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Evolutionary game theory is the study of frequency-dependent selection. The success of an individual

depends on the frequencies of strategies that are used in the population. We propose a new model for

studying evolutionary dynamics in games with a continuous strategy space. The population size is

finite. All members of the population use the same strategy. A mutant strategy is chosen from some

distribution over the strategy space. The fixation probability of the mutant strategy in the resident

population is calculated. The new mutant takes over the population with this probability. In this case,

the mutant becomes the new resident. Otherwise, the existing resident remains. Then, another mutant

is generated. These dynamics lead to a stationary distribution over the entire strategy space. Our new

approach generalizes classical adaptive dynamics in three ways: (i) the population size is finite;

(ii) mutants can be drawn non-locally and (iii) the dynamics are stochastic. We explore reactive strategies

in the repeated Prisoner’s Dilemma. We perform ‘knock-out experiments’ to study how various strategies

affect the evolution of cooperation. We find that ‘tit-for-tat’ is a weak catalyst for the emergence of

cooperation, while ‘always cooperate’ is a strong catalyst for the emergence of defection. Our analysis

leads to a new understanding of the optimal level of forgiveness that is needed for the evolution of

cooperation under direct reciprocity.
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1. INTRODUCTION
The basic concept in evolutionary game dynamics is that the

payoff from a game leads to reproductive success (Maynard

Smith & Price 1973; Maynard Smith 1982; Hofbauer &

Sigmund 1998; Cressman 2003; Nowak & Sigmund

2004). Reproduction can be genetic or cultural. If there is

a small number of discrete strategies, then the replicator

dynamics provide a powerful framework for studying

deterministic dynamics in infinitely large populations

(Taylor & Jonker 1978; Weibull 1995; Samuelson 1997;

Fudenberg & Levine 1998; Hofbauer & Sigmund 2003).

There is a formal equivalence between the replicator

equation and the Lotka–Volterra equation of ecology

(Hofbauer & Sigmund 1998), thereby providing an impor-

tant bridge between evolutionary game theory and

mathematical ecology (May 1973). This equivalence is

not surprising, because the success of species in an ecosys-

tem depends on the abundance of other species. The

replicator equation is one of the several dynamical frame-

works that can be used, and other update rules have been

proposed (Ritzberger & Weibull 1995; Fudenberg &

Levine 1998; Hofbauer & Sigmund 1998). Recently, there

is also much effort to explore the stochastic evolutionary

game dynamics in populations of finite size (Schaffer

1988; Kandori et al. 1993; Nowak et al. 2004; Imhof et al.

2005; Tao & Cressman 2007; Santos et al. 2008).

If the strategy space is continuous, then there is no

simple and perfect way to study evolutionary dynamics.
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A widely used approach is given by adaptive dynamics

(Hofbauer & Sigmund 1990; Nowak & Sigmund 1990;

Dieckmann & Law 1996; Metz et al. 1996; Dieckmann

et al. 2000), which rests on the following assumptions:

there is an infinitely large population; at any one time,

the individuals use one (or a few) strategies; mutants

are drawn from an infinitesimally small region around

the resident strategy; invasion and fixation dynamics are

deterministic. Adaptive dynamics represent a useful tool

for studying games with continuous strategy space and

have led to many important insights (Doebeli et al.

2004; Ackermann et al. 2008).
2. MODEL
Here, we propose a new way to study evolutionary

dynamics for games over a continuous strategy space. In

our approach, there is a finite population. All the individ-

uals in this population use the same strategy. Then, a

mutant strategy occurs that can be drawn from an

arbitrary distribution over the strategy space. This distri-

bution can be constant or it can depend on the resident

strategy. Next, we consider the stochastic game dynamics

between resident and mutants. We calculate the fixation

probability, r, that the mutant will take over the popu-

lation. As a particular model for the stochastic dynamics,

we consider a frequency-dependent Moran process

(Nowak et al. 2004), but other models have been investi-

gated and could also be used here (Binmore &

Samuelson 1997; Traulsen et al. 2005; Vukov & Szabó

2005; Imhof & Nowak 2006; Lessard & Ladret 2007).

