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We generalize a recently proposed model for cholera epidemics that accounts for local com-
munities of susceptibles and infectives in a spatially explicit arrangement of nodes linked
by networks having different topologies. The vehicle of infection (Vibrio cholerae) is
transported through the network links that are thought of as hydrological connections
among susceptible communities. The mathematical tools used are borrowed from general
schemes of reactive transport on river networks acting as the environmental matrix for the
circulation and mixing of waterborne pathogens. Using the diffusion approximation, we ana-
lytically derive the speed of propagation for travelling fronts of epidemics on regular lattices
(either one-dimensional or two-dimensional) endowed with uniform population density.
Power laws are found that relate the propagation speed to the diffusion coefficient and the
basic reproduction number. We numerically obtain the related, slower speed of epidemic
spreading for more complex, yet realistic river structures such as Peano networks and optimal
channel networks. The analysis of the limit case of uniformly distributed population sizes
proves instrumental in establishing the overall conditions for the relevance of spatially explicit
models. To that extent, the ratio between spreading and disease outbreak time scales proves
the crucial parameter. The relevance of our results lies in the major differences potentially
arising between the predictions of spatially explicit models and traditional compartmental
models of the susceptible–infected–recovered (SIR)-like type. Our results suggest that in
many cases of real-life epidemiological interest, time scales of disease dynamics may trigger
outbreaks that significantly depart from the predictions of compartmental models.

Keywords: SIR-like models; optimal channel network and Peano network;
travelling waves; scaling laws; reproduction number
1. INTRODUCTION

Cholera epidemics are still a major public health con-
cern in many areas of the world, especially in Africa
(Bhattacharya et al. 2009), as recently documented
with reference to the current Zimbabwe public health
crisis (Koenig 2009). Improvements in planning and
epidemiological decision-making have been argued to
need parallel, reliable forecasting of the impact of the
ecosystem state on the spreading of disease (Clark
et al. 2001). In fact, several issues of great societal and
scientific relevance concerning cholera epidemics
remain unexplained. Among these, the spatial variability
of incidence/prevalence and the role of environmental
drivers in determining the seasonal patterns of the dis-
ease are generally deemed the most critical (Colwell
orrespondence (enrico.bertuzzo@epfl.ch).

plementary material is available at http://dx.doi.org/
009.0204 or via http://rsif.royalsocietypublishing.org.
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1996; Pascual et al. 2000, 2002; Faruque et al. 2005;
Ruiz-Moreno et al. 2007; Codeço et al. 2008).

Cholera is an intestinal disease caused by the
bacterium Vibrio cholerae, which colonizes the human
intestine. The transmission of the disease is mediated
by water. In fact, V. cholerae is a natural member of
the coastal aquatic microbial community and can survive
outside the human host in the aquatic environment in
association with chitinaceous zooplankton such as cope-
pods, shellfish and also with the aquatic vegetation
(Colwell 1996; Lipp et al. 2002; Islam et al. 2004).
Therefore, V. cholerae (and thus the disease) can
spread from the coastal region, where it is autochtho-
nous, to the inland area through waterways and river
networks. In the same manner, the infection can
spread from inland regions with epidemic outbursts
into the surrounding areas. Two routes of transmission
for cholera are identified in the literature (Miller et al.
1985). The so-called primary transmission occurs from
a natural reservoir of pathogens in the aquatic
This journal is q 2009 The Royal Society
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environment to the human hosts. The secondary
transmission route is mediated by the ingestion of fae-
cally contaminated water or food (Miller et al. 1985).
Therefore, the infection is always caused by ingestion
of water either contaminated by V. cholerae present
in a natural reservoir (primary route) or contaminated
by humans (secondary infection), and thus the role of
the aquatic environment is crucial for the transmission
as well as for the spreading of the disease. In fact,
spatial and temporal patterns of cholera epidemics
are strongly related to the ecology of the bacterium
in the environment driven by hydrological and cli-
matic variability. Time-series analysis of cholera
cases in endemic regions such as Bangladesh shows a
time variability with subannual, annual and interann-
ual components. The low-frequency variability has
been linked to long-term climatic oscillations (Pascual
et al. 2000; Koelle et al. 2005; Cazelles et al. 2007),
and the overall seasonality has been found to experi-
ence competing effects with two routes of
transmissions: one enhanced by increasing rainfall
and the other buffered by increasing water pools
(Ruiz-Moreno et al. 2007).

Besides seasonality and the complex dynamics that
link rainfall and cholera, an important determinant of
the disease spatio-temporal variability is the environ-
mental matrix in which the disease spreads into
disease-free regions. The matrix is constituted by
different human communities and their hydrological
interconnections. Each community is characterized by
its spatial position, population size, water resource
availability and hygiene conditions. Three main charac-
teristics of the environmental matrix can significantly
affect the epidemic dynamics: (i) the topological and
geometrical features of the pathogen pathways that
connect different communities; (ii) the spatial
distribution of the population; and (iii) the nature
and distribution of water resources and public health
conditions, and how they vary with population size.
These factors proved crucial in reproducing the
space–time evolution of a cholera epidemic that
occurred in KwaZulu-Natal, South Africa, in 2001–
2002 (Bertuzzo et al. 2008). In the present paper, we
extensively study the role of the first characteristic
and we begin tackling the other two. The analysis is
aimed at establishing the conditions for the environ-
mental matrix to play a significant role in the disease
dynamics or, on the contrary, for the simpler spatially
implicit models to provide a good description of cholera
epidemics.

Models of cholera dynamics are relatively recent, but
constitute a rather elaborate field of research (e.g.
Capasso & Paveri Fontana 1979; Koelle et al. 2005;
Codeço et al. 2008; Pascual et al. 2008). The free-
living bacteria in the aquatic reservoir have long been
recognized to determine the endemic–epidemic
dynamics of cholera (Codeço 2001; Pascual et al.
2002). Recent laboratory findings suggest that passage
of the bacterium through the gastrointestinal tract
results in a hyperinfectious state that will shortly
reside in the water medium before decaying to a less
infectious state. Hartley et al. (2006) incorporate the
hyperinfectious state into their model to achieve a
J. R. Soc. Interface (2010)
better explanation of explosive cholera outbreaks. All
the above-mentioned models, however, do not consider
space explicitly. They assume a unique community of
interacting susceptibles who share a unique water
resource. The analysis proposed in this paper is instead
based on spatially explicit models that explicitly
account for the environmental matrix along which the
disease can spread. These models were used in Bertuzzo
et al. (2008) to simulate the specific case of the
KwaZulu-Natal 2001–2002 epidemic via a suitable
tuning of their parameters. They are now considered
in greater generality to analyse the effects of different
hydrological networks and disease dynamics on the
epidemic evolution.

