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Abstract

Blood vessels respond to changes in mechanical load from circulating blood in the form of shear stress and
mechanical strain as the result of heart propulsions by changes in intracellular signaling leading to changes in
vascular tone, production of vasoactive molecules, and changes in vascular permeability, gene regulation, and
vascular remodeling. In addition to hemodynamic forces, microvasculature in the lung is also exposed to stretch
resulting from respiratory cycles during autonomous breathing or mechanical ventilation. Among various cell
signaling pathways induced by mechanical forces and reported to date, a role of reactive oxygen species (ROS)
produced by vascular cells receives increasing attention. ROS play an essential role in signal transduction and
physiologic regulation of vascular function. However, in the settings of chronic hypertension, inflammation, or
acute injury, ROS may trigger signaling events that further exacerbate smooth muscle hypercontractility and
vascular remodeling associated with hypertension and endothelial barrier dysfunction associated with acute lung
injury and pulmonary edema. These conditions are also characterized by altered patterns of mechanical stimu-
lation experienced by vasculature. This review will discuss signaling pathways regulated by ROS and mechanical
stretch in the pulmonary and systemic vasculature and will summarize functional interactions between cyclic
stretch- and ROS-induced signaling in mechanochemical regulation of vascular structure and function. Antioxid.
Redox Signal. 11, 1651–1667.

Introduction

Blood vessels are permanently exposed to hemodynamic
forces in the form of shear stress and circumferential

mechanical strain, which act on the vascular wall and play an
important role in the regulation of vascular structure, myo-
genic tone, and functional responses to vasoactive agonists.
Vascular cells can sense changes in mechanical forces and
transduce the mechanical signal into a biological response
(mechanotransduction). However, the mechanisms of mech-
anotransduction remain to be elucidated. Several mechanisms
that have been proposed to be involved in mechano-sensation
include stretch-activated ion channels, integrins, cytoskeletal
meshwork (tensegrity model), and receptor tyrosine kinases
(45, 64, 66, 73, 80, 120, 142). A role of signaling by reactive
oxygen species (ROS), although less investigated, clearly at-
tracts increasing attention (7, 123, 137, 167). Recent reports
indicate that altered levels of shear stress or changes in cyclic

stretch induce profound changes in ROS levels that may
trigger vascular contraction in chronic hypertension (123,
152), induce vascular barrier dysfunction in pulmonary cir-
culation associated with ventilator-induced lung injury (1, 34,
88), or stimulate vascular remodeling or angiogenesis via
ROS-mediated transcriptional activation of growth factors,
extracellular matrix proteins, matrix metalloproteinases, or
bioactive peptides (60, 62, 103). Thus, stretch-induced regu-
lation of ROS production and synergistic effects of mechanical
and chemical stimuli on ROS generation under pathologic
and physiologic conditions represent a highly promising area
of research directed at the understanding of molecular
mechanisms of vascular remodeling and barrier regulation.
These studies may result in the development of novel thera-
peutic approaches in the treatment of pathologic conditions
such as arterial and pulmonary hypertension, atherosclerosis,
ventilator-induced lung injury, and adult respiratory distress
syndrome (ARDS).
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Biology of ROS

Cellular respiration in an oxygen-rich environment gener-
ates abundant derivatives of partially reduced oxygen, col-
lectively termed reactive oxygen species (ROS). Produced by a
gradual reduction of molecular oxygen, ROS include both
unstable free radicals (chemical species having unpaired
electrons in their outermost shell), such as the superoxide or
thehydroxylradical,andlonger-livednonfreeradicaloxidants,
such as hydrogen peroxide, H2O2 (111), which are generally
capable of oxidizing molecular targets. Since hydrogen per-
oxide does not possess an unpaired electron in its outer shell,
it is more stable and less reactive with other tissue radicals
(Fig. 1). Based on its chemical properties and mechanisms of
production, H2O2 has been considered as a cellular second
messenger capable of modulating both contractile and
growth-promoting pathways (10). Also, H2O2 may act on
neighboring cells in a paracrine fashion. As a host defense
mechanism, ROS are produced by neutrophils upon their
activation by bacterial material (oxidative burst), but they
also may affect surrounding tissues and other cells. Thus,
under basal conditions, ROS serve as an integral component
of cellular signaling pathways; however, when these highly
reactive metabolic products are in excess, they impose an
oxidant stress on the cellular environment, leading to patho-
logic cell responses (111, 146). Increased production of ROS
has been implicated in the pathogenesis of cardiovascular
diseases such as atherosclerosis, restenosis, hypertension, di-
abetic vascular complications, and heart failure (29, 32, 152).

ROS Metabolism and Vascular Wall

ROS are produced by all vascular cell types, including
endothelial, smooth muscle, and adventitial cells, and can
be generated from both metabolic and enzymatic sources
(Fig. 2). These sources include mitochondrial respiration,
xanthine oxidoreductase, cyclooxygenases and lipoxygen-
ases, NADPH oxidases, and uncoupled nitric oxide synthases
(32). The most relevant sources of ROS with respect to vas-
cular disease and hypertension appear to be xanthine oxido-
reductase, uncoupled endothelial NO synthase, and NADPH
oxidase.

NADPH oxidases

Many studies have shown that the major source of ROS in
the vascular wall is nonphagocytic NADPH oxidase, which
utilizes NADH=NADPH as the electron donor to reduce

molecular oxygen and produce O2
��. Activation of this en-

zyme requires the assembly of both cytosolic (p47phox,
p67phox, or homologues) and membrane bound (gp91phox=
Nox1=Nox4 and p22phox) subunits to form a functional en-
zyme complex (47). In the vasculature the NADPH oxidase
complex is at least partly pre-assembled, as a significant pro-
portion of NADPH oxidase subunits are colocalized intra-
cellularly in endothelial cells (61, 96). Various endogenous
and external stimuli modulate the NADPH oxidase subunits
expression and=or activity. Although endothelial and vascu-
lar oxidases appear to be constantly active, generating low
levels of ROS, they are regulated by humoral factors as
demonstrated for cytokines, growth factors, and vasoactive
agents, as well as by physical factors including stretch, pul-
satile strain, and shear stress (89). Interestingly, hydrogen
peroxide and lipid peroxides can stimulate activity of the
NADPH oxidases in vascular smooth muscle cells, leading to
a feed-forward increase in ROS production in vascular wall.
Expression of one or more of NADPH oxidase subunits is
upregulated in HUVEC culture in response to angiotensin II,
endothelin-1,oxidizedlowdensitylipoproteins,pulsatileshear
stress, and phorbol esters (51, 102). They are conversely
downregulated by treatment with statins, PPAR agonists, or
estradiol (51, 138). Angiotensin II, TGFb, TNFa, serum, PDGF,
prostaglandin F2a, phorbol esters, and low density lipo-
proteins upregulated various NADPH oxidase subunits ex-
pression in the case of cultured arterial smooth muscle cells
(89, 90).

