which unmasks
the nuclear localization sequence on NF-kB, allowing its nu-
clear translocation and transcriptional activity. A conse-
quence of pressure-dependent upregulation of BMPs in the
vascular wall, downstream of NAD(P)H oxidase and NF-kB
activation, was shown to be endothelial activation (113, 114).

Correspondingly, a recent study demonstrated that pro-
longed exposure of cultured arteries to high pressure results
in enhanced monocyte adhesion to the endothelium (104).
Thus, it is likely that pressure-induced upregulation of BMP-2
and other related cytokines (79) will contribute to=enhance
endothelial activation in hypertension and atherosclerosis.

Interestingly, pressure- or stretch-induced increased ex-
pression of the BMP-related cytokine TGF-b has been docu-
mented in blood vessels (119), and mechanosensitive
expression of BMPs has been shown previously in bone (86,
95) and chondrocytes (144). Nevertheless, we recently found
that TNF-a did not increase BMP-2 expression in vascular
smooth muscle cells (18). Because TNF-a elicits comparable
NF-kB activation in endothelial and smooth muscle cells (18),
we speculate that differences in factors that lie downstream
from NF-kB (e.g., differential expression of cell-specific coac-
tivators) may be responsible for this phenomenon. It is of
note that VEGF was likewise shown to upregulate BMP-2 in
cultured human dermal microvascular endothelial cells, but
not in lymphatic endothelial cells (133). Although this finding
raised the possibility that regulation of BMP-2 expression may
differ between endothelial cells from different organs, we
found that basal BMP-2 expression was comparable in vessels
from various systemic vascular beds (18), and that TNF-a
elicited similar BMP-2 induction in human umbilical vein
endothelial cells and coronary arterial endothelial cells (18,
21). Hence, BMP-2 induction by mechanical or inflammatory
factors may be more complex than initially anticipated.

In various tissues, the actions of BMPs can be antagonized
by proteins that block BMP signal transduction at multiple
levels, such as pseudoreceptors, inhibitory intracellular
binding proteins, and factors that induce BMP ubiquitination.
A large number of extracellular proteins that bind BMPs and
prevent their association with signaling receptors have
emerged, including noggin, chordin, BAMBI (BMP and acti-
vin membrane-bound inhibitor), matrix Gla protein (MGP),
and follistatin. Many of these BMP-binding proteins can be
expressed in vascular tissues (6, 14, 16, 54, 60, 106, 107, 116,
146–149), although their roles in the regulation of vascular
BMP signaling is not yet completely understood (131). For
example, BMPER (bone morphogenetic protein–binding en-
dothelial cell precursor–derived regulator) is a secreted pro-
tein that directly interacts with BMP-2 and BMP-4 and
modulates BMP-2=4–induced signaling pathways in endo-
thelial cells (47, 93, 154). MGP is thought to prevent vascular

FIG. 4. Downregulation of BMPs by shear stress implicates ERK1=2 and Myc. (A, B) Representative Western blots and
densitometric data (below) showing the time course of p42=44 MAP kinase phosphorylation in shear stress–exposed
(10 dyn=cm2; A) and 8-Br-cAMP–treated (B) human coronary arterial endothelial cells (HCAECs). (C) Representative Western
blot and densitometric data (below) showing the effect of pretreatment with the PKA inhibitor H89 (10 mM) on shear stress–
induced (10 dyn=cm2, 10 min) and forskolin-induced (10 mM, for 10 min) phosphorylation of p42=p44 MAP kinase in
HCAECs. Data are expressed as mean� SEM. *p< 0.05 vs. static control; #p< 0.05 vs. shear stress exposed. (D) Effect of
pretreatment with inhibitors of the p42=p44 MAP kinase (PD98059, 10 mM), p38 MAP kinase (SB203580, 10 mM), or PKC
(chelerythrine, 10mM) on shear stress–induced (10 dyn=cm2, for 2 h) downregulation of BMP-4 expression in HCAECs and
human umbilical vein endothelial cells (HUVECs). Data are expressed as mean� SEM. *p< 0.05 vs. static control; #p< 0.05 vs.
shear stress exposed. (E) Effect of pretreatment with anti-Myc siRNA on forskolin-induced changes in BMP-4 expression in
HCAECs (on day 3 after transfection). Analysis of mRNA expression was performed with real-time QRT-PCR. b-actin was
used for normalization. Data are expressed as mean� SEM (n¼ 4 for each group). *p< 0.05. (F) Proposed scheme for the
mechanism by which shear stress activates the cAMP=PKA pathway and regulates the expression of BMP-4 in the vascular
endothelium. Because BMP-4 elicits endothelial activation and vascular calcification, the model predicts that cAMP=PKA-
mediated inhibition of BMP-4 expression contributes to the antiatherogenic and vasculoprotective effects of laminar shear
stress.