Although the influence of networks on disease
spreading has long been studied (see Riley 2007), the
transport of pathogens through waterway networks
has not been given the attention it deserves. Not only
cholera but also other diseases such as shigellosis, rota-
virus infections and typhoid are mostly spread through
contaminated water. The total annual death toll of
waterborne diseases is estimated to be 2.8 million
people, while diarrhoeal illnesses account for approxi-
mately 20 per cent of mortality in children under the
age of 5 (Bryce et al. 2005). Most of the epidemiological
literature has focused on contact networks that are cru-
cial for understanding the evolution of diseases that are
directly transmitted from individual to individual or
from social group to social group (Diekmann et al.
1990; Keeling 1999; Barthelemy et al. 2005; Keeling &
Eames 2005; Aparicio & Pascual 2007; Colizza &
Vespignani 2007). Also, a good deal of work has been
done with metapopulation-like models in which the dis-
ease is transmitted from patch to patch (Bolker &
Grenfell 1996; Brooks et al. 2008). Spatial models can
be mapped into suitably defined contact network
models (e.g. Parham & Ferguson 2006). When the
transmission is mediated by water, as in the case of
cholera, direct contacts between individuals are less
important for the disease transmission, whereas a cru-
cial role is played by spatial connectivity. On the
other hand, hydrological networks have special features,
such as the directional flow of water, which are usually
not included in the metapopulation paradigm. In the
framework proposed here, the environmental matrix is
modelled as an oriented graph in which nodes represent
water reservoirs containing bacteria and edges represent
hydrological links, through which bacteria, and there-
fore the disease, can spread. Human communities are
located at the nodes, become infected from the reser-
voirs and infect the water with a greatly multiplied
load of bacteria.

If we consider a cholera epidemic that starts from a
point and spreads through a finite system, two different
time scales may be identified: (i) the spreading time
scale, that is, the time needed for the disease to
spread and involve all the communities in the system
and (ii) the epidemic time scale, defined by the duration
of the epidemic in a single community. While the latter
mainly depends on biological factors, the former is con-
trolled also by the geometry of the environmental
matrix and by transport phenomena. If the epidemic
time scales are comparable to or larger than the
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pathogens’ spreading time scales, one expects that
spatial variability does not play a major role and the
system may be approximated by a well-mixed reactor.
When the spreading time scales are larger than the
local epidemic time scales, however, the overall epi-
demic patterns are controlled by the spatial spreading
and one expects significant differences between spatially
implicit and explicit models. We therefore investigate
how the ratio between spreading and epidemic time
scales varies under different scenarios of cholera
dynamics, vibrio transport and environmental matrix
arrangements. In particular, because the spreading
time scale can be expressed as the ratio between the
system size and a characteristic disease propagation
speed, different topologies are considered as substrates
for pathogen transport to derive the spreading velocity.

Figure 1 sketches the four topologies considered herein:
one-dimensional and two-dimensional regular lattices,
Peano and optimal channel networks (OCNs)
(Rodriguez-Iturbe & Rinaldo 1997). Regular lattices allow
us to analytically derive the spreading velocity in the diffu-
sion limit.Theyprove instrumental to ourunderstandingof
the basic scaling properties of the epidemic evolution. The
analysis on regular lattices is crucial to highlight similarities
to, and departures from, epidemic spreading on hetero-
geneous, yet realistic network topologies (namely Peano
and OCNs). Although Peano networks are deterministic
fractals, their topological features resemble closely those
of real river networks, and they have often been used in
analytical studies to mimic real river networks (e.g.
Campos & Mendez 2005; Campos et al. 2006; De Bartolo
et al. 2009).OCNs, instead, are artificial networks obtained
through a specific selection process from which one obtains
a rich structure of optimal scaling forms that are known to
closely conform to the scaling of real networks (Rinaldo
et al. 1992; Rodriguez-Iturbe et al. 1992). In this particular
study,aPeanonetwork isuseful toquantify thecompetitive
effect owing to network topology and degree of the nodes.
Inner Peano nodes have, in fact, four neighbours, while
real river networks and OCNs have no more than three.

The paper is organized as follows. Section 2 summar-
izes the main features of the theoretical approach and
describes the model. Section 3 is devoted to the analytical
or numerical derivation of the spreading velocity in the
four different topologies described earlier. Arising depar-
tures between spatially implicit and explicit models and
the epidemiological potential of the tools developed are
discussed in §4. Conclusions are drawn in §5.
2. THEORETICAL APPROACH

The basic theoretical scheme of the spatially explicit
model relates to recent advances in hydrochory,
migration fronts and infection spreading (Campos
et al. 2006; Bertuzzo et al. 2007; Muneepeerakul et al.
2008). Nodal reactions describe the dynamics of
cholera, described via a compartmental susceptible–
infective–recovered (SIR)-like model (Bertuzzo et al.
2008). Transport through network links provides the
coupling of the nodal disease dynamics. Spreading of
epidemics in networks is addressed by viewing the
environmental matrix as an oriented graph (i.e. a
J. R. Soc. Interface (2010)
directed graph having no symmetric pair of directed
edges). Nodes represent water reservoirs and human
communities (cities, towns and villages) in which the
disease can diffuse and grow. The edges represent
links between the communities, typically hydrological
links. Edge direction is chosen according to the flow
direction. The model is assembled by coupling two
models: (i) a local epidemic model at nodes of the
graph and (ii) a transport model for the spreading of
the disease vector through the edges of the network.
As for the local dynamics, we use a continuous SIR-
like model with a reservoir of free-living infective
agents. It is obtained by a slight modification of the
susceptible–infective–bacteria (SIB) cholera epidemic
model introduced by Codeço (2001). The local epidemic
model has three state variables, namely the abundance
of susceptibles (S) and infected individuals (I) in a
human community of size H, and the concentration of
V. cholerae (B) in the aquatic environment. The
temporal evolution of state variables can be described
by the following system of nonlinear differential equations:

dS
dt
¼ mðH � SÞ � b

B
K þ B

S ;

dI
dt
¼ b

B
K þ B

S � ðgþ aþ mÞI

and
dB
dt
¼ �mBB þ p

W
I :