Xanthine oxidase

Another source of vascular ROS is the xanthine oxidore-
ductase enzyme system. Xanthine oxidoreductase, also
termed as xanthine oxidase (XOR) is an enzyme that catalyzes
the last steps of purine metabolism: the transformation of
hypoxanthine and xanthine to uric acid, with superoxide=
H2O2 generated as by-products (77). There are two isoforms of
XOR. The xanthine dehydrogenase activity present in vascu-
lar endothelium is readily converted into xanthine oxidase by
processes including thiol oxidation and=or proteolysis. The
ratio of xanthine oxidase to xanthine dehydrogenase in the
cell is therefore critical to determine the amount of ROS pro-
duced by these enzymes (28, 58). Although both isoforms
have ROS-generating potential, in vivo xanthine oxidase me-
tabolizes hypoxanthine, xanthine, and NADH to form O2

�

and H2O2 and appears to be an important source of ROS
production in ischemia=reperfusion and hypercholester-

FIG. 1. Metabolism of reactive oxygen
species.
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olemia (59, 68). Analysis of xanthine oxidase in vascular wall
showed xanthine oxidase immunoreactivity in human small
vessel arterial endothelium, and xanthine oxidase mRNA was
identified in cultured rat pulmonary arterial endothelial cells
(52, 97). Moreover, measurable xanthine oxidase activity has
been detected in various disease states in arteries or cultured
endothelial cells. The addition of xanthine=xanthine oxidase
or uric acid in cell culture modifies cell growth and prolifer-
ation (132). Thus, xanthine oxidase has the potential to be an
important source of ROS production under certain patho-
physiological conditions.

Nitric oxide synthase

Nitric oxide synthase (NOS), the enzyme responsible for
NO generation, has three isoforms: NOS1 (the neuronal NOS),
NOS2 (the inducible NOS, calcium-independent, transcrip-
tionally regulated isoform found in macrophages), and NOS3
or eNOS (the endothelial NOS) (162, 173). Recently, all three
isoforms have been identified in arteries and veins, as well as
in endothelial cell culture. A reduction of NOS activity in the
arterial endothelium-dependent vascular relaxation, defined
as endothelial dysfunction, has been documented in athero-
sclerosis and hypertension (13, 30). In physiological condi-
tions, NOS shuttles electrons from the reductase domain
to the oxidase domain and catalyzes the transformation of
L-arginine into L-citrulline and NO, using several cofactors.
Under some conditions, NOS generates superoxide rather
than NO (9, 162), a phenomenon that is known as NOS un-
coupling, meaning that electrons flowing from the NOS re-
ductase domain to the oxygenase domain are diverted to
molecular oxygen rather than to L-arginine. (16). For endo-
thelial NOS, this process can be triggered in vitro through the
absence of the co-factors L-arginine and tetrahydrobiopterin
(87, 162).

Mitochondrial respiratory chain

The mitochondrial respiratory chain is the main energy
source for the cell. Situated in the inner mitochondrial mem-
brane, it catalyzes electron transfer using more than 80 pep-
tides organized in four complexes. The transfer of electrons,
shuttled by coenzyme Q and cytochrome C, usually leads to
the formation of ATP by the fifth complex. However, a certain
amount (1–2% in vitro) of electrons leak generating super-
oxide (35, 55). The contribution of mitochondria to the pro-
duction of ROS in vascular wall is less understood. Recent
studies have implicated mitochondria as a source of ROS re-
sponsible for mediating flow-induced dilation in coronary
arteries (101) and intercellular communication in vascular
smooth muscle cells subjected to stretch (44). Endothelial cells
lacking a functional electron transport chain lose the ability to
increase oxidant signaling in response to cyclic stretch and fail
to activate NFkB, yet they retain the ability to respond to other
stimuli such as lipopolysaccharide (6). Mitochondria do not
appear to contribute significantly to total vascular ROS pro-
duction (121). This is most likely due to the relative metabolic
inactivity of quiescent blood vessels. However, stretch-
induced perturbation of mitochondria could then trigger re-
lease of ROS to the cytosol, thereby activating downstream
effector molecules involved in the mechanotransduction sig-
naling pathway (5, 6).

ROS and Vascular Disease

Although the sources described above are primarily re-
sponsible for ambient ROS production and basal cellular ho-
meostatic function, when vascular disease states ensue, redox
balance in the vessel wall is compromised because of in-
creased ROS production by these sources. When this is cou-
pled with decreased antioxidant defense, as may occur in the

FIG. 2. Metabolic and enzymatic sources of ROS. NOS, nitric oxide synthase; ROS, reactive oxygen species; XOR, xanthine
oxidase.

CYCLIC STRETCH, ROS, AND VASCULAR REMODELING 1653



setting of an oxidative enzymopathy, the net result is an ac-
cumulation of superoxide anions in the vessel wall, where
they are free to react and form a number of pathophysiolo-
gically relevant reactive species. These species include hy-
drogen and lipid peroxides, peroxynitrites and peroxynitrous
acids, and hypochlorite and hypochlorous acid, which, in
turn, may have deleterious consequences for vascular func-
tion. Therefore, the imbalance between prooxidant and anti-
oxidant factors, defined as oxidative stress, can affect cellular
homeostasis either through direct oxidative damage of basic
cellular components (proteins, lipids, and nucleic acids) or
through the activation of various redox-sensitive signaling
pathways, leading to defective cellular function, aging, dis-
ease, or apoptosis (111, 118). ROS-mediated pathways leading
to vascular remodeling, contractility or inflammation are
summarized in Fig. 3. The presence of increased markers of
oxidative stress (peroxidized lipids, oxidized proteins, in-
creased GSSG, 8-oxoguanine, DNA breaks, etc.) has been
identified in many pathophysiological situations (55). Oxi-
dative stress can modulate vascular function through direct
oxidative damage; endothelial dysfunction; decreased NO
bioavailability; impaired contractility; platelet aggregation;
and ROS-mediated inflammation, proliferation, and re-
modeling (31, 55, 107). ROS or oxidative stress involvement in
cellular signaling include activation of major signaling path-
ways, such as MAPK, PI3K=Akt, NFkB, ERK, JNK, and p53.
Recently it was shown that in vascular endothelium intra-
cellular oxidant production mediated by NADPH oxidase is
involved in TNFa-induced EC dysfunction via cadherin
phosphorylation and JNK activation (115). However, the
differences in the effects of oxidative stress on arterial and
venous function remain to be elucidated.

