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I study the reorganization of the yeast transcriptional regulatory network after whole-genome duplication

(WGD). Individual transcription factors (TFs) were computationally removed from the regulatory net-

work, and the resulting networks were analysed. TF gene pairs that survive in duplicate from WGD

show detectable redundancy as a result of that duplication. However, in most other respects, these dupli-

cated TFs are indistinguishable from other TFs in the genome, suggesting that the duplicate TFs

produced by WGD were rapidly diverted to distinct functional roles in the regulatory network. Separately,

I find that genes targeted by many TFs appear to be preferentially retained in duplicate after WGD, an

effect I attribute to selection to maintain dosage balance in the regulatory network after WGD.
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1. INTRODUCTION
The importance of changes in gene regulation in generat-

ing evolutionary novelty has long been appreciated (e.g.

Wray et al. 2003). However, some questions about regu-

latory evolution could only be answered with the advent

of genome sequencing and data such as that from

chromatin-immunoprecipitation studies (Lee et al. 2002;

Harbison et al. 2004). Such data have allowed the infer-

ence of reasonably complete transcriptional regulatory

networks from organisms including the yeast Saccharo-

myces cerevisiae. As a result, we now know that the

number of targets of a given transcription factor (TF) fol-

lows a power law (Guelzim et al. 2002; Luscombe et al.

2004), that the regulatory networks possess an overabun-

dance of specific small ‘circuit’ motifs (Lee et al. 2002;

Milo et al. 2002; Shen-Orr et al. 2002) of functional sig-

nificance (Conant & Wagner 2003; Mangan & Alon

2003; Klemm & Bornholdt 2005; Prill et al. 2005) and

that the networks are structured in a manner that imparts

robustness to signals (Li et al. 2004; Klemm & Bornholdt

2005). Of course, transcriptional regulation is a dynamic

process. Luscombe et al. (2004) have shown that gene

regulation in response to exogenous stimuli tends to

involve fewer TFs per target and shorter regulatory cas-

cades than do endogenous regulatory controls (such as

the cell cycle). Additionally, Jothi et al. (2009) found

that differences in TF half-life were associated with a

TF’s position in the hierarchically organized regulatory

network, such that TFs associated with environmental

stimuli tended to be long-lived, while those TFs involved

in computing the appropriate response to those stimuli

had shorter half-lives.

Features such as network motifs imply that natural

selection has shaped the regulatory network to specific

functional requirements. But the network must also

evolve according to certain underlying rules. One useful

analogy is protein evolution, where natural selection
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preserves proteins of useful function, but the generation

of the protein sequences themselves must also obey the

rules of mutation and population genetics. Similar rules

governing network evolution remain to be completely

elucidated, but an important first step was provided by

Teichmann & Babu (2004), who showed that much of

the structure of the network in both S. cerevisiae and

Escherichia coli was created by gene duplication. Another

notable feature of network evolution is the rapid (and

asymmetric) evolution of gene expression and regulatory

interactions after such duplications (Gu et al. 2002,

2005). Interestingly, rapid and asymmetric evolution are

also features of protein interaction networks (Wagner

2001, 2002).

Here, I study network evolution after a particular type

of duplication: the whole-genome duplication (WGD)

that occurred in an ancestor of S. cerevisiae (Wolfe &

Shields 1997; Dietrich et al. 2004; Dujon et al. 2004;

Kellis et al. 2004). The goal is to understand post-dupli-

cation evolution in the face of one of the vexing issues in

the analysis of biological networks: the fact that we are

often able to study the network only as it exists in a

single modern organism.

Being unable to compare multiple networks makes it

very hard to identify historical changes in them. Sequence

data can identify TFs or target genes that have been

duplicated but cannot easily identify the loss or gain of

regulatory interactions. However, such changes are inter-

esting because they represent the network equivalents of

neofunctionalization or subfunctionalization (Force et al.

1999; Stoltzfus 1999; Hughes 2005; Conant & Wolfe

2006, 2008). Distinguishing these possibilities is essen-

tially the task of analysing the interactions of duplicate

genes to see if they are ancestral or novel (figure 1a).

