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There is currently a shortage of chemical molecules that can be used as bioactive probes to
study molecular targets and potentially as starting points for drug discovery. One inexpensive
way to address this problem is to use computational methods to screen a comprehensive
database of small molecules to discover novel structures that could lead to alternative and
better bioactive probes. Despite that pleasing logic the results have been somewhat mixed.
Here we describe a virtual screening technique based on ligand–receptor shape complemen-
tarity, Ultrafast Shape Recognition (USR). USR is specifically applied to identify novel
inhibitors of arylamine N-acetyltransferases by computationally screening almost 700 million
molecular conformers in a time- and resource-efficient manner. A small number of the pre-
dicted active compounds were purchased and tested obtaining a confirmed hit rate of 40
per cent which is an outstanding result for a prospective virtual screening.
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The current paradigm of drug discovery is based on the
inhibition of a key macromolecule for the development
of a targeted disease. This inhibition can be achieved
by binding a small drug molecule to the active site of
such macromolecular target, usually a protein, in
which case the molecule is said to be biologically
active. It is often the case that a known active molecule
does not provide a viable starting point for drug dis-
covery and development due to toxicological, potency,
selectivity or intellectual property issues. In these cir-
cumstances one wants to identify alternative molecules
that retain the desired biological activity of the initial
lead but that are devoid of its disadvantages. Empirical
testing of large numbers of chemical compounds (high
throughput screening) has been widely and successfully
employed as a source of new drug leads. However, the
huge costs of large-scale experimental testing and very
slow operation in practice (Peakman et al. 2003) have
motivated research on computational approaches for
the virtual screening of molecules in silico.
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In ligand-based virtual screening, a computational
method is used to search a database of molecules for
those that most closely resemble an active molecule
acting as the template. Here we focus on similarity in
terms of three-dimensional molecular shape, which has
been widely highlighted as an important pattern for
which to search (Zauhar et al. 2003; Rush et al. 2005;
Kortagere et al. 2009), among other reasons because a
degree of complementarity between the shape of the
drug molecule and that of its macromolecular receptor
is necessary for binding. Indeed, without such comple-
mentarity, the ligand and receptor atoms involved in
binding would not be sufficiently close to form favour-
able interactions. Therefore, similarly shaped molecules
will be able to fit the same binding pocket and thus are
likely to exhibit similar biological activity.

Unfortunately, there exist several challenges for
methods using molecular shape as the pattern to recog-
nize. The most important of these challenges are related
to the issue of computational efficiency. First, shape
information is regarded as difficult to encode efficiently
and use in database searching (Zauhar et al. 2003).
Furthermore, the increasing size of molecular databases
poses a serious limitation to the use of shape recognition
methods, where this increase is mainly motivated by
our desire to cover a wider region of the biologically
relevant chemical space and thus improve the likelihood
This journal is q 2009 The Royal Society
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Figure 1. (a) USR encoding. The shape of the molecule is characterized by the distributions of atomic distances to four strategic
reference locations. In turn, each of these distributions is described through its first three statistical moments. In this way, each
molecule has associated a vector of 12 shape descriptors. (b) USR comparison. In order to establish the degree of similarity
between the shape of two molecules, the Manhattan distance between the corresponding vectors of shape descriptors is calcu-
lated. Thereafter, this dissimilarity is monotonically inverted so as to define a normalized similarity score, where greater
shape similarity is represented by scores nearer to 1. USR uses this score to determine which are the most similarly shaped mol-
ecules in a database to a given query molecule.
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of finding innovative drug candidates. Consequently, it
is of great importance to develop shape recognition
methods able to screen a molecular database as fast
as possible. Indeed, it has been highlighted (Dobson
2004) that the availability of very fast, reliable virtual
screening methods would be of tremendous value in
drug discovery.

Recently, one of the authors devised (Ballester 2007)
a new molecular shape-matching technique, called
Ultrafast Shape Recognition (USR). USR is based on
the observation that the shape of a molecule is uniquely
determined by the relative position of its atoms. This
three-dimensional spatial arrangement of atoms is in
turn accurately described by a set of one-dimensional
distributions of atomic distances measured from four
strategically located reference locations. A highly con-
cise encoding of molecular shape is ultimately achieved
by characterizing each of the resulting four distri-
butions of atomic distances by its first three statistical
moments. The shape similarity of two molecules is
finally calculated through an inverse of the sum of
least absolute differences in their respective moments
(figure 1 shows an example of USR-based shape com-
parison). USR has been shown (Ballester & Richards
2007a,b) to be effective at comparing molecular
shapes while being thousands of times faster than
J. R. Soc. Interface (2010)
pre-existing methods (Ballester & Richards 2007a).
Thus, USR offers the possibility of application to data-
bases of much greater size using many more active
templates than previously possible. There are already
a number of successful applications of USR in the litera-
ture (Cannon et al. 2008; Nguyen et al. 2008; Ballester
et al. 2009; Schreyer & Blundell 2009).