9>>>>>>>=
>>>>>>>;

ð2:1Þ

The first equation describes the dynamics of suscepti-
bles in a community of size H. The natality and mortality
rates of susceptible individuals are identical and labelled
as m. Newborn individuals are considered susceptible. Sus-
ceptible people become infected at a rate bB/(K þ B),
where b is the transmission parameter accounting for con-
tacts with contaminated water and B/(K þ B) is the
logistic dose–response curve (sensu Codeço 2001). Such
a curve links the probability of becoming infected to the
concentration of vibrios B in water and K is the semi-
saturation concentration. Infected people (whose
dynamics is described by the second equation) are
removed at a rate which is the sum of natural mortality
rate (m), the disease-induced mortality rate (a) and the
recovery rate (g). The third equation describes the
dynamics of the free-living infective agents in the aquatic
reservoir. Infected people contribute to the concentration
of vibrios at a rate p/W, where p is the rate at which
bacteria produced by one infected person reach and con-
taminate a water reservoir of volume W. Free-living
vibrios can reproduce in the water, but the rate of
reproduction is smaller than the rate of mortality, so
they basically die at rate mB.

The hidden equation for the recovered is (dR/dt) ¼
gI 2 mR. People recovered from cholera are considered
immune. The model does not take into account any
loss of immunity (i.e. a flux from recovered to suscep-
tibles) because immunity usually lasts for several years
(Koelle et al. 2005), a period that is longer than the
typical spreading time scale we consider herein. On
the contrary, immunity loss could play an important
role in the long-term dynamics of cholera in regions
where the disease is endemic (Koelle et al. 2005). Note
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Figure 1. Topologies on which spreading of cholera epidemics is considered herein: (a) one-dimensional lattice; (b) two-
dimensional lattice; (c) Peano’s network; and (d) OCN.
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also that immunity loss could be straightforwardly
taken into account in the framework proposed, for
example, by adding an extra compartment for the
cross-immune individuals, similar to what has been
done by Casagrandi et al. (2006) for influenza A.

As long as we are not interested in the numerical
value of the concentration B of V. cholerae, we can
introduce the dimensionless concentration B* ¼ B/K,
thus obtaining a simplified system in which one of the
parameters is the ratio p/KW. This parameter summar-
izes social and environmental factors such as hygiene
and health conditions, eating habits and lifestyle.

A linear stability analysis of the SIB model (Codeço
2001) shows that, given an initial condition of the type
S(0) ¼ H; I(0) . 0; B*(0) ¼ 0, an epidemic outbreak
occurs only if

R0 ¼
Hbp

ðgþ aþ mÞKmBW
. 1: ð2:2Þ

This requires that the population size is greater than
a certain critical threshold SC, namely:

H . SC ¼
ðgþ aþ mÞKmBW

bp
; ð2:3Þ

otherwise the cholera infection fades to zero. The basic
reproductive number R0 for the model described earlier
can thus be expressed as the ratio between the
population size H and the critical threshold (2.3). It is
important to point out the notable epidemiological
J. R. Soc. Interface (2010)
role of the dilution effect: the larger the volume of the
water body, the higher the critical threshold.

The spreading of V. cholerae can be modelled
through a biased random-walk process on oriented
graphs (Johnson et al. 1995) (i.e. graphs where edges
have a direction). We thus present the transport
model for the general case and we then particularize
and apply it to the different topologies presented in
figure 1. An infectious propagule can move with a cer-
tain probability from a node to one of the adjacent
nodes, which are all the nodes that are connected to it
through an inward or outward edge. Consider first a
particular case of the network in which every node
has only one inward edge and one outward edge (i.e.
a one-dimensional lattice). We define as Pout (Pin) the
probability that a propagule leaving a node moves to
another node along an outward (inward) edge. We
then have Pout þ Pin ¼ 1. On a generic oriented
graph, every node can hold an arbitrary number of
inward and outward edges. We assume that a propagule
can move following an outward or inward edge with a
probability proportional to Pout and Pin, respectively.
The probability Pij for a propagule to be transported
from node i to node j can thus be expressed as follows:

Pij ¼

Pout

doutðiÞPout þ dinðiÞPin
; if i ! j;

Pin

doutðiÞPout þ dinðiÞPin
; if i  j;

0; if i = j;

8>>>><
>>>>:

ð2:4Þ
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where dout (i) and din (i) are, respectively, the outdegree
and indegree of node i (i.e. the number of outward,
respectively, inward, edges of node i). Since Pout þ
Pin ¼ 1, one has

P
j¼1
N Pij ¼ 1, where N is the total

number of nodes. We term b ¼ Pout 2 Pin ¼ 2Pout 2 1
the bias of the transport to follow the edge direction.
The cholera dynamics in the ith node of the network
(i ¼ 1, . . . , N) can be described via the third-order epi-
demic model introduced earlier (Si, Ii and Bi*), so that
the resulting basin-scale model must be studied in a
3N-dimensional phase space. We assume that vibrios
are removed at every node with a certain rate l (d21)
and transported through the network following the
transition probabilities (2.4). Then, replacing probabil-
ities with frequencies, we obtain equations that describe
the coupled process:

dSi

dt
¼ mðHi � SiÞ � b

B�i
1þ B�i

Si; ð2:5Þ

dIi

dt
¼ b

B�i
1þ B�i

Si � ðgþ aþ mÞ Ii ð2:6Þ

dB�i
dt
¼ �mBB�i þ

p
KWi

Ii � lB�i þ
XN
j¼1

lP jiB�j
Wj

Wi
ð2:7Þ

for i ¼ 1,2, . . . , N. The transport parameter l can be
thought of as the inverse of the pathogens’ residence
time at each node. It thus defines the time scale of
vibrio transport along the network. We assume that
all the parameters in equations (2.5)–(2.7) are node
independent, except for the population size Hi and the
water volume Wi. The latter parameter represents the
whole set of water supplies available to that commu-
nity. The network acts as a matrix through which
different sets of water supplies of different communities
can be connected and contaminated. In the following,
the epidemiological and demographic parameter
values employed are those that best fit the real epi-
demics analysed in Bertuzzo et al. (2008): b ¼ 1 d21,
mB¼ 0.228 d21, a þ g¼ 0.2 d21 and m¼ 4.2 . 1025 d21.
Instead we let vary the transport parameter l, the
bias b, the community size H and the value of the ratio
p/KW. Epidemiologically, such parametric variations
will set the basic reproductive number R0 to different
values and will let us investigate the influence of the
hydrological, social and environmental factors on cholera
spread along river networks.