This analysis is reasonably straightforward, given a

second network with which to infer the ancestral state,

but quite challenging failing that.

Lacking such an outgroup, I have approached the pro-

blem not by focusing on individual interactions, but
This journal is q 2009 The Royal Society
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Figure 1. Regulatory network evolution. (a) Conceptual view of regulatory network evolution after WGD. Immediately after
WGD, each ancestral regulatory interaction exists in four copies. As time progresses, both interactions and the TFs and
target genes may be lost. Note that the loss of a TF or target also eliminates the interactions that gene possessed. In this thought

experiment, we are aware of the ancestral network, meaning that we can distinguish between new interactions (red) and redun-
dant (green) and non-redundant (blue) interactions surviving from WGD. Grey circle, transcription factor; white circle, target
gene. In real situations, the ancestral network is unknown, meaning that we cannot make this distinction (adapted from Conant
& Wolfe 2008). (b) A simple example of calculating the input diversity of a network. The top-level TFs (red) have minimal
input diversity, indicated by vectors with only one non-zero entry. We calculate the vectors for intermediate TFs (purple)

and target nodes (blue) iteratively (see §2) until the values converge.
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rather by considering the differences between two sets of

genes. In one set are those TFs that possess a paralogue

(duplicate) created by WGD, whereas in the other are

the remaining TFs, where the paralogue created

by WGD has been lost along the lineage leading to

S. cerevisiae (Scannell et al. 2007). I hypothesized that

the duplicated TFs produced by WGD would retain

some shared targets after WGD. It would seem to

follow that such redundancy would also make these

duplicated TFs less essential for gene regulation than

other TFs.
2. MATERIAL AND METHODS
(a) Calculation of minimal path lengths and

input diversity

For each network, I calculated the average minimum path

length (the average over all nodes of the average for each

node of the minimum number of edges needing to be tra-

versed to reach any other node) with Dijkstra’s algorithm

(Yoon et al. 2006). This approach was then applied to all

possible pruned networks.

As illustrated in figure 1b, to calculate input diversity, each

node in the network was assigned a vector of length n, where

n is the number of top-level TFs in the network. For a given

gene x, I calculate the value of its vector element j given its

input TFs 1, . . . , m as

V x
j ¼

Xm

i¼1

1=m � V i
j ð2:1Þ
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All vectors except those of the top-level TFs are first initi-

alized to zero. The calculation in equation (2.1) is then

iterated for all target genes using the values from the last iter-

ation from nodes 1, . . . , m until the values of the vectors for

all nodes have converged. I then calculate the entropy of

the target genes as

E ¼
Xn

i¼1

Vi � log2ðViÞ ð2:2Þ

When calculating pruning statistics, the pruning of a top-

level TF will necessarily reduce the input diversity (as n

decreases). To control for this effect when calculating prun-

ing effects, I used not the raw Shannon entropy but rather

the scaled value of the observed entropy divided by the maxi-

mum possible entropy: 2log2 (1/n0), where n0 is the number

of top-level TFs in the pruned network.

(b) Comparison of the distribution of shared targets

between the duplicated TF pairs and the remainder

of the network

I assumed that the number of shared target genes for a pair of

TFs follows a discrete power law distribution (visual inspec-

tion indicated that an exponential distribution was

insufficiently ‘long tailed’ for these data; figure 2a). Thus, I

assumed that the probability of observing a pair of genes

with n shared targets is given by

P ¼ ðnþ 1Þ�a

P1

i¼1

i�a

ð2:3Þ
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Figure 2. WGD-derived TFs possess an excess of shared
targets but are not functionally redundant. Data from the
network HR_03 for all panels. (a) Cumulative distribution
of the number of shared targets for a pair of TFs: blue line,

pairs of duplicated TFs created by WGD; green line, all
other pairs of TFs. These distributions are significantly
different (likelihood ratio test, p , 10210). (b) Cumulative
distribution of the number of target genes for a TF: blue
line, TFs with a surviving duplicate from WGD; green line,