‰
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calcification by binding BMP4 (146) and BMP2 (135, 136).
Conversely, the expression of BMP antagonists is regulated by
BMPs (14, 121, 147, 148), pointing to a local feedback mecha-
nism to modulate the cellular activities of BMPs. It is likely,
though, that increased expression of BMP-2=4 coupled with
decreased BMP antagonist expression has additive effects.
Atherogenic stimuli such as TNF-a and oxLDL appear to reg-
ulate the expression of BMP antagonists in endothelial cells (16),
and altered expression of BMP antagonists has been demon-
strated in atherosclerotic lesions (107). Importantly, some
studies suggest that BMP antagonists such as MGP (Fig. 2) and
noggin (54) may be also regulated by hemodynamic forces.

The mechanisms underlying the transcriptional regulation
of BMP antagonists in vascular cells have not yet been ex-
plored. Studies suggesting that the cAMP=PKA pathway may
be involved in the regulation of BMP antagonists MGP (33)
and follistatin (141) in nonvascular cells raise the interesting
possibility that BMPs and BMP antagonists may be regulated
by similar cellular signals.

Regulation of BMP-2/4 Expression by Shear Stress

Expression of BMP-4 in the vasculature is primarily local-
ized to the endothelial cells, which are the primary sensors of
changes in shear stress due to altered hemodynamics. At
present, it is not well understood whether alterations in shear
stress (either via direct transmission of the mechanical force by
cellular connections and the extracellular matrix or indirectly
via endothelium-derived paracrine mediators) induce tran-
scriptional changes of BMPs, BMP receptors or modulators of
BMP signaling pathways in the smooth muscle cells under-
lying the vascular endothelium. Nevertheless, the first indi-
cation that shear stress may control BMP-4 expression in
endothelial cells came from microarray studies conducted to
identify proatherogenic genes whose expression may be reg-
ulated by laminar flow (7, 113, 114). Solid evidence indicates
that atheroprotective laminar flow=shear stress transcrip-
tionally downregulates BMP-4 expression in multiple endo-
thelial cell types from different species, whereas it does not
affect BMP-2 transcript levels (20, 113).

Differential regulation of BMP-4 and BMP-2 was also sub-
stantiated in ex vivo intact artery and in vivo animal models of
high flow (20), showing that shear stress is an important
regulator of BMP-4 expression both in conduit arteries and in
microvessels. Shear-dependent regulation of BMP-4 was fur-
ther emphasized by a recent study showing low transcript
levels of BMP-4 in protected, high-shear regions of the aortic
valve, in contrast with abundant endothelial expression of
BMP-4 in low-flow, calcification-susceptible valvular regions
(8). It is known that laminar shear stress activates multiple
redox-sensitive signaling pathways in endothelial cells [re-
viewed in references (74, 75, 77)], but the role of these path-
ways in shear-dependent regulation of BMP-2=4 expression is
not well understood. Instead, in this review, we focus on the
recently discovered roles of the shear stress–activated cAMP=
PKA and ERK signaling pathways in regulating BMP-4 ex-
pression in endothelial cells.