With probability r, the resident is replaced by the

mutant. With probability 1 2 r, the invasion is repelled
This journal is q 2009 The Royal Society
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Figure 1. Stationary distributions of stochastic evolutionary dynamics. The state space is the set of reactive strategies (p, q) in
the iterated Prisoner’s Dilemma, where p is the conditional probability of cooperating after the opponent has cooperated in the
previous round and q is the conditional probability of cooperating after the opponent has defected in the previous round. The

stationary distribution describes the proportion of time that the population spends in a given part of the state space. New
mutants are chosen from a uniform distribution on the state space. Parameter values are b ¼ 10 and c ¼ 1. (a) Sample
points drawn from the stationary distributions for selected population sizes N. Darker parts indicate the areas visited more fre-
quently. The per cent numbers indicate the proportion of time that the population is in the cooperative half, where p þ q . 1.
(b) Densities of the stationary distributions. The concentration of the distribution near ALLD and GTFT becomes

larger as the population size increases. (c) Sections of the stationary densities along the TFT–ALLC edge. This edge describes
the set of all GTFT strategies where p ¼ 1 and the parameter q specifies the degree of forgiveness. For our parameters, the
classical value is q ¼ 1 – c/b ¼ 0.9, a strategy which occurs only rarely in our finite population model. The q values observed
most often depend on the population size and increase from about 0.15 for N ¼ 20 to about 0.37 for N ¼ 100.
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and the resident remains. Then, another mutant is

generated and the algorithm enters the next cycle.

If we repeat these steps many times, then the

evolutionary dynamics will lead to a stationary distri-

bution over the space of all strategies. This stationary

distribution is informative about many aspects of the evol-

utionary dynamics of the game that is being considered.

The maxima of this distribution signify successful

strategies. Success is a combination of two factors: (i) it

depends on how able a strategy is in resisting invasion

attempts and (ii) it depends on how able a strategy is in

invading other (successful) strategies. Both properties

depend on the pairwise fixation probabilities. Proulx &

Day (2001) studied a similar finite population model to

demonstrate the relevance of fixation probabilities in

stochastic environments.

As a fascinating example, we study the evolution of

cooperation under direct reciprocity (Trivers 1971;
Proc. R. Soc. B (2010)
Axelrod & Hamilton 1981; Fudenberg & Maskin 1990;

Nowak & Sigmund 1990, 1992). We investigate the simpli-

fied Prisoner’s Dilemma, where cooperation means paying

a cost, c, for the other individual to receive a benefit, b;

defection implies no cost and provides no benefit. Direct

reciprocity can arise, if there are repeated encounters

between the same two individuals. My strategy depends on

what hashappened in the previous encounters. Inparticular,

my strategy depends on what you have done to me.

We analyse the set of reactive strategies (Nowak &

Sigmund 1990), which are given by two parameters: p is

the probability of cooperating, if the other person has

cooperated in the previous round; q is the probability

of cooperating, if the other person has defected in the

previous round. Each reactive strategy is given by a pair

(p, q). This set contains some well-known strategies: for

example, always defect, ALLD, (0,0); always cooperate,

ALLC, (1,1); and tit-for-tat, TFT, (1,0).
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Figure 2. Successful invaders. The big black point is the resident strategy. The cloud shows the distribution of the first success-
ful mutation that replaces the resident. The arrowhead indicates the centre of gravity of the cloud of successful invaders. The
number quantifies how many unsuccessful mutants are generated on average before one successful mutant takes over. (a) Typi-

cally, an ALLD population is taken over after a while by a mutant with TFT-like behaviour. (b) A TFT population is then
quickly taken over and the dynamics move towards some new state close to the edge from TFT to ALLC. (c) If the new resident
strategy is carefully forgiving—in this example we have (p, q) ¼ (0.9,0.5)—the population stays at this state for a long time, but
will eventually move closer to ALLC. (d) An ALLC population is quickly taken over and the population returns to ALLD. As in
figure 1, mutations are generated from a uniform distribution. Parameter values are population size N ¼ 100, benefit b ¼ 10

and cost c ¼ 1.
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Previous explorations of this strategy set (Nowak &