If we neglect the reaction between infected and
vibrios ( p ¼ 0), equation (2.7) describes the spatio-tem-
poral spreading of the vibrios concentration owing to
the transport mechanisms and the death rate. This
evolution is the result of a complex set of processes
including the transport driven by the water flow, the
interaction and exchange processes between vibrios in
water and vibrios associated with invertebrates and
algae in the plankton (Colwell 1996), the spreading of
these organisms and all other possible transport
phenomena. For instance, another mechanism that
can enhance the spreading of the cholera bacteria is
the irrigation with contaminated water that can, in
turn, transmit the disease through contaminated food.
Therefore, the short-range distribution of water and
contaminated food may contribute to the overall
J. R. Soc. Interface (2010)
transport of vibrios. We assume that all these processes
result in a diffusion process (equation (2.7)) and a
possible downstream drift depending on the relative
importance of the above-mentioned mechanisms. We
note, in fact, that when vibrios in the water interact
with other organisms or substrates, their effective
downstream advection can be significantly slower than
the one imposed by the river flow velocity, in analogy
to stream transport of solutes (Triska et al. 1993;
Worman et al. 2002). In a previous application,
the effective vibrios’ drift was estimated at approxi-
mately 3 km d21 (Bertuzzo et al. 2008). Therefore, the
transport parameters l and b should not be thought
of as physical parameters that reflect only the hydrolo-
gical transport, but rather they are conceptual
parameters aimed at modelling all physical, chemical
and biological processes involved in the vibrios
spreading.

The framework proposed directly accounts for both
the primary and the secondary cholera transmission
routes. Infected individuals contaminate the local
water reservoir through infected stools. The vibrios in
the environment can infect susceptibles in the same
community where they have been produced or be trans-
ported towards the surrounding communities and
contaminate the water bodies thus infecting other sus-
ceptibles. Through the imposition of suitable boundary
conditions, the model can also account for the primary
transmission route that occurs from a natural reservoir
of free-living bacteria in the coastal aquatic environ-
ment to the human hosts. This can be done by imposing
an input flux of vibrios into the coastal communities.
The bacteria introduced can then be transported
towards inland communities, and the spreading of the
contamination can be enhanced, if an epidemic out-
break occurs, by the secondary transmission route
that produces new bacteria.
3. TRAVELLING CHOLERA WAVES: THE
FRONT SPEED IN DIFFERENT
TOPOLOGIES

Consider the model described in the previous section,
applied to each of the topologies presented in figure 1,
with a compact initial condition, that is, with water
initially contaminated in a few adjacent nodes. The
resulting disease evolves like a travelling wave that
spreads through the system. Under the rather strong
assumption that the population size and the other
system parameters are uniformly distributed in space,
the epidemic can be shown to travel at constant front
speed c. Even though the spatial uniform distribution
hypothesis can seem simplistic, it defines limit features
for more realistic scenarios which shall be further inves-
tigated as the assumption of uniform distribution of the
population is relaxed later in the paper.
3.1. Theoretical one- and two-dimensional
lattices

It is possible to analytically derive the spreading vel-
ocity in the one-dimensional lattice by approximating
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the discrete process with its continuous limit. Taking
the edge length Dx! 0, the transport rate l!1,
while keeping constant the products l .Dx2 and b . l .Dx,
the random-walk process becomes a diffusion process.
Equation (2.7) can be therefore written as the following
PDE:

@Bðx; tÞ
@t

¼ �mBBðx; tÞ þ pH
KW

I ðx; tÞ

� v
@Bðx; tÞ
@x

þ D
@2Bðx; tÞ
@x2 : ð3:1Þ

For sufficiently high l values (see discussion later),
the discrete process can be well approximated by the
continuous equation (3.1) with a diffusion coefficient
D ¼ l Dx2/2 and advective velocity v ¼ blDx.

As detailed in appendix A, standard mathematical
approaches make it possible to search for the velocity
c of the travelling wave in the PDE model (2.5),
(2.6)–(3.1) by looking for a specific parametric value
in a suitable fourth-order system of ODEs. Quite
expectedly, in the absence of transport biases (i.e.
with b ¼ 0), our analysis reveals that the disease propa-
gates along one-dimensional lattices with a velocity that
is proportional to the square root of the diffusion coeffi-
cient (see equation (A 12)). An important outcome of
the model concerns the scaling of c/

p
D with respect

to the epidemiological quantity that best characterizes
diseases at the local scale, i.e. their reproductive
number R0. Figure 2 points out that c/

p
D scales

fairly well with R0 2 1. More precisely, the relationship
is a power law and, at least for reproductive numbers
lower than 4, the slope is 1/2. This result is important
because, as emphasized by Hartley et al. (2006),
measuring R0 is quite demanding. We thus suggest a
possible indirect estimation of R0 and D from the obser-
vation of how fast a cholera infection propagates.