Role of the cAMP=PKA pathway

Recently, we found that inhibition of the cAMP=PKA
pathway prevents the downregulation of the BMP-4 gene in
endothelial cells exposed to shear stress (20). The inhibitory

effect of shear stress on BMP-4 expression also was mimicked
by the exogenous administration of an adenylate cyclase ac-
tivator, a cAMP analogue, or a PKA activator (Fig. 3) (20).
Although shear stress–induced production of cAMP is gen-
erally considered to derive from the autocrine effect of pros-
taglandins, and prostaglandins can downregulate BMP-4
(Ungvari, unpublished observation, 2006), this is likely not to
be the case in sheared endothelium because downregulation
of BMP-4 is maintained even in indomethacin-treated cells
(20). Previous studies using magnetic RGD peptide–coated
microbeads demonstrated that shear-induced mechanical
activation of integrin-b leads to significant increases in intra-
cellular cAMP (85), probably as a result of direct activation of
adenylate cyclase. Moreover, cAMP is known to bind to the
regulatory subunit of PKA, activating the enzyme, and recent
data suggest that PKA is activated by shear stress (5, 20). A
central role of PKA signaling is supported by the findings that
pharmacologic or molecular inhibition of PKA prevents shear
stress– and forskolin-induced downregulation of BMP-4 (20).
It is also important to note that the mammalian BMP-4 gene
structure is very similar to the Drosophila homologous gene
decapentaplegic (dpp). During limb development, dpp ex-
pression is inhibited by the PKA pathway (62), whereas cells
lacking PKA exhibit upregulation of dpp (99). Thus, PKA-
dependent regulatory mechanisms controlling expression of
BMP-4 appear to be conserved. Our recent data suggest that
the cAMP=PKA pathway primarily decreases the transcrip-
tion rate of the BMP-4 gene (rather than controlling the mRNA
stability) (20).

Finally, despite the similar biologic roles of BMP-4 and
BMP-2, the transcriptional regulation of these two cytokines
by shear stress is again markedly different; activation of the
cAMP=PKA pathway did not affect endothelial BMP-2 ex-
pression (20).

We recently reported that in human coronary arterial en-
dothelial cells, both shear stress and cAMP analogues resulted
in phosphorylation and activation of CREB, which were
prevented by inhibition of PKA (20). The binding of phos-
phorylated CREB to the cAMP-responsive element (CRE)
controls gene transcription (activation or suppression of
transcription, depending on the target gene). It is significant
that CRE sites have been found in the promoter region of
many genes that respond to mechanical stimuli and may also
exist in the BMP-4 promoter. On the basis of these consider-
ations, we hypothesized that CREB would participate in
BMP-4 regulation (20). Contrary to our prediction, however,
we recently found that knockdown of CREB decreased basal
BMP-4 expression in endothelial cells but it did not prevent
shear stress– or forskolin-induced downregulation of BMP-4
(Fig. 3). These data suggest that CREB is a positive regulator of
BMP-4 expression and that the downregulation of BMP-4 by
shear stress is mediated via a cAMP=PKA-dependent but
phosho-CREB–independent signal-transduction pathway.

Role of MAP kinase activation

Previous studies provided ample evidence that exposure of
endothelial cells to laminar shear stress activates p42=44
MAPK in a time-dependent manner (63, 100), we recently
confirmed (Fig. 4A and C). Growing evidence suggests
crosstalk between cAMP=PKA and ERK signaling in various
cell types; in coronary arterial endothelial cells, cAMP and
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forskolin can activate p42=44 MAPK, and inhibition of PKA
prevents both shear stress– and forskolin-induced activation
of p42=44 MAPK (Fig. 4C). These results suggest that p42=44
MAPK is a critical downstream effector in the shear stress–
activated cAMP=PKA pathway in endothelial cells, in line
with the finding that inhibition of p42=44 MAPK (but not the
p38 MAPK or PKC) prevented shear stress–induced down-
regulation of BMP-4 (Fig. 4D). Once activated, p42=44 MAPK
is known to translocate to the nucleus and phosphorylate a
number of different transcription factors (30), many of which
have putative binding sites in the promoter region of the
BMP-4 gene. At present, the MAPK-dependent transcription
factor(s) lying downstream target of the cAMP=PKA pathway
that downregulates the expression of BMP-4 in response to
shear stress is unknown. Because knockdown of Myc (but not
Sp-1 or p53) apparently attenuates the effect of forskolin on
endothelial BMP-4 expression (Fig. 4E) and Myc-binding sites
are conserved among the promoter region of human, baboon,
cow, bat, mouse, and rat BMP-4 orthologues (66), future
studies should characterize the role of Myc in detail in the
regulation of BMP-4 expression in endothelial cells.