all other TFs. There is no significant difference in these
two distributions (likelihood ratio test, p . 0.05). (c) Com-
parison of TF knockout effects on two network statistics
for TFs with (blue) and without (green) surviving duplicates
from WGD. On the x-axis is the number of components pro-

duced by TF removal, on the y-axis is the resulting average
path length. The values from the original network are
shown in red. Blue circle, WGD TFs; green triangle, other
TFs; red square, real network.
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Because this distribution is defined over the interval
1 � x , 1, while these data are defined over 0 � x , 1,
I fitted the number of shared targets plus one to this function

(the n þ 1 in the numerator above) using standard numerical
techniques (Press et al. 1992). Using a likelihood ratio test
(Sokal & Rohlf 1995), I compared a model where the prob-
ability of a shared target was allowed to differ between the
pairs of WGD TFs and the other TF pairs with a constrained

model where all pairs had the same probability of sharing a
target. The same method was used for comparing the
distribution of interaction degree between the WGD TFs
and the other TFs, except that here I did not adjust the

range of the input degrees.

(c) Identification of missing regulatory genes in

three outgroup genomes

Using data from the Yeast Genome Order Browser (YGOB)

project (Byrne & Wolfe 2005), I identified, for each TF, the

syntenic locus in three non-WGD genomes: Ashbya gossypii

(Dietrich et al. 2004), Kluyveromyces lactis (Dujon et al.

2004) and Kluyveromyces waltii (Kellis et al. 2004). The phy-

logenetic relationship between these three species and S.

cerevisiae has been described by Kurtzman & Robnett

(2003). For both the non-WGD species and S. cerevisiae,

these syntenic loci may or may not have a gene present: the

locus itself is identified by the shared flanking genes. Gene

absence in S. cerevisiae will generally be the result of dupli-

cate gene loss after WGD (meaning that one copy of the

gene survives). In the other three species, YGOB also indi-

cates whether a gene with sequence similarity exists

elsewhere in the genome. Thus, the identification of gene

absence in the three outgroup genomes is supported by

both gene order and gene sequence data. I compared the

effect of computational pruning from the network for genes

where at least one of these species lacked an orthologue of

the S. cerevisiae TF to that effect for TFs preserved across

all three species.

(d) Comparison of WGD TF status and knockout

fitness defect

Data on the fitness effects of gene knockouts were taken from

Steinmetz et al. (2002). I averaged the knockout fitness on

YPD (yeast extract, peptone, dextrose) media for the two

time courses and omitted genes where these values differed

by more than 0.05. Following Gu et al. (2003), I then nor-

malized these measurements by the average value across all

genes. Any gene annotated as essential by the Munich Infor-

mation Center for Protein Sequences (MIPS; Mewes et al.

1999) was assigned a fitness value of zero.
3. RESULTS
(a) Datasets

I used two datasets of TFs and their targets for these ana-

lyses. The first was the chromatin immunoprecipitation

dataset of Harbison et al. (2004). These data consist of

probabilities (p-values) of the binding of 203 TFs to the

upstream regions of each gene in the yeast genome. I

have used two different p-value thresholds for these ana-

lyses: p � 1023 (as used by Harbison et al. 2004;

denoted HR_03 below) and p � 1024 (HR_04 below).

Any TF lacking at least one interaction of the required

stringency was omitted from the analysis. I have also

used the published dataset of Luscombe et al. 2004

(LC), which consists of 142 TFs derived from both an

earlier large-scale experiment and the literature.
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(b) Genome duplication data

Data on which genes in the S. cerevisiae genome survive in

duplicate from WGD were obtained from the YGOB

project (Byrne & Wolfe 2005). For each dataset

(HR_03, etc.), all TFs with surviving duplicates accord-

ing to YGOB were assigned to the set of WGD TFs.