Sigmund 1992), which were based on the replicator

equation, have revealed the following evolutionary

dynamics. From a random ensemble of strategies, ALLD

emerges victorious. Subsequently, TFT catalyses the tran-

sition to cooperative societies. But TFT enjoys only a brief

moment of glory, because it cannot correct mistakes: in the

presence of noise, the expected payoff of two TFT players

is low. TFT is soon replaced by generous tit-for-tat,

GTFT, which always cooperates when the other person

has cooperated, but sometimes even cooperates when the

other person has defected. Therefore, GTFT can correct

mistakes: it is given by (1,q), where the magnitude of the

parameter q is usually defined as the maximum value of

forgiveness that is still compatible with resisting the inva-

sion of ALLD. For the simplified Prisoner’s Dilemma,

expressed in the cost and benefit parameters, c and b, we

have q ¼ 1 2 c/b. But the subsequent results suggest

revising the definition of GTFT.
3. RESULTS
Figure 1 shows the stationary distribution of our stochas-

tic evolutionary dynamics over the strategy space, which is

given by the unit square. Mutants are drawn from a
Proc. R. Soc. B (2010)
uniform random distribution. We consider reactive

strategies with a minimum noise level: all p and q values

are between 0.005 and 0.995. For the three different

population sizes, N ¼ 20, 50 and 100, we find that 47,

67 and 81 per cent of the distribution lie in the coopera-

tive half, which is given by p þ q . 1. Thus, larger

population sizes facilitate the evolution of cooperation.

We think this is the case, because spite opposes

cooperation in very small populations. The stationary dis-

tribution has two peaks. One peak is located near the

ALLD corner, (0,0). The second peak is located close

to the line p ¼ 1. For the three population sizes, the opti-

mum q levels, which correspond to the peak, are given by

q* ¼ 0.15, 0.23 and 0.37, respectively. Larger population

sizes favour greater levels of forgiveness. The location of

the second peak, (1,q*), marks the optimum level of for-

giveness and therefore serves as a useful definition of

GTFT.

The stationary distribution of our evolutionary

dynamics represents a mutation–selection balance over a

continuous strategy space. The particular shape of the

distribution is caused, in part, by the ability of strategies

to resist invasion and also by the location of successful

invaders. Figure 2 provides the key information. For four

strategies, ALLD, TFT, GTFT and ALLC, we show the
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Figure 3. Knock-out experiments. To understand the roles of individual strategies in the evolution of cooperation, we remove
certain parts of the strategy space. (a) The point cloud shows the stationary distribution when mutations are drawn from the
uniform distribution on all reactive strategies without those close to ALLD. The proportion of time spent in the cooperative half

is 78%. (b,c) This proportion drops to 71% if TFT is knocked out instead and to 61% if GTFT with q ¼ 0.4 is knocked out.
The stationary distribution seems to try to concentrate mass close to the boundary of the removed disc. Here invasion is easier
than in the disc, explaining the increase in defection. (d) Knocking out ALLC increases the proportion of cooperation to 93%.
These experiments quantify the extent to which TFT and GTFT promote and ALLC hinders the evolution of cooperation. In

(a), (b) and (d), the radius of the removed disc is 1/4, in (c), the radius is
ffiffiffi

2
p

=8, so that the removed areas coincide. The effect
of removing strategies is similar but more pronounced if the discs are larger. For example, if a disc with radius 1/3
around ALLC is removed, then the proportion of cooperation increases to 97%. Parameter values are N ¼ 100, b ¼ 10
and c ¼ 1.
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cloud of successful invaders. The arrowhead indicates the

centre of gravity of the invading cloud. For ALLD, the

first successful mutant appears on average after 319

trials. The arrow points into the vicinity of TFT. Hence,

TFT-like strategies are the typical invaders of ALLD. For

TFT, however, the first successful mutant appears already

after 24 trials on average. Hence, the population remains at

TFT only for a short while; TFT is not a peak in the dis-

tribution. The arrow points from TFT into the vicinity of

GTFT. From there, it takes on average 715 invasion

attempts, and the invaders are typically more forgiving.

The population moves slowly towards the ALLC corner.