Role of oscillatory flow and NAD(P)H oxidase
activation

In contrast with the effects of laminar shear stress, dis-
turbed flow conditions, such as oscillatory shear stress, up-
regulate BMP-4 expression in endothelial cells (113, 114).
Some evidence suggests that enhanced ROS production by
NAD(P)H oxidase contributes to this response (113, 114).
Further studies are clearly needed to elucidate the role of the
cAMP=PKA pathway, CREB activation, ERK-dependent sig-
naling mechanisms, or a combination of these effects on os-
cillatory shear stress. The significance of the upregulation of
BMP-4 expression by disturbed hemodynamic conditions is
also supported by the finding that BMP-4 protein is expressed
in the endothelial cells overlying early atherosclerotic lesions
but not in those that line uninjured human coronary arteries
(113, 114). Based on the findings that ICAM-1 expression
is increased in human coronary arteries in endothelial regions
that express BMP-4 (113, 114) and that BMP-4 elicits monocyte
adhesiveness in vitro (18, 113, 114), one can consider BMP-4 a
master regulator of mechanosensitive endothelial activation.
Many data presented in the present review uphold this hy-
pothesis, which is further supported by a recent report that
exposure of the aortic surface to pulsatile shear stress in-
creased expression of the inflammatory markers VCAM-1 and
ICAM-1 in a BMP-4–dependent manner (117). Dr. Hanjoong
Jo’s laboratory (14) recently showed that healthy endothelial
cells can co-express BMP antagonists along with BMP-4 in
response to disturbed flow conditions, suggesting that these
antagonists can play a negative-feedback role against the in-
flammatory response of BMP-4. It has yet to be elucidated
how endothelial expression of BMP antagonists is altered in
pathophysiologic conditions (e.g., diabetes, hypercholester-
olemia, hyperhomocysteinemia), which are known to pro-
mote atherogenesis.

Perspectives

Taken together, we propose that hemodynamic forces
(pressure=wall tension and shear stress) regulate expression

of vascular BMP-2=4 in endothelial and smooth muscle cells.
As shown in Fig. 1D, high pressure=increased wall tension
elicits increases in [Ca2þ]I and PKC activation, stimulating
Nox-dependent O2�� and H2O2 production. Increased cyto-
solic ROS levels lead to NF-kB activation, which upregulates
BMP-2 expression. Conversely, atheroprotective laminar
shear stress activates the cAMP=PKA and p42=44 MAP kinase
pathway, which reduces BMP-4 expression in endothelial
cells (Fig. 4F). Laminar shear stress also stimulates eNOS-
dependent production of NO, which exerts vasodilatory, an-
tiproliferative, and antiinflammatory effects on the smooth
muscle cells. Because BMP-4 activates NAD(P)H oxidases
and elicits endothelial dysfunction, monocyte adhesiveness to
the endothelium, and vascular calcification, the model pre-
dicts that cAMP=PKA-mediated inhibition of BMP-4 expres-
sion contributes to the multifaceted antiatherogenic and
vasculoprotective effects of laminar shear stress. In contrast,
oscillatory=pulsatile shear stress increases Nox-derived ROS
generation, decreasing the bioavailability of NO and upregu-
lating BMP-4. Persistently disturbed hemodynamic conditions
may also lead to the upregulation of paracrine signaling sys-
tems (including the local renin–angiotensin system and TNF-a
production) that may also regulate BMP expression. Further
studies are needed the better to elucidate (a) the downstream
signaling pathways and target genes induced by BMPs in
endothelial cells; (b) the role of BMPs in vascular remodeling
induced by changes in the hemodynamic environment; (c)
the differential redox-sensitive regulation of BMPs in endo-
thelial and smooth muscle cells, characterizing the factors
involved in their transcriptional regulation; and (d) the dif-
ferences in BMP expression and regulation between systemic
arteries (high pressure and atheroprone) and pulmonary ar-
teries (low pressure, resistant to atherosclerosis, affected by
BP-receptor mutations in primary pulmonary hypertension).
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