ROS and hypertension

An increasing body of evidence supports the idea that ROS
are involved in the pathogenesis of hypertension. Increased
markers of oxidative stress are found in human hypertensive
subjects, as well as in various animal models of hypertension
(133, 141, 151). Increased NADPH oxidase and xanthine oxi-
dase expression or activity has been observed in some exper-
imental models of hypertension (33, 85). Treatment of these
models with ROS scavengers (141), inhibitors of NADPH
oxidase (18, 135), inhibitors of xanthine oxidase (110), SOD
mimetics, BH4 (151) or targeted gene delivery of SOD (110),
or NADPH oxidase inhibitors (50, 98) normalizes blood pres-
sure or prevents the development of hypertension and in
some cases improves vascular and renal function. Further-
more, genetic deficiency in ROS-generating enzymes protects
some animals from experimental hypertension (86). In con-
trast, lack of antioxidant capacity causes increased hyperten-
sion in others (53, 150). The role of ROS in pathogenesis of
hypertension includes both vasoconstriction and vascular
hypertrophic effects. Contractile effects of ROS on vasculature
are achieved via H2O2-induced influx of extracellular Ca2þ

and release of intracellular Ca2þ pools, leading to activation of
Ca2þ-dependent myosin light chain kinase that triggers
phosphorylation of myosin light chains and vascular smooth
muscle contraction (22, 57, 126, 178). Rho-associated kinase
(Rho-kinase) and stress-activated p38 MAP kinase is another
group of redox-sensitive kinase activated by ROS, which also
contribute to vasoconstriction by direct stimulation of MLC
phosphorylation and by activating integrin-linked kinase and
ZIP-kinase, which inactivate myosin light chain phosphatase
and thus increase levels of phosphorylated MLC (54, 109, 163).

FIG. 3. Regulation of vascular
structure and function by ROS.
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Hypertrophic effects of ROS on the vasculature are associated
with ROS-induced of c-Src, which in turn transactivates re-
ceptor tyrosine kinases EGF-R and PDGF-R. This process also
involves activation of phosphatidyl inositol (PI)3-kinase
(140). The resulting tyrosine phosphorylation leads to down-
stream activation of Rho kinase, MAP kinases ( JNK, big
MAPK or ERK5, and p38 MAP kinase) and transcription
factors (2, 159, 177). ROS-induced activation of p38 MAP ki-
nase stimulates the Akt=protein kinase B pathway, leading to
cellular hypertrophy (60, 159). It is important to note that both
endogenous ROS generated by NAD(P)H oxidase upon vas-
cular smooth muscle cell stimulation by angiotensin-II and
exogenously administered H2O2 does modulate ERK1=2
phosphorylation in vascular cells (27, 114, 117).

ROS and pulmonary vascular dysfunction

Adult respiratory distress syndrome (ARDS) or acute lung
injury (ALI) is a common response of the lung to diverse
clinical insults, including sepsis, pneumonia, trauma, aspira-
tion, and ventilator-induced lung injury (VILI) (105). Acute
lung injury (and ARDS) in its initial phases is characterized by
an acute inflammatory response, with recruitment and acti-
vation of alveolar macrophages and neutrophils, which to-
gether with activated alveolar epithelial and vascular
endothelial cells produce significant amounts of ROS, one of
the key substances modulating the pulmonary vascular en-
dothelial damage associated with ARDS (34, 160). Increased
ROS levels further augment lung vascular leak by stimulating
endothelial permeabiltiy (125, 158, 179) and exacerbate pul-
monary edema and inflammation.

Increased ROS production has been also implicated in the
hypoxia-induced pulmonary hypertension. Chronic hypoxia
caused the generation of ROS, which is obliterated in NADPH
oxidase (gp91phox) knockout mice. Furthermore, pathologi-
cal changes associated with hypoxia-induced pulmonary ar-
terial hypertension (mean right ventricular pressure, medial
wall thickening of small pulmonary arteries, and right heart
hypertrophy) were completely abolished in NADPH oxidase
(gp91phox) knockout mice (99). Hypoxia potentiated vaso-
constrictor responses of isolated intrapulmonary arteries to
both 5-hydroxytryptamine (5-HT) and the thromboxane mi-
metic U-46619. Administration of CuZn superoxide dismutase
to isolated intrapulmonary arteries significantly decreased
hypoxia-induced ROS levels and reduced the hypoxia-
enhanced vasoconstriction to 5-HT and U-46619 (99). Simi-
larly, hypoxia-induced ROS production and vasoconstrictor
activity of intrapulmonary arteries were markedly reduced in
NADPH oxidase knockout mice. Development of pulmonary
hypertension in utero is also associated with elevated pro-
duction of the H2O2 and alterations in antioxidant capacity,
which lead to decreased soluble guanylate cyclase expression,
unpaired vasodilating response to NO, and increased vaso-
constriction and vascular remodeling. Studies by Wedgwood
et al. demonstrated that the addition of the ROS scavenger
catalase to isolated pulmonary arteries normalized the vaso-
dilator responses to exogenous NO (168).