For an ALLC population, a successful invader appears

on average after 43 attempts. All numerical values are

the results of computer simulations for population size

N ¼ 100; a neutral mutant would need on average 100

attempts for one successful invasion.

The arrows in figure 2 indicate the oscillatory nature of

the evolutionary dynamics that is underlying the station-

ary distribution. From an ALLD population, we move

via TFT to GTFT. There, we drift slowly to even more

cooperative strategies, which eventually can be invaded

by defectors. Then, the cycle starts anew.
Proc. R. Soc. B (2010)
In figure 3, we perform ‘knock-out’ experiments,

where specific strategies are excluded. We use population

size N ¼ 100. If the entire strategy space is available for

new mutants, then 81 per cent of the stationary distri-

bution is in the cooperative half, p þ q. 1. If we remove

a disc around ALLD, then this value is 78 per cent. If

we remove a disc around TFT, then the frequency of

cooperative strategies in the stationary distribution

drops to 71 per cent. This experiment quantifies the

role of TFT in catalysing the emergence of cooperation.

Surprisingly, the effect is not very strong. TFT facilitates,

but is not needed for the emergence of cooperation. If we

knock out a disc around GTFT, which is a peak in the

stationary distribution, then the frequency of cooperators

falls to 61 per cent. If on the other hand, we knock out a

disc around ALLC, then the frequency of cooperative

strategies in the stationary distribution increases to 93

per cent. Therefore, ALLC-like strategies are very effi-

cient in catalysing the emergence of defection. They

undermine GTFT populations and open the gates for

the invasion by defectors. Note that neither TFT nor

ALLC are the peaks in the stationary distribution (if the

full strategy set is used). Hence, they are not really present
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Figure 4. Stochastic evolutionary dynamics with local mutation. In the local version of our stochastic evolutionary dynamics,
mutations are drawn from a small neighbourhood around the resident strategy. In these simulations, we use a disc of diameter

0.05. (a) Stationary distribution and fraction of cooperation. As in the global mutation model, the process is most of the time
either close to the TFT–ALLC edge or close to the ALLD corner, but the proportion of time spent in the cooperative half is
considerably smaller. (b–d) Each panel shows one typical trajectory of the stochastic process starting from the big black point.
The small points show the distribution of ‘hitting points’ where the process enters the grey area. They indicate the typical direc-
tion of evolutionary dynamics when starting from strategies near ALLD, TFT and ALLC, respectively. Parameter values are

N ¼ 100, b ¼ 10 and c ¼ 1.
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at equilibrium, but they catalyse the underlying

evolutionary dynamics.
(a) Local mutation

So far, we have chosen new mutants from a uniform

distribution over the strategy space. We call this approach

‘global mutation’. We can also choose mutants from a

local neighbourhood around the resident strategy. We

call this approach ‘local mutation’. In this case, long

jumps in strategy space are not possible. The evolutionary

trajectories have to proceed via small steps. In figure 4a,

we show the stationary distribution that is generated by

the local mutation model. For a population size of

N ¼ 100, the frequency of cooperative strategies is about

48 per cent. The peak at ALLD is larger than for the

global mutation model; with local mutation, it is harder

to replace a population of defectors. In figure 4b–d, we

show some evolutionary trajectories of the local mutation

model. The distribution of ‘hitting points’ indicates the

direction of evolution when starting from certain

strategies.

If we choose the invading mutants from an infinitesi-

mally small neighbourhood around the resident strategy,

then we obtain a stochastic version of adaptive dynamics

(Hofbauer & Sigmund 1990; Nowak & Sigmund 1990;

Dieckmann & Law 1996; Metz et al. 1996; Dieckmann

et al. 2000) for finite population size. A system of two
Proc. R. Soc. B (2010)
differential equations describes the ‘most probable’ path

of evolutionary dynamics. For our strategy space, the

deterministic and the stochastic system lead to the same

evolutionary trajectories, which are given by concentric

quarter cycles around TFT. But interestingly, the

direction of evolution can vary for the two approaches.