Here we present the first prospective virtual screening
application of USR. A prerequisite for such application is
the availability of a database of compounds that are
either commercially available or are synthetically tract-
able. Using more than five million commercially available
compounds extracted from the ZINC online repository
(http://zinc7.docking.org/, last accessed on 25 August
2008; Irwin & Shoichet 2005), we generated a multi-con-
formational molecular database of about 690 million mol-
ecular conformers with OMEGA v. 2.1 (OpenEye Scientific
Software, Inc., http://www.eyesopen.com). It is in data-
bases of this size where USR becomes extremely useful.
Indeed, USR performs 100 searches on such a large mol-
ecular database, a total of 69 billion shape comparisons,
in just 83 min using a single 2.93 GHz dual-core pro-
cessor. By contrast, ESshape3D, the shape comparison
tool from one of the most widely used molecular model-
ling software packages MOE, would take almost three
months under the same conditions (Ballester et al. 2009).

http://zinc7.docking.org/
http://zinc7.docking.org/
http://www.eyesopen.com
http://www.eyesopen.com


1Of course, the value of docking is not limited to its performance on
targets with previously known actives. Unlike ligand-based
techniques, docking can be applied to cases where there are still no
known active molecules provided that the structure of the target is
available. Also, docking models are useful to predict how ligands
bind to their receptor, which is important at the drug lead
optimization stage.
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We are interested in a member of an important family
of drug targets known as arylamine N-acetyltransferases
(NATs). Arylamine NATs have been identified (Russell
et al. 2009) as drug- and carcinogen-metabolizing
enzymes. Human NAT1 (hNAT1) is one of the two func-
tional NAT enzymes in humans. hNAT1 and its murine
homologue mouse Nat2 (mNat2) are expressed in many
different adult tissues (Ohsako & Deguchi 1990; Cribb
et al. 1991; Risch et al. 1996; Stanley et al. 1996; Hickman
et al. 1998; Wu et al. 2007). Endogenous roles relating to
acetyl coenzyme A (AcCoA) lipid homeostasis (Richards
et al. 2004) or folate catabolism (Minchin et al. 1995)
have been proposed for hNAT1. mNat2 has been shown
to acetylate the folate catabolitep-aminobenzoylglutamate
(pABAglu) in vivo (Wakefield et al. 2007). Nevertheless,
the precise endogenous role of hNAT1 remains unknown.
Recent microarray work has confirmed that the hNAT1
gene is one of the 10 most highly overexpressed genes in
oestrogen-receptor positive (ERþ) breast cancer cells
(Tozlu et al. 2006). It has been also identified using
protein detection that hNAT1 is overexpressed in certain
ERþ breast cancer cell lines (Wakefield et al. 2008). The
complex relationship between hNAT1 polymorphisms
and expression, breast cancer and neural tube develop-
ment may result from a functional link in vivo between
NAT1 acetylation activity and folate meta-
bolism (Cribb et al. 1991; Wakefield et al. 2007; Sim
et al. 2008). Moreover, it has been demonstrated
(Minchin 1995) that the intra-tumoral dysregulation of
xenobiotic-metabolizing enzyme expression in breast
cancer can explain drug resistance, by altered drug
metabolism and bioavailability. Among these drugs,
tamoxifen has also been shown to inhibit the acetylation
activity of hNAT1 (Lee et al. 1997, 2004; Lu et al. 2001).
As suggested by these studies, a better understanding of
the functional link between hNAT1 and ERþ has
become crucial in order to evaluate hNAT1 as an attrac-
tive potential biomarker in human breast cancer. The
discovery of novel NAT inhibitors could contribute to
understanding this link better as well as potentially
providing novel therapeutical agents that overcome
drug resistance. In this study, we will be using mNat2
as a model for hNAT1 based on its homology to
hNAT1 at the level of sequence identity, particularly at
the C-terminus. In addition, mNat2 is considered func-
tionally analogous to hNAT1 in terms of tissue and
developmental expression as well as sharing a very
similar substrate specificity profile (Chung et al. 1993;
Boukouvala et al. 2002; Kawamura et al. 2005; Hein
et al. 2006; Loehle et al. 2006; Walraven et al. 2007;
Kawamura et al. 2008; Sim et al. 2008). Although
hNAT1 has been produced in sufficient quantities for
structural studies (Wu et al. 2007), in this laboratory
we have found for screening purposes that mNat2 is
more stable and can be produced in higher quantities
as a recombinant protein (Kawamura et al. 2008; Russell
et al. 2009).