The introduction of a few infected people in a node of
a two-dimensional lattice triggers, if R0 is greater than
unity, an epidemic that spreads as an axial-symmetric
waveform. Analogously to the previous case, we derive
the continuous limit of the equation (2.7) in the
two-dimensional case:

@Bðr; tÞ
@t

¼ �mBBðr; tÞ þ pH
KW

I ðr; tÞ

þ D
1
r
@Bðr; tÞ
@r

þ @
2Bðr; tÞ
@r2

� �
; ð3:2Þ

where we express the Laplacian operator in polar coor-
dinates. The diffusion coefficient is given in this case
by D ¼ l Dx2/4. As the expected front is axial-sym-
metric, equation (3.2) depends only on the distance r
from the initial point and not on the direction. For
large values of r, the term @B(r,t)/r @r vanishes and
equation (3.2) becomes formally equal to equation
(3.1) that describes the one-dimensional case. There-
fore, the spreading velocity can be derived through
exactly the same procedure. However, it should be
noted that, if we compare the two topologies by keeping
constant the transport rate l and the edge length Dx,
the two-dimensional front is slower by a factor

p
2

with respect to the one-dimensional case. In fact, the
J. R. Soc. Interface (2010)
diffusion coefficient D has different expressions for the
two cases. This is somewhat intuitive because the
pathogens in a node can spread towards four neighbour-
ing nodes in the two-dimensional lattice, whereas the
neighbours are only two in the one-dimensional case.

3.2. Peano and optimal channel networks

The spreading velocity in heterogeneous river network
topologies, such as Peano (figure 1c) or OCN
(figure 1d), is computed numerically from the discrete
model (equations (2.5)–(2.7)). We start the simulation
with a single infected individual in one node (typically
the outlet of the network) and observe the front along
a single path, typically the path that connects the
outlet to the farthest leaf. When the epidemic front
reaches a stable form, we start measuring its speed. A
more detailed description of a cholera wave propagating
through an OCN is reported in §2 of the electronic
supplementary material. We compare the results for
different topologies using the spatial scale of the
discrete model, i.e. keeping the edge length Dx constant
while varying the transport rate l. Moreover, the
distance Dx models the actual distance between
human communities, and this analysis is aimed at
understanding how fast the disease can spread as a
function of the rate at which pathogens are redistribu-
ted between communities. Figure 3 shows the results
for b ¼ 0 and R0 ¼ 3, but different R0 values lead to
qualitatively similar results. It is worth pointing out
that parameter l has the physical meaning of the inverse
of the retention time of the vibrios in a single node,
whereas c/Dx is the spreading velocity normalized by
the distance between nodes. For sufficiently large
values of l, we find the results predicted earlier for the
one- and two-dimensional lattices by the analytical
solution. Too low values of l obviously violate the
condition for the continuous approximation (l!1),
and therefore the actual velocity slightly departs from
the

p
l scaling (see the bottom-left corner of figure 3).

Apart from numerical details, our results show that
the disease propagation in the two river network
topologies is remarkably slower than in the one- and
two-dimensional lattices and exhibits a different scal-
ing. This is analogous to the features of travelling
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waves for other reaction–diffusion processes in networked
substrates (Campos et al. 2006; Bertuzzo et al. 2007).

As expected, the OCN’s spreading velocity is greater
than Peano’s. In fact, while the pathogens resident
within an inner Peano node are dispersed towards four
adjacent nodes, the neighbours in OCN structures
cannot exceed 3 and disease spread is enhanced. It is
also instructive to compare the front speed computed
in the two-dimensional lattice and in the Peano network,
as the nodes of both structures have the same degree (i.e.
four adjacent nodes). Evidently, the fragmentation of the
connections in the latter network topology leads to a
much slower propagation. Even more interesting is to
compare OCN with two-dimensional lattices. Although
nodes in OCN have a degree that cannot exceed 3,
while the nodes’ degree in two-dimensional lattices is
strictly 4, the front is slower in OCNs owing to their par-
ticular tree-like topology. We therefore conclude that the
degree distribution of the river network cannot alone
explain the hierarchies of the disease spread.
3.3. Biased fronts

In a space-unbounded one-dimensional lattice, an
epidemic that starts from a compact support initial con-
dition (e.g. with a few infected in one of the midstream
nodes) spreads through the domain with two fronts that
travel at velocities c1 and c2, respectively (see inset in
figure 4). For unbiased processes (b ¼ 0 thus v ¼ 0),
the two fronts travel along opposite directions with
the same speed. The presence of a drift for the vibrio’s
transport (v . 0) breaks this symmetry. Figure 4 shows
how the drift affects the speed of the two fronts. For
each value of the drift velocity v, the disease-spreading
speed is a function of the diffusion coefficient D
represented by two branches; the upper and lower
branches refer to velocities c1 and c2, respectively. As
expected, a positive drift increases the signed values
of both velocities. For large D values, the front speed
still scales with

p
D, whereas for small values, the
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scaling is broken. It is noticeable that the front speeds
do not tend to the drift velocity v for D! 0. This is
owing to the fact that while the spatio-temporal
dynamics of vibrios B is subject to advection and diffu-
sion, changes of susceptible and infected abundances
are not. In a model with pure advection (D ¼ 0 and
v . 0), this implies that the progressive wave propa-
gates with a speed c1 lower than the drift velocity and
the retrogressive front has a small positive speed c2.
Qualitatively similar results (not shown for brevity)
are obtained with the OCN and the Peano network via
numerical simulations.

Of special interest is the retrogressive front. If c2 is
negative, it indicates how fast upstream communities
are reached by an infection started downstream. For
increasing values of the diffusion coefficient D, there
exists a threshold value D* at which c2 ¼ 0 and, for
D . D*, the epidemic can spread inland against the
river flow. Figure 4 shows that for an effective vibrios
drift of 1 km d21 (see discussion in §2), the correspond-
ing D* is approximately equal to 0.55 km2 d21.
Recalling that in a diffusion process the average dis-
tance travelled by a particle at time t scales as

p
Dt,

we can state that, in order to have cholera-spreading
inland, vibrios should be transported at approximately
0.74 km in 1 day. With the stronger drift of 3 km d21

(as in Bertuzzo et al. 2008), this distance is
2.2 km d21. These are plausible values given the
transport processes involved.
4. SPATIO-TEMPORAL CHOLERA
DYNAMICS

After having studied the effects of topology and of epi-
demiological and transport parameters on wavefronts,
we now investigate the spatio-temporal dynamics of
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Figure 5. Temporal evolution of the total number of infected nor-
malized by the total population in a Peano basin with 1025 nodes
(Lmax¼ 32) populated by a uniform number of susceptible indi-
viduals. Different lines correspond to different values of the trans-
port rate l as reported in the legend. The l¼1 (thick solid line)
case corresponds to the spatially implicit model (equation (2.1)).
Solid line, l¼1; dotted line, l¼ 100 d21; dashed line, l ¼ 10 d21;
dashed-dotted line, l ¼ 1 d21; thin solid line, l¼ 0.1 d21. All the
simulations are performed with R0¼ 3.
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cholera in greater generality. These analyses are aimed
at establishing the effects of spatial variability of the
disease on the resulting temporal patterns and the
conditions for the relevance of spatially explicit models.

