Skip to main content
. 2009 Oct 28;7(43):209–227. doi: 10.1098/rsif.2009.0379

Table 1.

Advantages and disadvantages of scaffold materials used in three-dimensional bone TE: ceramics, polymers and composites (adapted from Chen et al. 2008). ++, excellent; +, good; HA, hydroxyapatite; β-TCP, β-tricalcium phosphate.

material advantages disadvantages
inorganic
 calcium phosphates (HA, β-TCP)
  1. biocompatibility (++)

  2. osteoconductivity (+)

  3. adequate mechanical strength

  1. slowly degradable (crystalline phase)

  2. brittle

 bioactive glasses and glass ceramics (bioglass, phosphate glasses)
  1. biocompatibility (++)

  2. osteoconductivity (++)

  3. tailorable resorption (+)

  4. angiogenetic (+)

  5. upregulation of gene expression in osteoblasts (++)

  6. adequate mechanical strength

  1. slowly degradable (in case of partially crystalline structures)

  2. brittle (amorphous structure)

organic
 bulk biodegradable polymers (poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), poly(propylene fumarate))
  1. biocompatibility (++)

  2. wide range of biodegradation rate (++)

  3. bioresorbable (+)

  1. inflammatory response possible (acid degradation products)

  2. poor stiffness and compression strength

 surface bioerodible polymers (poly(ortho esters), poly(anhydrides), poly(phosphazene))
  1. biocompatibility (++)

  2. retention of mechanical integrity possible

  1. they cannot be completely replaced by new bone tissue

composites
  1. biocompatibility (++)

  2. osteoconductivity (+)

  3. tailorable degradation rate

  4. improved mechanical properties

  1. fabrication techniques can be complex