The prospective virtual screening was carried out as
follows. USR was used to search our database for mol-
ecules similar in shape to a competitive inhibitor of
mNat2 (IC50 ¼ 1.1 mM). This template molecule was
the most potent compound among a small manual
screen of 5000 cherry-picked compounds (full details
J. R. Soc. Interface (2010)
of this screen can be found in Russell et al. (2009)),
and it is the subject of an ongoing patent application.
The confirmed hit rate of this empirical screen was
five hits specific for mNat2 at less than 10 mM out of
the 5000 compounds. From the ranking of conformers
according to USR similarity to the template, we
formed a ranking of compounds by considering the
USR similarity score of the highest ranking conformer
of each compound. As we assigned a very modest
budget (£500) for this proof of concept, we selected
just 23 compounds from the very top of the ranked
list based on costs and availability (all but the last com-
pound were within the top 0.003% of the ranked list).
The purchased compounds were empirically tested for
pure recombinant mouse Nat2 activity at an inhibitor
concentration of 10 mM. Nine out of the 23 tested
compounds exhibited a mean percentage of inhibition
greater than 50 per cent at 10 mM, as can be observed
in figure 2.

In order to validate the results from the primary
screening, all 23 compounds were re-tested at various
inhibitor concentrations (the resulting IC50 values are
reported in table 1). By comparing with the primary
screening, it is observed that there are three false posi-
tives (compounds 12, 16 and 18) and three false
negatives (compounds 4, 6 and 14). Therefore, with
activity criterion IC50 less than 10 mM, there are nine
confirmed actives out of the 23 tested compounds (com-
pounds 1, 2, 3, 4, 5, 6, 8, 14 and 17). This constitutes
a confirmed hit rate of 39.1 per cent and represents
an outstanding performance for a prospective virtual
screening experiment. The latter becomes evident
when compared with the 0.1 per cent confirmed hit
rate obtained by the empirical screen against the
same target using the same activity criterion.

It could be found surprising that a method based on
ligand–receptor shape complementarity alone can in
some cases perform so well. After all, including
additional chemical information relevant to binding,
beyond that implicitly included in shape, should
enhance its ability to discriminate between active and
inactive molecules. Following this rationale, molecular
docking, which typically ranks molecules according to
the evaluation of a very detailed binding energy for-
mula, should consistently perform better than methods
using less chemical information. Unfortunately, as dis-
cussed by Shoichet (2004), docking has the drawback
that accurate binding affinity calculation for many
thousands of diverse molecules remains beyond our
reach to date and hence it is only feasible to use less
accurate binding energy estimation in large-scale virtual
screening, which harms the effectiveness of these tech-
niques.1 In practice, it has been shown (Hawkins et al.
2007; Kirchmair et al. 2009) that shape similarity
performs at least as well as a range of docking methods.
Moreover, a previous prospective virtual screening
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Figure 2. Percentage of inhibition of the solution without any compound (NIL), the query molecule (compound 0) and the 23
USR hits (compounds 1–23) against pure recombinant mouse Nat2 at 10 mM inhibitor concentration. The activity of mouse
Nat2 was determined in the presence of AcCoA by measuring the rate of depletion of the arylamine pABA with the reagent
DTNB as described in §1.5. Bars in the plot represent the mean+ s.d. of quadruplicate measurements. Assays were carried
out over a 15 min time period in a 96-well microplate. Nine out of the 23 USR hits exhibited mean percentage of inhibition greater
than 50 at this concentration.

338 Prospective virtual screening with USR P. J. Ballester et al.
study concluded (Rush et al. 2005) that an accurate
description of shape alone is unexpectedly powerful.
These results demonstrate that, although the incorpor-
ation of additional chemical information into a method
has the potential to improve its performance, the
inaccuracies in such a challenging process can make
simpler, but more reliable, methods perform better.