Biology of Cyclic Stretch

Blood vessels are permanently exposed to mechanical
stresses, and alterations in these forces are thought to be
important in vascular remodeling in both physiological

conditions, such as exercise training, and in pathological
conditions, such as hypertension, atherosclerosis, and diabe-
tes (4, 81, 93). The two main forces acting on the blood vessel
wall are shear stress (generated by movement of blood
through the vessel lumen) and stretch (determined by luminal
pressure). Mechanical stretch experienced by vascular
cells from systemic and pulmonary circulation is a superpo-
sition of pulsatile and tonic components. Tensile stress is im-
posed on vascular wall by hydrostatic pressure counteracted
by tonic contraction of vascular smooth muscle cells and
elastic components of extracellular matrix in the vessel wall.
In addition, cyclic stretch (CS) is imposed by heart propul-
sions. Pulsatile distension of the arterial wall in systemic cir-
culation normally does not exceed 10–12%, whereas various
vasomotor reactions may change diameter of smaller caliber
‘‘resistance’’ arteries to 60% of initial diameter or more and last
minutes or hours (82). Physiologic levels of cyclic stretch and
intraluminal pressure are essential for the maintenance of
vascular smooth muscle cell contractile phenotype (20), reg-
ulation of vascular tone, and expression of native constituents
of vascular wall extracellular matrix (14). In contrast to
pathologic CS, physiologic stretch also inhibits apoptosis in
vascular endothelium and causes mitotic arrest of vascular
smooth muscle cells (36, 69, 100). However, the role of CS in
the endothelial function has not been yet characterized in
detail. Our studies demonstrate magnitude-dependent effects
of CS on pulmonary EC cytoskeletal remodeling and indices
of EC permeability (23, 25). These data indicate an important
role of cyclic stretch in regulation of mass transport across the
vessel wall.

Cyclic stretch and vascular diseases

The increase in vascular wall stress associated with hyper-
tension has been implicated in the pathogenesis of cardio-
vascular diseases. While physiological cyclic stretch causes
cell cycle arrest in the vascular smooth muscle cells (69),
chronically increased blood pressure and vascular transmural
stress activates vascular cell proliferation, collagen and fi-
bronectin synthesis which results in thickening of the vascular
wall as a feature of hypertension-induced vascular remodel-
ing (41, 71, 116). These changes can lead to increases of wall
thickness and media-to-lumen ratio, and a decrease of luminal
diameter. Such remodeling of the arteries would alter their
compliance. The involvement of resistance vessels in these
changes results in overall increased vascular resistance (83).
Thus, given the role for ROS in regulation of redox-sensitive
signaling leading to vascular smooth muscle hypertrophy and
vascular remodeling described above, it is highly likely that
stretch-mediated regulation of vascular tone and vascular
remodeling may be controlled by stretch-induced ROS gen-
eration.

Cyclic stretch in pulmonary vasculature

In pulmonary circulation, pathological overdistension of
the lung may induce inflammatory processes triggered by
mechanical activation of macrophages, epithelial, and endo-
thelial cells, which may cause alveolar and endothelial barrier
dysfunction, vascular leak, and culminate in ventilator-
induced lung injury (VILI) syndrome or pulmonary edema
(49, 154). Experimental models of mechanical ventilation
at high tidal volumes further confirmed activation of
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inflammatory events and increased vascular leak (112, 124).
Direct measurements of interstitial=vascular distension in the
mechanically ventilated lung are not currently available be-
cause of complexity of local distension patterns in the lung
parenchyma further complicated by uneven regional lung
distension observed during inflammation and lung injury.
Morphometric estimations performed by Tschumperlin and
Margulies (153) suggest 34–35% increases in the alveolar
epithelial cell surface area if lung volume increases from 40%
to 100% of total lung capacity. Similar distension is appar-
ently experienced by terminal lung capillary endothelial cells
which form tight contacts with alveolar epithelium. Studies of
cellular mechanisms underlying ventilation-induced lung
injury demonstrate several potential pathways leading to
vascular dysfunction, including activation of interleukin-8
production (128, 165), leukocyte infiltration, or cell membrane
disruption (147, 164). Established in vitro models mimicking
effects of pathologic cyclic stretch and inflammatory agents
on lung cells reproduced cell responses such as cytokine
production and exacerbation of agonist-induced endothelial
barrier dysfunction by high amplitude cyclic stretch observed
in the injured lung (23, 49, 128, 165). These models are now
intensively utilized in studies of pathophysiological me-
chanotransduction and gene expression, which will be de-
scribed below.

Stretch-Activated Cellular Signaling

Cell membranes, cell attachment sites, and cytoskeletal
network directly experience hemodynamic forces, and most
likely serve as primary mechanosensors (45). Cells adhere to
neighboring cells and to the extracellular matrix via trans-
membrane receptors of cadherin (cell-to-cell) and integrin
(cell-to-substrate) families. In the cytoplasmic domain, these
receptors are coupled to protein complexes that link receptors
with cytoskeleton and also mediate mechanical signal trans-
duction via activation of signaling molecules such as tyrosine
(focal adhesion kinase, p60Src) kinases, serine (Erk-1,2, JNK,
and p38 MAP kinases) protein kinases, inositol lipid kinases
(phospholipase C), and some growth factor receptors (VEGF
and PDGF receptors) (37, 41, 45, 134). Activation of mecha-
noreceptors triggers multiple signal cascades with ion chan-
nels (Naþ channel, Kþ channel, chloride-selective channel)
and heterotrimeric G proteins (Gaq) being activated within
seconds of mechanical stimulation, and protein kinases (pro-
tein kinase C, MAP kinases, nonreceptor protein tyrosine ki-
nases) activated within minutes of stimulation (reviewed in
(45)). Protein kinase-mediated phosphorylation of specific
cytoskeletal and cell contact proteins, other enzymes, and
transcription factors induce cytoskeletal remodeling and
stimulate gene expression in vascular cells. In vascular EC,
cyclic stretch induced tyrosine dephosphorylation of occludin
and serine=threonine phosphorylation of ZO-1 mediated by
unidentified tyrosine kinases and PKCd, respectively, and up-
regulated tight junction assembly associated with increased
barrier integrity (43). Figure 4 summarizes major signal path-
ways and cellular responses induced by cyclic stretch.