All remaining TFs in each dataset are referred to as

‘other TFs’.
(c) Network statistics

A number of statistics have been proposed to evaluate

the structure of biological networks, including the degree

distribution (Jeong et al. 2001), clustering coefficient

(Watts & Strogatz 1998; Wagner & Fell 2001) and net-

work diameter (Jeong et al. 2000; Wagner & Fell 2001).

To this list, I add a measure of information-processing

capacity: the ‘input diversity’ (figure 1b). This statistic

gives a scaled indication of the input a target gene receives

from the set t of all TFs. It is calculated by first splitting

t into two classes: the n top-level TFs that are not regu-

lated by any other TFs (red in figure 1) and the t–n

intermediate TFs that both regulate genes and are them-

selves regulated by other TFs (purple in figure 1). The

regulatory influences on a given gene are represented as

a vector with n elements (one for each top-level TF).

Top-level TFs are described by discrete binary vectors

with only a single non-zero entry corresponding to that

TF’s index number (e.g. Li et al. 2004). Other genes

have non-zero entries from any top-level TFs that can

be reached directly or indirectly from that gene. Values

are calculated as described in §2 (figure 1b). Input diver-

sity is defined as the Shannon entropy of this vector.

Thus, a target gene with connections to only a single

top-level TF would have minimal input diversity of 0,

whereas a gene with direct inputs from all n top-level

TFs would have an input diversity of 2log2(1/n). One

caveat to this approach is that some TFs will be misiden-

tified as top-level regulators owing to missing regulatory

interactions: in the present work, I do not attempt to

gauge the magnitude of this problem. I also note that

this approach has some similarities to that of Jothi et al.

(2009), although it is less computationally complex and

does not attempt to infer the hierarchical structure of

the network.
(d) TFs were more likely to be preserved in

duplicate after WGD than genes in the

genome at large

An overabundance of surviving duplicated TFs after

WGD was observed in several species (Blanc & Wolfe

2004; Maere et al. 2005; Aury et al. 2006), but not

initially in yeast (Seoighe & Wolfe 1999). However,

more recent work has confirmed that the WGD-produced

duplicates are indeed enriched for TFs (Chen et al. 2008;

Conant & Wolfe 2008). Because of incomplete gene

annotation and also because some duplicate genes appear

to have lost their regulatory activity (e.g. Hittinger & Carroll

2007), there are a number of cases where only one

member of such a duplicate gene pair is identified as a

TF. Nonetheless, for all three datasets (HR_03, HR_04

and LC), there are significantly more WGD TFs than

would be expected (p , 1024, x2-test).
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(e) TF pairs surviving in duplicate from WGD share

more target genes than would be expected by

chance but do not differ in overall numbers of

interactions

To test for redundancy produced by WGD, I compared

the number of shared target genes for pairs of the

WGD TFs to the number of shared targets for all other

pairs of TFs (figure 2a). Unsurprisingly, for all three data-

sets, the pairs of WGD TFs share more targets than

would be expected by chance (p , 10210, likelihood

ratio test; see §2). Interestingly, the WGD TFs have, on

average, more regulatory interactions than other TFs

(figure 2b), although this difference is significant only

for the LC network (logistic regression, p ¼ 0.028;

Sokal & Rohlf 1995). Moreover, even if one removes all

regulatory interactions shared between pairs of the

WGD TFs, the WGD TFs still have no fewer targets

than other TFs (logistic regression; p . 0.05). Likewise,

genes that are targets of the WGD TFs have on average

higher input diversity than do targets of other TFs,

although again this difference is significant only for the

LC dataset (logistic regression; p ¼ 0.036).

(f) Duplicated TF genes may be slightly more

dispensable than other TF genes

Given the excess of shared target genes among the

WGD TFs, it is reasonable to ask if the WGD-produced

redundancy in target genes reduces the importance of

these duplicated TFs in the regulatory network.

I tested whether the WGD TFs have less severe fitness

defects when knocked out in S. cerevisiae than do other

TFs (see §2). Average fitness is higher for all WGD TF

knockouts: it is significantly higher for the LC network

(logistic regression, p ¼ 0.012).