Another important performance criterion is the
ability of a virtual screening method to find active
molecules with chemical scaffolds that are substantially
different from that of the query molecule. Figure 3
shows the active compound used as the template
along with the three most potent compounds found
with USR, with all these compounds having potency
similar to that of the template. We observed that,
while all actives are very similar in shape, their chemical
structure is remarkably different from that of the tem-
plate (we are unable to show the structure of the
molecule used as the template since it is currently
being patented). This is evidenced by the corresponding
similarity scores, which are above 0.96 in the case of
shape and below 0.38 in terms of chemical structure
(both scores are between 0 and 1, with higher values
indicating higher similarity). Moreover, as these first
three active hits belong to three different chemical
series, each of them can potentially be considered as
alternative starting points for the lead optimization
process. In fact, we observed that none of the nine
actives share a common scaffold with the template,
which is corroborated by their low structural similarity
scores (see electronic supplementary material, table
S2). These results demonstrate that USR is particularly
useful for scaffold hopping.
J. R. Soc. Interface (2010)
USR is a new technology that is able to computation-
ally screen much larger molecular databases using many
more template molecules than previously possible. The
expected increase in active molecules in the public
domain thanks to programs such as the US NIH Molecu-
lar Libraries Initiative (Kaiser 2008) allied with the use
of very large and fast growing public databases such as
ZINC opens the door to very exciting prospects for vir-
tual screening methods able to cope with this data
explosion. Indeed, as larger databases of diverse mol-
ecules cover wider regions of the chemical space, the
widespread application of USR to very large databases
is expected to result in significantly higher numbers of
bioactive molecules being discovered. This has been the
case in this first prospective virtual screening study,
where USR has discovered an unusually high proportion
of structurally novel bioactive molecules among more
than five million database molecules. The results in
this paper are directly relevant to those scientists inter-
ested in NAT targets, who could be interested in using
the reported active structures as probes to investigate rel-
evant cellular pathways or as alternative starting points
for the drug lead optimization process. As some degree of
ligand–receptor shape complementarity is a universal
requirement for binding, USR could be useful for any
target with at least one known potent inhibitor, although
hit rates will vary greatly depending on a number of fac-
tors (Ballester et al. 2009). Looking more broadly, USR is
also of interest for those working on shape selectivity in
zeolite catalysis (Smit & Maesen 2008), exploring the
potential energy surface of molecular clusters (Nguyen
et al. 2008) or comparing protein binding sites
(Sommer et al. 2007).



Table 1. IC50 values and MACCS Tanimoto score with
respect to the template molecule (compound 0) for each of
the 23 compounds found with USR. IC50 values were
determined as described in the Methods section. Structural
similarity with respect to the query molecule was calculated
with the MACCS fingerprint search implemented at MOE
molecular modelling software. The low scores obtained
demonstrate the ability of USR to find biologically active
compounds with different chemical structure. In particular,
all four USR hits with IC50 below 3 mM have a MACCS
Tanimoto score below 0.38, which demonstrates that these
found actives are remarkably dissimilar in chemical
structure to the query molecule and thus can be considered
as alternative starting points for the lead optimization
process.

compound IC50 (mM) MACCS USR

0 1.10 1.000 1.000
1 1.17 0.333 0.969
2 7.71 0.691 0.954
3 2.05 0.222 0.966
4 9.22 0.691 0.954
5 3.08 0.563 0.960
6 5.35 0.300 0.955
7 15.87 0.318 0.954
8 2.88 0.319 0.955
9 .50 0.311 0.956

10 .50 0.310 0.956
11 23.24 0.280 0.963
12 .50 0.301 0.966
13 41.77 0.379 0.956
14 4.54 0.642 0.956
15 .50 0.606 0.950
16 14.13 0.373 0.952
17 2.33 0.377 0.950
18 15.70 0.457 0.951
19 .50 0.346 0.925
20 .50 0.345 0.956
21 .50 0.345 0.956
22 .50 0.247 0.954
23 .50 0.337 0.964
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1. METHODS

1.1. Ultrafast Shape Recognition

USR is based on the observation that the shape of a
molecule is uniquely determined by the relative position
of its atoms. Such positions are in turn determined by
the set of all interatomic distances. This set contains
more information than is needed to describe the shape
of the molecule accurately, so it is possible to signifi-
cantly reduce the associated computational cost while
maintaining accuracy by selecting a suitable subset of
interatomic distances. Namely, the set of all atomic
distances from four molecular locations are considered:
the molecular centroid (ctd), the closest atom to ctd
(cst), the farthest atom from ctd (fct) and the farthest
atom from fct (ftf). In this way, each molecular confor-
mation is described by four distributions of atomic
distances, where the number of atomic distances is pro-
portional to the number of atoms. This raises the
obvious question of how to compare molecules with
different number of atoms. That difficulty is
J. R. Soc. Interface (2010)
circumvented by defining a fixed number of rotationally
invariant moments of the one-dimensional distri-
butions, whose values characterize the shape of the
molecule considered.