Although the majority of putative mechanosensors and
mechanotransduction pathways are stimulated by both shear
stress and stretch, the nature and magnitude of mechanical
forces may differentially affect certain signaling systems. In-
terestingly, cyclic but not steady mechanical strain activates

vascular FAK, and Src and integrins are involved in steady
pressure-induced FAK activation in the vessels (92). Further-
more, laminar shear stress (5–20 dynes=cm2) and low magni-
tude cyclic stretch (5% elongation) selectively activates small
GTPase Rac that results in peripheral translocation of actin
polymerization proteins and enhancement of cortical actin
cytoskeleton (21, 169), whereas high magnitude cyclic stretch
(18% elongation) stimulates small GTPase Rho without affect-
ing Rac and potentiates stress fiber formation and barrier
dysfunction induced by edemagenic agonists (23, 25, 129, 176).
Excessive stretch also activated NFkB pathway in rat and in cell
models of VILI via PI3K-dependent manner (95, 155) and ex-
acerbated sepsis-induced NFkB activation in the isolated lung
cells (95). Remarkably, selective inhibition of VILI-induced
NFkB signaling is possible without inhibiting the NF-kappaB
signaling activated by endotoxin. (155). Most protein kinases
and ion channels involved in mechanochemical signaling ex-
hibit amplitude-dependent activation which may explain the
above described amplitude-dependent cell responses and al-
ternatively regulated gene expression described below.

Cyclic Stretch-Regulated Gene Expression

Studies on the effects of mechanical stretch on vascular cells
indicate that mechanical stretch has significant effects on the
expression of genes related to vascular remodeling and cell
functions such as cell proliferation, apoptosis, migration, and
control of cell phenotype. Phenotypic responses of vascular
cells exposed to cyclic stretch in vitro include increased ex-
pression of contractile and cytoskeletal proteins (myosin light
chain kinase, smooth muscle myosin heavy chains, desmin,
h-caldesmon) (24, 143, 144), and increased expression of
thrombin receptor PAR1 (113) in vascular smooth muscle
cells. A number of bioactive proteins regulated by cyclic
stretch have been also identified in endothelial cells and
macrophages and include IL-8, TGFb, VEGF, and monocyte
chemotactic protein-1 (128, 172, 181). Analysis of vascular
gene expression regulated by mechanical strain reveals dif-
ferential responses to physiological and pathophysiological
(increased) levels of mechanical strain. For example, release of
FGF-2, a growth factor involved in cellular reparation after
injury, is induced in vascular smooth muscle cells stretched at
14% and 33% elongation, but not at 5% elongation (39). Sig-
nificant increase in IL-8 production is observed in endothelial
cells exposed to cyclic stretch at 15% elongation, whereas
stretch at 6% elongation did not affect IL-8 levels. In pulmo-
nary circulation, pathological overdistension of the lung may
induce inflammatory processes triggered mechanical activa-
tion of macrophages, epithelial and endothelial cells, which
may cause alveolar and endothelial barrier dysfunction, vas-
cular leak, and culminate in pulmonary edema. Recently,
microarray DNA technologies have been applied to assess
time- and amplitude-dependence of cyclic stretch effects on
the gene expression profile in human pulmonary endothelial
cells (23). The results showed (19) that cyclic stretch at phys-
iologically relevant and pathological amplitudes (5% and 18%
elongation, respectively) induced distinct expression patterns
of genes involved in signal transduction, cytoskeletal re-
modeling, cell adhesion, inflammatory responses, and regu-
lation of endothelial barrier function (Table 1).

Recent studies indicate involvement of ROS signaling in
cyclic stretch-induced gene regulation. For example, Ali et al.
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reported that cyclic stretch-induced increases in NFkB acti-
vation and VCAM-1 mRNA expression during strain were
prevented by antioxidants (6). This study demonstrated that
mitochondria may function as mechanotransducers in endo-
thelium by increasing ROS signaling that is required for
strain-induced increase in VCAM-1 expression via NFkB.
Grote et al. showed that in cell culture model of arterial hy-
pertension cyclic stretch induced mRNA MM-2 (matrix me-
talloproteinase) expression in a NADPH=ROS-dependent
manner (62). Studies by Mata-Greenwood et al. (103) show
that cyclic stretch upregulates VEGF expression via the
TGFb1-dependent activation of NADPH oxidase and in-
creased generation of ROS.

Cyclic Stretch and Control of ROS Production

Indeed, vascular stretch is capable of stimulating release of
ROS (174, 175) and activating redox-sensitive signaling
pathways (67, 167). In injured vessels, vascular stretch affects
both the endothelium and vascular smooth muscle. Increased
production of ROS in response to cyclic mechanical stretch
has been described in endothelial cells (6, 104, 170, 171), vas-
cular smooth muscle cells (62, 74, 113), fibroblasts (8), and
cardiac myocytes (4). Superoxide appears to be the initial
species generated in these cell types. Several mechanisms
have all been implicated as potential sources for increased

superoxide production in response to mechanical stress
(Fig. 5), including the NADPH oxidase system (46, 62, 104,
106), mitochondrial production (5, 6, 72), and the xanthine
oxidase system (1, 106). ROS production by NO synthase has
been implicated in pathogenesis of pulmonary hypertension
(26). However, whether these potential sources are activated
directly or indirectly by mechanical stress is unclear. Little
data are available demonstrating increased ROS production
by stretched alveolar or airway epithelial cells (76, 157), and
the sources of increased ROS production and species gener-
ated in pulmonary epithelial and vascular cells exposed to
mechanical stretch remain to be determined. However, in-
creased ROS production in response to elevated stretch may
contribute to the onset of VILI (65, 76, 167).

ROS in Stretch-Induced Vascular Remodeling

Increased pressure in the vascular system is associated with
cyclic or sustained stretch of vascular endothelial and smooth
muscle cells. Stretch-induced ROS production was detected in
vascular endothelial, smooth muscle cells, and fibroblasts (5,
8, 103). Sustained stretch of systemic vascular cells or vessels
perfused and pressurized ex vivo has been attributed to arte-
rial hypertension in vivo (14, 94), whereas high magnitude
cyclic stretch of pulmonary EC relates to lung capillary strain
associated with mechanical ventilation at high tidal volumes

FIG. 4. Major signaling pathways
and cellular responses induced by
cyclic stretch.
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(23, 25). The vascular production of ROS is increased by
chronic hypertension (86, 123, 145, 151, 156). In many cases of
hypertension, either circulating or local levels of angiotensin II
are increased, and this hormone can directly activate NADPH
oxidase in both endothelial and vascular smooth muscle cells
(131). In turn, mechanical stretch also activates NADPH oxi-
dase (87, 103), leading to ROS production and oxidation of the
NO synthase co-factor tetrahydrobiopterin (87). In the ab-
sence of tetrahydrobiopterin, eNOS becomes uncoupled such
that superoxide rather than NO is formed. These events form
a vicious circle of vascular contraction associated with arterial
hypertension. Passive stretch of endothelium-denuded coro-
nary vascular smooth muscle strips induces their contraction
via the activation of NADPH oxidase and ERK1=2 (117). High
intraluminal pressures also cause superoxide production via
activation of NADPH oxidase in intact isolated vessels, an
effect that is independent of the local renin–angiotensin sys-
tem (156). Activation of mechanically sensitive redox signal-
ing pathways may thus contribute to some of the maladaptive
responses to altered hemodynamics in hypertension.