(g) WGD status does not predict the effect of

computational TF removal

To further test the prediction of increased dispensability

among TFs duplicated at WGD, I created pruned net-

works that computationally simulate the effect of TF

loss by removing each TF and its interactions from the

network and then recalculating three network statistics:

the number of components (how many pieces the network

is broken into by the loss of a single TF), the average path

length between two nodes and the average input diversity.

I asked whether the WGD TFs produced different net-

work statistics after pruning compared to the other TFs.

Using logistic regression, I found no differences between

the WGD TFs and other TFs in the three statistics con-

sidered (p . 0.05; figure 2c). However, an alternative

explanation for these results is that the network statistics

considered are simply not useful measures of the effect

of TF removal. To determine if this was the case, I carried

out two analyses.

(h) Hypothetical ancestral TFs are more

influential in the network than other TFs

First, I created pseudo-ancestral TFs for pairs of the

WGD TFs by combining the interactions of the two

TFs into a single ancestral gene, merging any redundant

interactions. Note that the unrealistic assumption that

no new regulatory circuits have evolved since the WGD

is irrelevant when testing the value of these network



Table 1. WGD TFs and phylogenetic dispersal.

dataset
WGD
TFsa

prop

w/outgroup
orthologuesb

other
TFsc

prop

w/outgroup
orthologuesd pe

HR_03 58 0.84 109 0.79 0.38
HR_04 48 0.88 85 0.81 0.35
LC 48 0.85 93 0.81 0.48

aNumber of TFs with a surviving duplicate gene from WGD.
bProportion of the WGD TFs for which an orthologue exists in all
three outgroup genomes examined (see §2).
cNumber of TFs lacking a surviving duplicate from WGD.
dProportion of other TFs for which an orthologue exists in all
three outgroup genomes examined.
ep-value for the hypothesis test of different proportions of genes
with three outgroup orthologues among the WGD TFs and among
all other TFs. (x2-test with one degree of freedom.)
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statistics. For all three networks, the removal of pseudo-

ancestral nodes was more likely to increase in the

number of components than was the removal of other

TFs (logistic regression, p , 0.02), indicating the

increased centrality of these created TFs. For both data-

sets derived from the data of Harbison et al. (2004)—

that is, HR_03 and HR_04—the loss of these ancestral

nodes decreases the average path length more than the

loss of other nodes (logistic regression, p , 0.005). All

three networks also show a larger decrease in the input

diversity when ancestral TFs are removed than is seen

with other TFs (logistic regression, p , 0.04).

(i) Network parameters are correlated with

phylogenetic dispersal

Second, I examined whether the network statistics used

here were correlated with data on TF dispensability in

three outgroup genomes that lack WGD. I thus used

YGOB to determine whether each S. cerevisiae TF pos-

sessed an orthologue in these genomes (see §2). I

compared the effect of TF removal for those TFs with

orthologues in all the three species to that for TFs missing

an orthologue in at least one species. In the HR_03

network, those TFs missing in at least one outgroup

genome are less likely to break the network into a large

number of components when removed (p , 0.03),

whereas in both the HR_03 and HR_04 networks the

removal of dispensable genes tends to reduce the input

diversity less than the loss of other TFs (p , 0.05).

These analyses of both pseudo-ancestral and dispensa-

ble TFs suggest that statistics such as average path length,

number of components and input diversity are real, if

imperfect, measures of a TF’s importance are imperfect

in the regulatory network. This conclusion supports the

contention that the lack of difference between the

WGD TFs and other TFs is not simply an artefact of

how these statistics measure importance.

(j) Duplicated TF genes were not more important

prior to WGD

One explanation for the lack of difference between the

WGD TFs and the other TFs in network measures is

that the WGD TFs were actually more important prior

to WGD and that they have subsequently become

reduced in importance through the partitioning of ances-

tral functions (i.e. subfunctionalization). I thus asked

whether the WGD TFs were less likely to be absent in

the three non-WGD genomes than other TFs. Although

the proportion of genes with orthologues is higher

among the WGD TFs than for other TFs, this difference

is not statistically significant in any network (table 1;

p . 0.05). I therefore cannot conclude that these TFs

were more important to the organism prior to WGD.