The calculation of USR descriptors is as follows: for
each molecule in the database, first, the three dimen-
sional position vector for each atom is read. Thereafter,
the geometrical center (centroid) of the molecule is
determined from the atomic positions. Next, the set of
Euclidean distances of all atoms to the molecular
centroid is calculated. These are regarded as the full
population of the distribution of all atomic distances
from the molecular centroid:

d ctd
j

n oN

j¼1
; ð1:1Þ

where N is the number of atoms of the molecule.
The next stage of the process is to calculate the

moments of this discrete distribution in order to
characterize the geometry of the molecule and thus
its shape. The first moment m1

ctd is the average
atomic distance to the molecular centroid and thus it
provides an estimate of the molecular size. The
second moment m2

ctd is the square root of the variance
of these atomic distances about m1

ctd. The third
moment m3

ctd is the cube root of the skewness of these
atomic distances about m1

ctd, i.e. a measure of the asym-
metry of the distribution. These roots are intended to
provide all moments with linear space dimension, typi-
cally angstroms, in order to avoid differences in higher
order moments overshadowing the contribution to the
similarity score of lower order moments (this is an
improvement over the original version (Ballester &
Richards 2007b) and it is fully described in Ballester
(2007)). To calculate the remaining nine descriptors,
we repeat the process for each of the three remaining
distributions: fdj

cstgj¼1
N , fdj

fctgj¼1
N and fdj

ftfgj¼1
N , where

the superscript indicates the location from where the
atomic distances are calculated. Of course, one can
include more reference locations or higher order
moments leading to more descriptors and thus an
even more accurate description of shape. However, we
selected the first three moments from each of four con-
sidered one-dimensional distributions to describe a
molecule M ¼ (m1

ctd, m2
ctd, m3

ctd, m1
cst, m2

cst, m3
cst, m1

fct,
m2

fct, m3
fct, m1

ftf, m2
ftf, m3

ftf ), since this choice provided an
excellent compromise between the efficiency and the
effectiveness of the method.

Once the USR descriptors are available (these are
calculated only once at a rate of over 16 000 conformers
per second using a single processing core), a score quan-
tifying the similarity between molecules based on these
descriptors is required to rank the conformers in a data-
base according to their shape similarity to a given
template. First, the Manhattan distance between the
vectors of shape descriptors of the query and the cur-
rently screened conformer is calculated and divided by
the number of descriptors. The resulting dissimilarity
measure is transformed into a normalized similarity
score by translating the dissimilarity by one unit and
inverting the resulting value. Other ways to define a
normalized similarity score could be of course adopted,
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Figure 3. (a) Shapes, (b) chemical structure and (c) half-maximal inhibitory concentration against pure recombinant mouse Nat2
for the query molecule and the three most potent active molecules found by USR (from left to right: S0

USR ¼ 1.000, S1
USR ¼ 0.969,

S3
USR ¼ 0.966 and S17

USR ¼ 0.950). The shapes of these conformers are aligned manually in order to appreciate their similarity
(alignments are not a byproduct of USR operation, as this method does not require alignments to compare molecules). While
being very similarly shaped, these USR hits have no common scaffold and thus belong to different chemical series. These are
also remarkably different in structure with respect to the query molecule, as evidenced by the corresponding MACCS Tanimoto
score (S0

MACCS ¼ 1.000, S1
MACCS ¼ 0.333, S3

MACCS ¼ 0.222 and S17
MACCS ¼ 0.377). Such scaffold hopping is a very valuable feature

of a virtual screening method, as each chemical series can be considered as an alternative starting point for the lead optimization
process.
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as long as the similarity score is inverse monotonic with
respect to the dissimilarity, so as to preserve the ranking
order. The similarity score function Sqi is therefore

Sqi ¼ 1þ 1
12

X12

l¼1

jM q
l �M i

l j
 !�1

; ð1:2Þ

where Mq and M i are the vectors of shape descriptors for
the query and ith screened conformer, respectively.
1.2. Molecular database