Stretch-induced increase in ROS production by vascular
cells has been implicated in activation of NFkB, activation of
matrix metalloproteases (MMPs), MAP kinase activation,
angiogenesis, LDL oxidation, and altered vasomotion. Using
an organ model of isolated mouse arteries, it was shown that
high-pressure-induced activation of NFkB pathway is criti-
cally dependent on NADPH-mediated increased ROS pro-
duction (94, 127). In cardiac myocytes, high-amplitude cyclic
strain induced increase in ROS, associated with activation of
JNK and Erk1=2 and induction of apoptotic phenotype (38). In
vascular smooth muscle cells, cyclic stretch induced ROS
production by rapid activation of NADPH oxidase, leading to
activation of MAPK signaling including p38, JNK, and
Erk1=2, and inhibition of NADPH or p38 prevented strain-
induced cell alignment (38). These studies delineated the role
of ROS-sensitive p38 activation in vascular remodeling by CS.
Similar results were obtained using an organ culture model of
rabbit aorta. It was shown that pulsatile stretch induces
Erk1=2 activation via ROS production (91). Other studies
suggested additional mechanisms and demonstrated that in
cell culture model of arterial hypertension CS induced ROS
production via NADPH oxidase and led to vascular re-
modeling via matrix metalloproteinase activation (62). In
pulmonary arterial SM cells, CS contributed to vascular re-
modeling via increase in VEGF expression, which was me-
diated by CS-induced activation of NADPH oxidase and
elevation of ROS production (103). Therefore, increased oxi-
dative stress in response to stretch contributes to activation of
pro-inflammatory transcription factors, activation of growth-
promoting MAP kinases, upregulation of pro-fibrogenic
mediators and altered vascular tone, important processes
contributing to the vascular phenotype associated with hy-
pertension (Fig. 6).

Cyclic Stretch and ROS-Dependent
Endothelial Activation

Mechanical ventilation with oxygen-enriched gas mixtures
is a strategy widely employed to improve arterial oxygena-
tion in patients with acute hypoxemic respiratory failure.
However, combination of excessive ventilation and hyperoxia
can damage normal lung tissue and initiate or exacerbate
lung injury. Ventilation at high tidal volumes combined with
hyperoxia significantly increased edema formation and neu-
trophil migration into the lungs (130), indicating critical
changes in pulmonary vascular permeability.

Table 1. Selected Genes Differentially Regulated

by Low (5%) and High (18%) Amplitude Cyclic Stretch

Fold change
at 5%

Fold change
at 18%

Signal transduction
Inducible T-cell kinase –– 17.1
Nuclear receptor subfamily 1,

group D, member 2
–– 3.2

Angiopoietin 2 1.8 2.1
HMG-CoA-synthase NC 4.0
Proteinase-activated receptor 2 1.4 2.1
Proteinase-activated receptor 1 NC �1.2
Rho B GTPase 1.87 2.1
Rho C GTPase NC 1.4
Cell adhesion
Gap junction protein, alpha 5 –– 2.8
CD54 NC 2.0
Beta 3 integrin 1.5 2.1
Beta-catenin NC 2.1
cadherin-13 8.5 1.7
Cell–cell signaling
Placental growth factor,

VEGF-related
1.8 2.0

Ephrin A1 1.2 2.1
Ephrin B2 1.7 2.0
Cytoskeleton
Smooth muscle myosin

heavy chain
NC 1.4

Filamin NC 1.7
Inflammation/remodeling
Human cyclooxygenase-2 NC 3.0
TGF-beta superfamily protein 1.6 2.3
Proteinase-activated receptor 2 1.4 2.1
ZIP-kinase 1.3 1.7

Expression profiling was performed using Affymetrix GeneChip�
system. Samples obtained from cells exposed to 5% or 18% cyclic
stretch (48 h) were hybridized to the Affymetrix HGU95Av2 Array
(*12,000 full-length genes). Affymetrix Microarray Suite software
was used to determine relative gene expression. GeneSpring and
MAPPFinder software (48) were used for microarray data analysis.
Results q1 represent fold increase in cDNA signal in cyclic stretch-
preconditioned cells over static control. (NC, no change; — signal
absent). (Adapted from ref. 19).

FIG. 5. Mechanisms of stretch-induced ROS production.
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In endothelium, mechanical stretch has been shown to in-
crease ROS production leading to the upregulation of cell
adhesion molecules and chemokines (40, 171). Several mech-
anisms of ROS production in EC have been described. Cyclic
stretch stimulated ROS production via increased expres-
sion of ROS-generating enzymes: NADPH oxidase and NO
synthase-3 (eNOS) (11, 12, 70). Kuebler et al. reported that
circumferential stretch activates NO production in pulmonary
EC via activation of PI3K, Akt, and eNOS-dependent signal-
ing cascade (84). Using pulmonary endothelial cells exposed
to high magnitude cyclic stretch in vitro and animal models of
ventilation at high tidal volumes, we found that endothelial
xanthine oxireductase (XOR) is also upregulated by cyclic
stretch, and stretch-induced stimulation of XOR enzymatic
activity was dependent on p38 and ERK1=2 MAP kinase ac-
tivation. We suggested that these mechanisms also may con-
tribute to the development of VILI (1).

Ali et al. proposed that endothelial cells detect cyclic strain
by transmitting externally applied force via the cytoskeleton
to the mitochondria, stimulating an increase in the release of
ROS signals to the cytosol (6). Moreover, it was demonstrated
that increase in oxidant signaling leads to the activation of
NFkB, which then triggers subsequent gene expression. It
was concluded that mitochondria function as mechano-
transducers in endothelium by increasing ROS signaling,
which is required for strain-induced increase in VCAM-1 ex-
pression via NFkB (6). Further studies by this group reported
that mitochondrial oxidants generated in response to endo-
thelial strain trigger FAK phosphorylation through a signal-
ing pathway that involves PKC (5). These results suggest an
interesting possibility for mitochondria being functional me-
chanotransducers in endothelial cells, regulating pulmonary
vascular barrier function via a ROS-mediated effect on redox-
sensitive signaling protein kinases. Taken together, these
studies suggest an important role of ROS signaling in mech-
anochemical regulation of endothelial cell remodeling and
pulmonary vascular permeability.