(k) Network randomization

In addition to testing the usefulness of these measures of

importance, the above analyses also suggest that purifying

selection acts to retain certain features of the regulatory

network. Thus, the fact that phylogenetic dispersal and

input diversity are correlated implies that each of these

two variables is probably associated with some underlying

feature of the network that is being maintained by selec-

tion. To further explore this idea, I compared the
Proc. R. Soc. B (2010)
measured statistics in the real networks to those seen in

networks that had been randomly rewired while preser-

ving the number of incoming and outgoing interactions

for every TF and target gene. If we assume that the evol-

ution of the real network has included the appearance of

functionally important regulatory interactions, rewiring

that network will disrupt the patterns of non-random

attachment created by these interactions. Thus, if such

patterns exist, we will see differences in summary statistics

between the real network and the randomized ones,

assuming that the statistics we have chosen are

meaningful.

The HR_04 network shows significantly more com-

ponents than randomized networks (p ¼ 0.036), but no

other networks showed this pattern, probably because

the other two original networks had very few components

(,4). The HR_04 network also shows significantly lower

input diversity than do randomized networks (p ¼ 0.006),

a pattern also not seen in any other network (although I

note that the average input diversity is higher for all

three sets of randomized networks than for their respect-

ive real networks). The HR_03 network shows path

lengths that are significantly shorter than random net-

works (p ¼ 0.014). Both path length and input diversity

are related to the degree with which the regulatory net-

work is able to segregate signals to distinct sets of target

genes. Thus, networks with longer path lengths will

need to activate more intermediate TFs in order to propa-

gate a signal to a target gene, while larger input diversity

will imply that a given signal activates more target genes.

One can argue that both of these properties might be

undesirable under certain circumstances, because they

make the cellular response to a stimulus less precise.

One can therefore argue that natural selection acting

to preserve efficient responses to stimuli might tend to

produce networks that maintain lower values of input

diversity and path length.

(l) WGD status and target gene characteristics

I also compared the regulation of target genes that pos-

sessed duplicates from WGD to other target genes to

see if the number of TFs that acted upon a target gene

or that gene’s input diversity differed depending on WGD

status. For networks HR_03 and LC, target genes with

surviving duplicates from WGD were regulated by, on

average, more TFs than other genes (p , 0.02). Similarly,
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in these two networks, targets with surviving duplicates

had higher input diversity than did other genes

(p , 0.003).

One explanation for this higher input degree among

target genes with a duplicate from WGD is that it is

caused by quartets of duplicated TFs and duplicated tar-

gets. However, the LC network actually shows fewer

interactions between such quartets than would be

expected by chance (p ¼ 0.008), while the frequency of

quartet interactions in HR_03 and HR_04 does not

differ from the chance expectation (p . 0.05). It therefore

does not appear that duplicate target genes owe their

excess of regulatory interactions to surviving redundant

interactions from WGD.
4. DISCUSSION
Here, I have analysed the evolutionary patterns seen in

the yeast transcriptional regulatory network following

WGD. It is clear from the above results that the three

networks considered do not always point to the same con-

clusions, and it is worth commenting on some possible

explanations for this fact. The LC network, because it

was partly drawn from literature data, may include some

biases resulting from the TFs that researchers have

chosen to study. Note that the WGD TFs in this network

were the only ones to show statistically and significantly

decreased essentiality and differences in network statistics

from other TFs. The HR_03 and HR_04 datasets are

more similar to each other, but the HR_04 network also

shows some distinct patterns: its WGD-duplicated

target genes show no increase in the number of TFs reg-

ulating them. I attribute this difference to the smaller

number of genes and interactions in this network resulting

from the increased stringency required to infer an

interaction.