The first set of simulations deals with a Peano net-
work whose 1025 nodes are populated by a uniform
number of individuals. Reflecting boundary conditions
of the so-called blind ant type (Hughes 1995) are
assumed for all the leaf nodes and for the outlet. This
kind of condition prescribes that walkers are not
aware of being at a boundary node. Thus, if they try
to go beyond it, they are reflected and stay still in the
same node. These boundary conditions ensure that
the steady state solution of our random walk is a non-
null uniform distribution and that vibrios are removed
from the system only by death, without considering
sources or sinks of pathogens. The latter conditions
can straightforwardly be modified to mimic more realis-
tic scenarios, but they are necessary to compare in a
proper way spatially explicit and implicit models. The
initial condition is one infected individual at the
outlet of the basin. This case is obviously deemed repre-
sentative of the inland propagation of the infection from
coastal regions where pathogens are autochthonous.

Figure 5 shows the temporal evolution of the basin-
scale prevalence (i.e. the total abundance of infected
normalized by the total population for the whole
basin). Different lines correspond to different values of
the transport rate l. All the simulations are performed
with no drift (b ¼ 0). The l ¼1 case corresponds to
the spatially implicit SIB model; results are obtained
by simulating equations (2.1) with a population size
equal to the total population of the basin and a water
volume equal to the sum of the water volumes of all
nodes. As expected, the higher the transport rate, the
better the system is approximated by a well-mixed
model (i.e. by a spatially implicit scheme). Neverthe-
less, at lower values of the transport rate, the spatial
variability is reflected in epidemic evolutions that sig-
nificantly depart from those of the well-mixed case.
The secondary peaks of infected individuals that
emerge at low transport rates depend on the number
of susceptibles that are reached by the epidemic wave
per unit time. The latter depends, in turn, on the
number of nodes that are located at the same distance
from the outlet (and thus reached simultaneously by
the epidemic wave). The relative proportion of the
number of nodes placed at a certain distance from the
outlet (distance being computed along the network) is
called the geomorphologic width function (Rodriguez-
Iturbe & Rinaldo 1997) and is characteristic of the
type of network considered. In particular, Peano
width function is multimodal and this is reflected in
the secondary peaks of prevalence curves (figure 5).

As discussed in §1, the relevance of considering
spatially explicit models is controlled by the ratio
between spreading and epidemic time scales. The time
required for the disease to spread throughout the
system is controlled by the spreading velocity c and
can be expressed as TS ¼ L/c, where L is a character-
istic length of the system (e.g. the maximum of the
distances between the initial node and each of the
others). The epidemic time scale can be defined as the
J. R. Soc. Interface (2010)
average duration of the epidemics in different commu-
nities. A measure of such a duration can be obtained
from the prevalence time series at a specific location,
for example, as the time elapsed between the 2.5th
and the 97.5th percentile. Since the prevalence curves
in the various nodes are approximately normal with
the same variance (see figure S2 in the electronic sup-
plementary material and discussion therein), we can
adopt the 2.5–97.5 interpercentile range as a measure
of the epidemic time scale, approximately equal to
TE ¼ 4sE, where sE is the standard deviation of the
prevalence curve, i.e.

s2
E ¼

Ð1

0 ðt ��t Þ2I ðtÞ dtÐ1

0 I ðtÞ dt
; ð4:1Þ

where t̄i ¼
Ð

0
1tIi(t) dt/

Ð
0
1Ii(t) dt is the average time of

infection in the ith node.
To measure the departures of the spatially explicit

model from its well-mixed, spatially implicit
counterpart, we define the similarity index SI as

SI ¼
Ð1

0 ðI ðtÞ � I0ðtÞÞ2 dtÐ1

0 I ðtÞ2dt þ
Ð1

0 I0ðtÞ2 dt
; ð4:2Þ

where I(t) is the total abundance of infected according
to the network model, and I0(t) is the total abundance
of infected as predicted by the spatially implicit SIB
model. The index SI assumes value 1 if the models pre-
dict the same response and decreases as the departures
between the outcomes of the two models increase.

Figure 6 shows the dependence of the similarity
index SI on the time-scale ratio. Different points corre-
spond to different simulations obtained by varying the
size of the system L, the basic reproductive number of
the epidemics R0 and the transport rate l. The results
show how the differences between spatially explicit
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and implicit models are indeed controlled by the time-
scale ratio. We note, moreover, that the range of
reliability of spatially implicit models is rather narrow.
To provide a reference scale, note that the curves in
figure 5 have an SI of 0.96, 0.44, 0.14 and 0.04 for a
transport rate l equal to 100, 10, 1 and 0.1, respectively.

Up to now, we have assumed a homogeneous net-
work (same community size H and water volume W in
each node). To achieve greater realism, we can analyse
the effects of heterogeneity on the disease dynamics.
When dealing with heterogeneous distributions of
population size, one needs to consider also how the
water resources availability and hygiene conditions
vary in space. One of the simplest hypotheses is to
assume a model that relates the water resource avail-
ability of a community to its population size. For
instance, a linear relationship between these two quan-
tities (i.e. Wi/ Hi) corresponds to the case in which
communities manage to increase their own set of
water supplies so that the per capita available water is
kept constant. This assumption seems reasonable for
many developed regions. In this particular case, the
basic reproductive number R0 is constant for all the
communities (see equation (2.2)), and the epidemic
prevalence (i.e. the number of infected individuals nor-
malized by the population size of each node) still
evolves like a waveform that spreads through the
system. The prediction of the front speed obtained in
the uniform case (§3) proves robust even in this particu-
lar case (see electronic supplementary material), thus
emphasizing the relevance of the study of the uniform
case. However, a plausible hypothesis is that in many
developing regions, where cholera is still a major
threat, the per capita water availability decreases with
the population density (e.g. Wi/ Hi

a, a , 1). In this
case, the basic reproductive number increases with the
population size (R0/ Hi

(12a)), thus implying that
the larger the community, the more severe and rapid
J. R. Soc. Interface (2010)
the local epidemic. In this case, the spreading velocity
is not constant but accelerates or decelerates depending
on the size of the communities involved. In the elec-
tronic supplementary material, we show that the
mean spreading velocity averaged over the network is
slightly larger than the front speed predicted in a
uniformly distributed system.