Modulation of Stretch-Induced ROS Production
and Vascular Functions

Like other tissue, blood vessels experience a complex pat-
tern of mechanical and chemical stimulations in physiological
and pathological conditions. Lung vascular permeability to
water and proteins is also controlled by vascular endothelial
growth factor (VEGF). VEGF overexpression in the lungs or
injection of purified VEGF increases endothelial permeability
in vivo (79, 136). However, the role of VEGF in lung pathology
is controversial. VEGF is primarily produced by type II alve-
olar epithelial cells and is a survival factor for the lung mi-
crovascular endothelial cells (166). In healthy human subjects,
VEGF is highly compartmentalized to the lung with alveolar
VEGF protein levels 500 times higher than in plasma (78).
However, under conditions of stress or injury such as in ALI
or VILI, because of anatomic proximity between alveolar
epithelial and microvascular endothelial cells, VEGF may
literally spill onto pulmonary EC, increasing permeability and
leading to interstitial and pulmonary edema (78, 108). High
tidal volume ventilation and cyclic stretch of vascular endo-
thelial and smooth muscle cells in vitro also stimulates VEGF
and VEGF receptor expression (63, 103, 180). It is proposed,
but not tested experimentally, that mechanical forces associ-
ated with mechanical ventilation may possess synergistic ef-
fects on the VEGF-induced ROS production. Furthermore, the
crosstalk between physiologically and pathologically relevant
amplitudes of cyclic stretch and VEGF effects on pulmonary
vascular permeability is not yet clear.

VEGF induces activation of small GTPase RhoA and its
recruitment to the cell membrane in pulmonary EC (161).
RhoA activation is necessary for the VEGF-induced reorga-
nization of the F-actin cytoskeleton, EC migration (161),
and increased permeability (148). VEGF may also increase
vascular permeability via PI3K=Akt-dependent induction via
stimulation of eNOS activity and NO production. Other
reports suggest a role for Src (119), Erk-1,2 and p38 MAP

FIG. 6. Role of ROS in cyclic stretch-
induced vascular remodeling and endo-
thelial activation.
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kinases (15, 75), as well as in PI3K=Akt-dependent induction
of eNOS activity (119, 149) in increased vascular permeabil-
ity by VEGF. Cyclic stretch stimulation of pulmonary arte-
rial smooth muscle cells contributed to vascular remodeling
via increase in VEGF expression that was mediated by stretch-
induced activation of NADPH oxidase and elevation of ROS
production (103). Our results show that similar to smooth
muscle cells, cyclic stretch stimulation of pulmonary endo-
thelial cells promoted VEGF-induced EC barrier dysfunction
in part via synergistic effects on ROS production (Figs. 7
and 8). Inhibition of ROS production by N-acetyl cysteine
significantly decreased endothelial cytoskeletal remodeling
and barrier dysfunction induced by VEGF and pathologic
amplitudes of cyclic stretch (Fig. 9). These functional inter-
actions between VEGF- and cyclic stretch-mediated pathways
and delineation of the role of ROS production in endothelial
signaling, cytoskeletal regulation, and increased pulmonary
vascular permeability are in the focus of our current studies.

This review summarized mechanisms of ROS production
induced by cyclic stretch or agonists (angiotensin-II). How-
ever, in physiologic milieu, signaling by chemical and me-
chanical stimuli is highly interconnected. Thus, interactions
between cyclic stretch and agonist stimulation may represent
a fundamental mechanism of mechanochemical control of
vascular remodeling and barrier function. For example, our
previous studies have shown synergistic effect of high mag-
nitude cyclic stretch on thrombin-induced pulmonary endo-
thelial barrier dysfunction, which resulted from increased
actomyosin contraction mediated by the Rho pathway (23, 25).
In contrast, agonist-induced EC barrier dysfunction was
attenuated in EC exposed to cyclic stretch at physiologic mag-
nitudes (5% CS) (25). Because thrombin-mediated signal
transduction also involves ROS-dependent mechanism (17),
potentiation of thrombin-induced endothelial permeability by
high magnitude cyclic stretch may share a common mecha-
nism with stretch-VEGF signaling described above.

The other part of stretch-induced modulation of ROS sig-
naling is feedback regulation of antioxidant systems. Some
vascular genes encoding antioxidant enzymes appear to be
upregulated by exercise training. For example, exercise train-
ing leading to increased shear and pressure imposed on the
vessel walls increased the expression of potentially ather-
oprotective vascular proteins such as eNOS, extracellular su-
peroxide dismutase (ecSOD, SOD3), and Co=Zn-SOD (SOD1)
(56, 139). These enzymes convert superoxide to the less ac-
tive ROS compound, hydrogen peroxide. In turn, potentially
pro-oxidant and atherogenic vascular proteins such as sub-
units of endothelial and vascular smooth muscle NADPH
oxidase and angiotensin receptor type I were downregulated
by exercise training (3, 139). The mechanisms by which cyclic

FIG. 7. Synergistic effect of high magnitude cyclic stretch
and VEGF on ROS production by pulmonary endothelial
cells. Static controls or cells preconditioned at 18% CS were
exposed to vehicle or VEGF (200 ng=ml, 15 min), and ROS
production was measured using EC preincubation with
fluorescent ROS sensor DCFDA followed by fluorimetric
analysis. Shown are mean� SD of three independent ex-
periments, *p< 0.05.