The size of the ‘cooperative region’, where the p and q

values increase, increases with population size. The deri-

vation of the stochastic adaptive dynamics is given in the

electronic supplementary material.
4. DISCUSSION
We have proposed a new method for studying the stochastic

evolutionary dynamics in finite sized populations for

games with a continuous strategy space. Our calculation

leads to a stationary distribution over the strategy space,

which characterizes the relative abundance of strategies

in the mutation–selection equilibrium. In contrast to

the previous work, our approach does not require weak

selection, but we do assume rare mutation: new mutants

arrive only one at a time. Our model does not allow

different strategies to coexist for long periods of time

and is therefore not suitable to study stochastic evolution-

ary branching.

We have applied our new approach to study the

reactive strategies of direct reciprocity. Neither TFT nor
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ALLC are successful strategies; they achieve only low

abundance in the mutation–selection equilibrium.

Knock-out experiments show that TFT is a weak catalyst

for promoting cooperation, while ALLC is a strong cata-

lyst for promoting defection. The most successful reactive

strategies are ALLD and GTFT. The latter cooperates

whenever the other person cooperates, but sometimes

cooperates even if the other person has defected. The

optimum level of forgiveness depends on the payoff

values of the game and the population size. Our approach

characterizes the oscillatory nature of the evolution of

cooperation. Cooperation is never here to stay. Instead,

there are endless cycles between all-out defectors, harsh

retaliators, careful forgivers and unconditional coopera-

tors. These cycles reflect to some extent the varying

fortunes of human history.
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Vukov, J. & Szabó, G. 2005 Evolutionary Prisoner’s
Dilemma game on hierarchical lattices. Phys. Rev. E 71,
036133. (doi:10.1103/PhysRevE.71.036133)

Weibull, J. W. 1995 Evolutionary game theory. Cambridge,
MA: MIT Press.

http://dx.doi.org/doi:10.1038/nature07067
http://dx.doi.org/doi:10.1126/science.7466396
http://dx.doi.org/doi:10.1126/science.7466396
http://dx.doi.org/doi:10.1006/jeth.1996.2255
http://dx.doi.org/doi:10.1007/BF02409751
http://dx.doi.org/doi:10.1007/BF02409751
http://dx.doi.org/doi:10.1126/science.1101456
http://dx.doi.org/doi:10.1016/0893-9659(90)90051-C
http://dx.doi.org/doi:10.1090/S0273-0979-03-00988-1
http://dx.doi.org/doi:10.1090/S0273-0979-03-00988-1
http://dx.doi.org/doi:10.1073/pnas.0502589102
http://dx.doi.org/doi:10.1073/pnas.0502589102
http://dx.doi.org/doi:10.1007/s00285-005-0369-8
http://dx.doi.org/doi:10.2307/2951777
http://dx.doi.org/doi:10.1007/s00285-007-0069-7
http://dx.doi.org/doi:10.1038/246015a0
http://dx.doi.org/doi:10.1038/nature02414
http://dx.doi.org/doi:10.1038/nature02414
http://dx.doi.org/doi:10.1007/BF00049570
http://dx.doi.org/doi:10.1038/355250a0
http://dx.doi.org/doi:10.1038/355250a0
http://dx.doi.org/doi:10.1126/science.1093411
http://dx.doi.org/doi:10.1126/science.1093411
http://dx.doi.org/doi:10.2307/2171774
http://dx.doi.org/doi:10.1038/nature06940
http://dx.doi.org/doi:10.1038/nature06940
http://dx.doi.org/doi:10.1016/S0022-5193(88)80085-7
http://dx.doi.org/doi:10.1007/s11538-006-9170-0
http://dx.doi.org/doi:10.1016/0025-5564(78)90077-9
http://dx.doi.org/doi:10.1103/PhysRevLett.95.238701
http://dx.doi.org/doi:10.1103/PhysRevLett.95.238701
http://dx.doi.org/doi:10.1086/406755
http://dx.doi.org/doi:10.1103/PhysRevE.71.036133

	Stochastic evolutionary dynamics of direct reciprocity
	Introduction
	Model
	Results
	Local mutation

	Discussion
	This work was supported by the John Templeton Foundation, the National Science Foundation/National Institutes of Health Joint Program in Mathematical Biology (National Institutes of Health grant R01GM078986) and J. Epstein.
	References