Genome duplication has long been thought to have an

important role in reshaping regulatory networks (Ohno

1970; Freeling & Thomas 2006). The data above suggest

that the new TFs created by WGD were relatively quickly

incorporated into the regulatory network. This pattern is

in contrast to my initial hypothesis that the WGD TFs

would tend to be more generally dispensable than other

TFs. Instead, although these TFs still show some features

that trace to WGD (more shared interactions and possibly

higher knockout fitness), in most respects they are indis-

tinguishable from their non-duplicated counterparts: the

WGD TFs have at least as many unique regulatory

targets as do other TFs and do not show differences

from other TFs in measures such as input diversity.

This result is not unexpected: duplication is often fol-

lowed by rapid expression divergence (Gu et al. 2002,

2005). Indeed, this rapid divergence is one of the facts

that supports the hypothesis that many phenotypic

differences between organisms are due to changes in

gene regulation (King & Wilson 1975; Jacob 1977;

Wray et al. 2003). For the results described here, what

remains unclear is the manner in which the regulatory

divergence occurred. One hypothesis is that the extant

WGD TFs have divided the ancestral regulatory

functions between the two duplicate copies through

subfunctionalization. While the interaction losses

required for this pathway could indeed be rapid, a

corollary of this hypothesis (in strict form) is that the
Proc. R. Soc. B (2010)
pre-WGD TFs that gave rise to the duplicated TFs

would have had more than twice as many regulatory tar-

gets as do the unduplicated TFs in modern S. cerevisiae.

Were this not the case, I would not observe that the

modern WGD TFs have the same number of regulatory

targets as do other TFs. However, speaking against this

hypothesis of the duplication and subfunctionalization

of TFs of high importance, I find that the phylogenetic

dispersal of the WGD TFs is not abnormally high, even

though one would expect that putative ancestral TFs

with such large numbers of interactions would tend to

be selectively conserved and hence present in most yeast

genomes. A second hypothesis to explain the similarity

of the WGD TFs to the other TFs is that the former

have gained regulatory targets since WGD. If one accepts

the rapid turnover of regulatory interactions in the evol-

utionary time mentioned above, this hypothesis of

interaction gain is consistent with the observation that

different yeast species use different regulatory logic to

produce the same phenotype (Tsong et al. 2006).

Under this scenario, after WGD, neutral changes in regu-

lation have occurred in both the WGD TFs and the other

TFs, partially erasing the regulatory signature of WGD.

I would further suggest that the changes seen in these

networks remind us that the regulatory network can actu-

ally be thought of as a computing device, taking inputs

from the cellular surroundings and integrating them

into cellular responses. The study of the hierarchical

structure of the regulatory network by Jothi et al. (2009)

is very intriguing in this respect as the structure that

these authors deduce is reminiscent of a neural network

(Flake 1998). Ironically, neural networks themselves

originated as an analogy to an evolved computational

engine: the brain.

Among the target genes in these regulatory networks, it

appears that duplicated target genes surviving from WGD

tend to have more regulatory interactions than would be

expected. As this result is not due to the survival of the

duplicated TF, target gene pairs, one explanation could

be that these genes had more interactions at the time of

duplication. This explanation actually has antecedents

going back at least to Ohno (1970). The current formu-

lation of the idea is the dosage balance hypothesis (Papp

et al. 2003; Birchler & Veitia 2007; Edger & Pires

2009), which argues that single-gene duplications (i.e.

non-WGD duplications) in dense parts of networks will

tend to be selected against because they disrupt the stoi-

chiometry of the network interactions. However, after

WGD, these same densely connected genes will tend to

be preserved in duplicate because all of their neighbour-

ing genes are also duplicated. In those circumstances,

natural selection will tend to disfavour the loss of a dupli-

cate copy because that loss will introduce the same sorts

of dosage imbalances produced by single-gene dupli-

cations. Freeling & Thomas (2006) pointed out that

this preferential retention of highly connected gene dupli-

cates can drive increased genetic complexity. I suggest

that regulatory network divergence is not only intrinsically

interesting, but also serves as a model for understanding

the genesis of evolutionary novelty.
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