FIG. 8. Role of ROS in pulmonary endothelial barrier
disruption induced by high magnitude cyclic stretch and
VEGF. EC were left static or exposed to cyclic stretch at 18%
linear elongation for 2 h, followed by stimulation with VEGF
(200 ng=ml, 15 min). (A) Immunoflourescence staining of
F-actin was performed using Texas Red conjugated phalloi-
din. Arrows indicate cyclic stretch- and VEGF-induced
paracellular gap formation. (B) Quantitative image analysis
of gap formation induced by 18% CS and VEGF. Shown are
mean� SD of four independent experiments, *p< 0.05.
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stretch regulates the antioxidant enzyme expression remain
poorly understood. Our recent studies revealed involvement
of the transcription factor Nrf2 in this process (122). The
transcription factor Nrf2, via the antioxidant response ele-
ment (ARE), alleviates pulmonary toxicant- and oxidant-
induced oxidative stress by upregulating the expression of
several antioxidant enzymes (42). Cyclic stretch exposure
stimulated ARE-driven transcriptional responses and subse-
quent expression of antioxidant enzymes such as glutathione
peroxidase 2, glutamate-cysteine ligase, heme oxygenase �1,
and glutamate cysteine ligase in stretched pulmonary EC (122).
We further demonstrated that cyclic stretch transactivates
epithelial growth factor receptor (EGFR), and the PI3K-
Akt pathway acts as the downstream effector of EGFR and
regulates CS-induced ARE activation in an oxidative stress-
dependent manner. These novel findings suggest that EGFR-
activated signaling and actin remodeling act in concert to
regulate the stretch-induced Nrf2-ARE transcriptional re-
sponse and subsequent AOE expression. It is important to note
that NADPH oxidase inhibitor, which inhibits the generation
of ROS, N-acetyl cysteine and other flavoproteins that regulate
ROS production blocked CS-induced EGFR phosphorylation,
suggesting that ROS-mediated signaling regulates EGFR acti-
vation in response to cyclic stretch. These findings again reflect
tight relations between cyclic stretch and ROS in mechano-
chemical regulation of vascular function.

Conclusions

Shear stress and tensile forces are now well-recognized
factors that regulate endothelial signaling, cytoskeletal re-
modeling, gene expression, and physiological responses. The
rapidly growing body of evidence indicates that endothelial
cells discriminate between steady and cyclic, low and high
amplitude mechanical strain. Moreover, the pattern of me-
chanical stimulation determines whether endothelial cells will
develop pro- or anti-inflammatory cell responses and also
may differentially regulate endothelial barrier regulation and
vascular remodeling. Experimental and analytical tools are
being developed to assess the stress distribution throughout
cell structures that might be involved in mechanotransduc-
tion. Studies by several groups suggest that in acute settings
agonist-induced ROS production may be further enhanced by
cyclic stretch. These synergistic effects may exacerbate path-
ologic reactions in the vasculature, for example, vascular leak
during mechanical lung ventilation with ongoing oxidative
stress caused by neutrophil activation or inflammatory cyto-
kine production. Another potential situation is the pulmonary
hypertension with elevated angiotensin II levels, where in-
creased luminal pressure may further potentiate ROS pro-
duction and vascular remodeling triggered by angiotensin II.
Redox balance in the pulmonary circulation is even more
delicate in clinical settings of mechanical ventilation with
oxygen-rich gas formulations. Recent studies suggest direct
involvement of ROS in stretch-induced secretion of angio-
genic factors and vascular remodeling illustrated by a loop
where cyclic stretch stimulates NADPH-dependent ROS
production essential for increased VEGF synthesis. In turn,
VEGF itself triggers ROS signaling and remodeling in vascular
cells. Finally, synergistic effects of VEGF and high magnitude
stretch may further promote endothelial dysfunction and
vascular remodeling associated with hemodynamic per-
turbations and acute vascular injury conditions. However,
stretch- and agonist-induced oxidative stress in the vascula-
ture appears to be counterbalanced by upregulation of anti-
oxidant enzymes via negative feedback signaling loops, and
involvement of Nrf2 in stretch-induced antioxidant enzyme
transcriptional regulation appears to be a plausible mecha-
nism. A challenging task of future studies will be to address a
role of specific patterns of mechanical forces experienced by
vasculature in physiological and pathological conditions
(acute injury, inflammation, hypertension, ventilator-induced
lung injury), delineate synergistic mechanisms of mechanical
and chemical stimulation in the redox regulation of vascular
function, and will identify key cellular targets for drug design
and gene therapy.

Abbreviations

ARDS, adult respiratory distress syndrome; bFGF, fibro-
blast growth factor-b; CaMKII, Ca2þ=calmodulin-dependent
protein kinase; CS, cyclic stretch; CDK, cyclin dependent
kinase; CAT, catalase; EC, endothelial cells; ECM, extracel-
lular matrix; EGFR, epithelial growth factor receptor; eNOS,
endothelial NO synthase; ERK1=2, extracellular signal regu-
lated kinase 1=2; FAK, focal adhesion kinase; GCL, glutamate
cysteine ligase; GP, glutathione peroxidase; HO-1, heme
oxygenase-1; HSP, heat shock proteins; ICAM-1, intracellular
adhesion molecule-1; IL-8, interleukin-8; Jnk, Jun N-terminal
kinase; LDL, low density lipoproteins; LPS, bacterial wall

FIG. 9. Attenuation of pulmonary endothelial barrier
disruption induced by high magnitude cyclic stretch and
VEGF by ROS scavenger N-acetyl cysteine. EC exposed to
18% CS were pretreated with NAC (1 mM, 30 min) prior to
VEGF stimulation (200 ng=ml, 15 min). (A) Immunofloures-
cence staining of F-actin was performed using Texas Red
conjugated phalloidin. Arrows indicate cyclic stretch- and
VEGF-induced paracellular gap formation. (B) Quantitative
analysis of gap formation induced by 18% CS and VEGF in
untreated and NAC-pretreated cells. Shown are mean� SD
of three independent experiments, *p< 0.05.
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lipopolysacharide; MAPK, mitogen activated protein kinases;
MCP-1, monocyte chemoattractant protein-1; MLC, regulatory
myosin light chains; MLCK, myosin light chain kinase; MMP,
matrix metalloproteinases; NFkB, nuclear factor-kappaB;
NOS, nitric oxide synthase; Nrf2, nuclear factor E2-related
factor; PDGF, platelet derived growth factor; PI3-kinase, 1-
phosphatidylinositol 3-kinase; PKC, protein kinase C; PTK,
protein tyrosine kinase; PTP, protein tyrosine phosphatase;
ROS, reactive oxygen species; SOD, superoxide dismutase;
SSRE, shear stress response element; TGFb, transforming
growth factor b; TIMP, tissue inhibitor of matrix metallopro-
teinases; TNFa, tissue necrosis factor a; tPA, tissue plasmin-
ogen activator; VEGF, vascular endothelial growth factor;
VILI, ventilator induced lung injury; XOR, xanthine oxido-
reductase.
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