The multi-conformational molecular database used in
this study was generated from the ZINC online reposi-
tory (http://zinc7.docking.org/, last accessed on 25
August 2008; Irwin & Shoichet 2005), a publicly avail-
able and free resource. We downloaded all chemical
structures in subsets 4–6, which constituted a set of
more than 5.3 million molecules. Conformer generation
software OMEGA 2.1 was used with the default settings,
except that the maximum number of conformers per
molecule was set to 30 000. The resulting database
had 690 309 132 conformers and hence contained an
average of 130 conformers per compound.
J. R. Soc. Interface (2010)
1.3. MACCS structural similarity

Each chemical structure is described in thismethodbyabit
string called MACCS fingerprint, where each bit or feature
indicates the presence or absence of one of the 166 public
MDL structural key (essentially, a set of pre-selected
functional groups). The degree of similarity of two struc-
tures is thereafter established by calculating the Tanimoto
score of both strings. We use the implementation of
MACCS fingerprint available at the Molecular Operating
Environment (MOE) molecular modelling software pack-
age (MOE v. 2006.08; Chemical Computing Group Inc.,
Montreal, Canada; http://www.chemcomp.com).
1.4. Chemical purity and provenance
of purchased compounds

Each of the compounds purchased was identified as
greater than 95 per cent pure by high-performance
liquid chromatography (HPLC) and the identification
was assessed by 1H NMR at a concentration of between
2.5 and 4 mg ml21 to prove that they were as stated
from the manufacturer. For two of the compounds,
their identity could not be unambiguously determined
by 1H NMR, and for these compounds, 13C NMR and
low-resolution mass spectrometry was carried out and
the spectra obtained in each case were compatible

http://zinc7.docking.org/
http://zinc7.docking.org/
http://www.chemcomp.com
http://www.chemcomp.com
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with the compound purchased. These data are the sub-
ject of a separate communication.

1.5. Activity assays

The measurement of NAT activity used pure recombi-
nant mNat2 and the rate of hydrolysis of AcCoA in the
presence of substrate was identified (Brooke et al.
2003a). Inhibition of the hydrolysis of AcCoA was
measured as described by Brooke et al. (2003b). The
rate of formation of coenzyme A (CoA) as a result of
AcCoA hydrolysis was determined spectrophotometri-
cally using the colorimetric agent 5,50-dithio-bis (2-nitro-
benzoic acid) (Ellman’s reagent, DTNB) as previously
described (Brooke et al. 2003a), with the following modi-
fications. The extent of reaction is measured by detecting
the coloured 5-thio-2-nitrobenzoic acid, which is pro-
duced by the reaction of DTNB with free thiol CoA
formed during the NAT reaction and has a maximum
absorbance at 412 nm (Riddles et al. 1983; Brooke
et al. 2003a). Samples of pure mNat2 (5 ng) were pre-
incubated with pABA (500 mM final concentration) in
assay buffer (20 mM Tris-HCl, pH 8.0) for 5 min at
378C in a 96-well plate (Corning). Pre-warmed (378C)
AcCoA (400 mM final concentration) in assay buffer
was added to start the reaction (final volume of
100 ml), which was allowed to proceed at 378C. Simul-
taneous quenching and colour development was
achieved by addition of the stop reagent: 25 ml DTNB
solution (5 mM DTNB in 100 mM Tris-HCl, 6.4 M
guanidine-HCl, pH 7.3). The absorbance was read
immediately after addition of the stop reagent at the
wavelength closest to 412 nm, which is available using
a plate reader (Tecan Sunrise), i.e. at 405 nm. The
rate of reaction was determined from the linear initial
section of graphs of absorbance versus time and by
reference to a standard curve. In the inhibitor assays,
minor alterations were introduced in order that 5 ml of
the requisite compound could be added at various
concentrations without changing the final assay
volume or reagent concentrations. All the tested
compounds were dissolved in dimethylsulphoxide
(DMSO) and the final percentage of DMSO in the
assay was 5 per cent (v/v). Inhibition percentages
were determined as the ratio of the specific activity
with the requisite compound to the specific activity
without inhibitor. IC50 values were estimated graphi-
cally from plots of specific activities versus inhibitor
concentration by using Kyplot software. A dose–
response function was used as a model of regression
for the data, and the curves were estimated by the
method of the least squares analysis.
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