Although the uniformly distributed case provides
robust predictions of the spreading velocity, we note
that the spatial heterogeneity of susceptibles could sig-
nificantly affect the resulting epidemic patterns. An
example of these effects is presented in figure 7, in
which the temporal evolutions of an epidemic that
spreads through an OCN with either uniform or hetero-
geneous population distributions are compared. In the
heterogeneous network, the population sizes of each
node Hi are sampled from Zipf’s probability distri-
bution: p(H ) / H22, which appears to hold in virtually
all countries for which data exist (Zipf 1949). The het-
erogeneous case presents a secondary peak that has
nothing to do with the disease dynamics, but depends
only on the delay with which the disease reaches large
communities. Note that we report only one particular
realization of the process (one set of population sizes
extracted from Zipf’s distribution), whereas different
realizations can lead to very different results. Hence,
the spatial arrangement of susceptible sites intertwined
with the travel time for the disease to reach them may
often play an important role in the time evolution of
epidemic outbreaks. The analysis of the impact of the
heterogeneous distribution of the population size,
along with the seasonal and spatial distribution of
water resources and epidemiological and demographic
parameters, represents, in our view, the next important
step towards a better understanding of cholera epidemic
patterns.

It would be interesting for future research to develop
a spatially implicit scheme that indirectly accounts
for the effect of the spatial spreading, in analogy
to Aparicio & Pascual (2007) building a modified
mean field model that implicity accounts for the influ-
ence of the network contact structure on the disease
spread. A possible way to include the effect of the
propagation of the infection into disease-free regions is
to split the susceptibles compartment into two classes:
(i) the number of susceptibles that have not been
reached yet by the contamination and (ii) the number
of susceptibles that are exposed to the environmental
contamination and that can potentially become
infected. The flux of individuals from the first to the
second pool would mimic the rate at which spatially
distributed susceptibles are reached by the epidemic
wave. This rate is not constant, but it varies depending
on the spreading velocity, the spatial distribution of
population, hygiene conditions and water resources
and network topology.

Finally, we deem spatial explicit models particularly
relevant to study epidemics in regions where cholera
usually starts along the coast and spreads inland.
These communities are usually less prepared to face
an epidemic than regions where cholera is endemic,
and the time scale of emergency and control measures
is comparable to that of the epidemic evolution. In
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Figure 7. Effects of population heterogeneity on the dynamics
of an epidemic that spreads on an OCN construct. The two
lines refer to the temporal evolution of the total number of
infected normalized by the total population with uniform
(dot-dashed line) and Zipf (solid line) population distribution.
The total population and all the other parameters are the
same in the two cases. The dynamical parameters employed
are l ¼ 1 d21 and R0 ¼ 3.
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endemic regions, instead, other factors such as climatic
oscillations (Pascual et al. 2000) or immunity loss
(Koelle et al. 2005) play a major role in controlling
the long-term behaviour of the seasonal cholera out-
breaks. Thus prevention and control measures therein
operate on long-term perspectives.
5. CONCLUSIONS

The following conclusions are worth mentioning.

(i) We have investigated how the front speed c of
cholera propagation along rivers can be influ-
enced by the network topology, the transport
parameters and the epidemiological character-
istics of the disease. To this aim, we have
generalized a spatially explicit model of cholera
first proposed by Bertuzzo et al. (2008) for discuss-
ing the outbreaks that occurred in the KwaZulu-
Natal province, South Africa, from 2000 to 2002.
To keep our analysis as general as possible and to
provide a theoretical understanding of the reac-
tion–advection–diffusion process, we have used
here four different topologies, namely, one- and
two-dimensional regular lattices, Peano networks
and OCNs. For the regular lattices, we have ana-
lytically derived the wavefront speed as a function
of the epidemiological parameters, in particular
the disease diffusion coefficient D and the basic
reproductive number R0. Interestingly, we found
that, in a one-dimensional lattice, c/

p
D scales

fairly well with
p

(R0 2 1). Also, the disease
spreading in realistic networks, such as a Peano
network and an OCN, proves much slower than
in one- and two-dimensional lattices. The front
speeds in these topologies scale with D according
to irrational exponents (smaller than 1/2) that
perhaps deserve further investigation.
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(ii) The analysis of the front speed has been per-
formed in the cases of both unbiased (i.e. drift
velocity v ¼ 0 and D . 0) and biased (v . 0
and D . 0) vibrios transport. We have found
that, in the biased case, an occasional infection
occurring in a node produces two waves of
infected individuals that propagate with two
different velocities at the progressive and the
regressive fronts. For sufficiently large values of
vibrios diffusion D, the regressive front speed
can be negative; therefore, cholera can spread
inland from the river outlet. Analysing the
front speeds has been instrumental to determin-
ing the spreading time scales (defined as the time
needed for the disease to spread from the
initially infected node to all the communities
along the river) for the four topologies
considered herein.

(iii) Spreading time scales need to be compared with
local epidemic outbreak time scales to establish
conditions for the relevance of spatially explicit
models. The higher the ratio between spreading
and epidemic time scales, the larger the differ-
ences between the predictions of spatially
implicit (SIB model) and spatially explicit
schemes. Conditions for reliability of implicit
models appear to be rather stringent, thus pro-
viding weight to generalized applications of the
proposed scheme. Moreover, the slower the
front speed, the higher the ratio between spread-
ing and epidemic time scales, thus implying that
spatially explicit schemes rapidly become crucial
in the case of river networks.

(iv) We have finally shown the potential of our
approach for tackling the problem of spatially
heterogeneous networks. In real systems, in
fact, communities placed along the river links
of the networks obviously do not have the
same size. Under somewhat conservative
hypotheses on the distributions of water
resources and hygiene conditions, we have
shown that the spreading velocity of the infected
wave in rivers with heterogeneous population
sizes might be roughly approximated by front
speeds obtained in the equivalent uniformly
distributed case. However, our preliminary find-
ings have demonstrated that some characteristics
of the spatial patterns of the disease, such as sec-
ondary peaks, can be captured only by including
the heterogeneities of the environmental matrix.
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APPENDIX A: ANALYTICAL RESULTS FOR
THE WAVE SPEED IN THE PDE MODEL

As discussed in §3, the continuous limit of the system of
equations (2.5)–(2.7) in one dimension is

@S�

@t
¼ mð1� S�Þ � bB�

1þ B�
S ðA 1Þ

@I �

@t
¼ bB�

1þ B�
S� � ðgþ aþ mÞI � ðA 2Þ

@B�

@t
¼ �mBB� þ pH

KW
I � � v

@B�

@x
þ D

@2B�

@x2 ; ðA 3Þ

where S* ¼ S/H and I* ¼ I/H are the normalized sus-
ceptibles and infected, respectively. In the following,
we will refer only to the normalized variables. There-
fore, in order to simplify the notation, we remove star
superscripts. First, we further simplify the notation by
introducing the positive parameters h ¼ gþ a þm and
u ¼ pH/KW; second, we introduce the variable u¼ x 2 ct
to find travelling wave solutions of model (A 1)–(A 3),
with c being the speed of the travelling wave; third, we
reduce the corresponding nonlinear model of ordinary
differential equations inu to the following four-dimensional
system:

@S
@u
¼ � 1

c
mð1� SÞ � bB

1þ B
S

� �
; ðA 4Þ

@I
@u
¼ � 1

c
bB

1þ B
S � hI

� �
; ðA 5Þ

@B
@u
¼ Y ; ðA 6Þ

@Y
@u
¼ 1

D
mBB � uI þ ðv � cÞY½ �: ðA 7Þ

Model (A 4)–(A 7) has two equilibria corresponding to
the spatially homogeneous stationary solutions of model
(A 1)–(A 3). The equilibrium �X0 ¼ ½ 1 0 0 0 �T
(T indicates matrix transposition) corresponds to the
absence of infection over all space, while
�Xþ ¼ ½ �Sþ �Iþ �Bþ 0 �T stands for the endemic
equilibrium. This latter solution is non-negative, thus
acceptable, if and only if the parameter values satisfy
the constraint bu . hmB or equivalently R0 . 1 (see
equation (2.2)).

Any travelling wave solution of model (A 1)–(A 3)
can be seen in model (A 4)–(A 7) as a heteroclinic
orbit connecting X̄0 and X̄þ. For a progressive wave,
X̄0 is a saddle and the heteroclinic orbit goes from X̄þ
to X̄0. For obvious reasons, it is not acceptable that
such an orbit exits from the positive orthant of the
three-dimensional subspace (I(u), B(u), Y(u)) centred
at X̄0. This requires that the value of c is such that
X̄0 is a saddle node, not a saddle focus. For a retrogres-
sive wave, the heteroclinic orbit goes from X̄0 to X̄þ and
X̄0 must be an unstable node. In other words, all the
eigenvalues of the Jacobian J(X̄0) must be real for a
wavefront to exist.

Let c1 be the value of c that determines the tran-
sition of X̄0 from a saddle-node to a saddle-focus
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equilibrium (progressive wave). It can be shown (Aron-
son & Weinberger 1978) that, among the infinite poss-
ible waves propagating at speeds c � c1, the selected
velocity for large t is exactly c1. Let c2 be the analogous
value for the retrogressive front, then all the speeds c �
c2 are possible, but the stable front is that
corresponding to c2.

The Jacobian matrix of model (A 4)–(A 7) at the
generic equilibrium �X ¼ ½ �S �B �I �Y �T reads as

Jð �XÞ ¼

m

c
þ b�B

1þ �B
0

b

cð1þ �BÞ2
0

� b�B
cð1þ �BÞ

h

c
� b

cð1þ �BÞ2
0

0 0 0 1

0 �u

D
mB

D
v � c

D

2
6666666664

3
7777777775
:

ðA 8Þ

Thus in X̄0, we have

Jð �X0Þ ¼

m

c
0

b

c
0

0
h

c
�b

c
0

0 0 0 1

0 �u

D
mB

D
v � c

D

2
66666664

3
77777775
; ðA 9Þ

which is an upper triangular block matrix whose eigen-
values are l1 ¼ m/c and the three solutions of the
algebraic equation

l� h

c
b

c
0

0 l �1
u

D
�mB

D
l� v � c

D

���������

���������
¼ l3 þ b1l

2 þ b2lþ b3 ¼ 0; ðA 10Þ

with b1 ¼ 2(hD þ c(v 2 c))/cD, b2 ¼ 2(h(v 2 c) 2

mBc)/cD and b3 ¼ 2(hmB (R0 2 1))/cD.
In order to determine the above-mentioned tran-

sitions from saddle focus to saddle node or from
unstable focus to unstable node, we must find the
relationship that must hold among the coefficients bi

of the cubic equation (A 10) so that it has two real
coinciding solutions. The condition is deducible from
Abramowitz & Stegun (1965) as

4b3
2 � b2

1b
2
2 � 18b1b2b3 þ 27b2

3 þ 4b3
1b3 ¼ 0: ðA 11Þ

In the case of v ¼ 0, one obtains an equation of the
form

g0
c2

D

� �3

þg1
c2

D

� �2

þg2
c2

D

� �
þ g3 ¼ 0; ðA 12Þ

whose coefficients depend, in an intricate way, on the
model parameters h, mB and R0 2 1. However, g0 and
g1 are negative, while g3 is positive. Therefore, by
Descartes’ rule of signs, there exists only one positive
solution of equation (A 12) that provides the wave
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speed. Also, equation (A 12) shows that c/
p

D, as
expected in a diffusion model. The intriguing relation-
ship obtained while solving that equation is the scaling
of c/

p
D with R0 2 1, as documented in figure 2.

If v . 0, the corresponding equation is more compli-
cated, but it can be solved numerically and the results
are shown in figure 4.
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