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Measles epidemics in human populations exhibit what is perhaps the best empirically charac-
terized, and certainly the most studied, stochastic persistence threshold in population
biology. A critical community size (CCS) of around 250 000–500 000 separates populations
where measles is predominantly persistent from smaller communities where there are frequent
extinctions of measles between major epidemics. The fundamental mechanisms contributing
to this pattern of persistence, which are long-lasting immunity to re-infection, recruitment of
susceptibles, seasonality in transmission, age dependence of transmission and the spatial
coupling between communities, have all been quantified and, to a greater or lesser level of
success, captured by theoretical models. Despite these successes there has not been a consen-
sus over whether simple models can successfully predict the value of the CCS, or indeed which
mechanisms determine the persistence of measles over a broader range of population sizes.
Specifically, the level of the CCS has been thought to be particularly sensitive to the detailed
stochastic dynamics generated by the waiting time distribution (WTD) in the infectious and
latent periods. We show that the relative patterns of persistence between models with different
WTDs are highly sensitive to the criterion of comparison—in particular, the statistical measure
of persistence that is employed. To this end, we introduce two new statistical measures of
persitence—fade-outs post epidemic and fade-outs post invasion. Contrary to previous reports,
we demonstrate that, no matter the choice of persistence measure, appropriately parametrized
models of measles demonstrate similar predictions for the level of the CCS.
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1. INTRODUCTION

Measles is an exceptionally transmissible viral infection
of humans, with no animal reservoir (Black 1984). The
persistence of measles in isolated communities is there-
fore dependent on the maintenance of unbroken chains
of transmission within the human population (Bartlett
1956, 1957). Natural infection with measles imparts a
lifelong immunity to re-infection which drives a regular
pattern of endemic–epidemic cycles, sustained by sea-
sonality in transmission (Soper 1929; London & Yorke
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1973; Dietz 1976) and interspersed with deep troughs
in incidence (Anderson & May 1991). In these troughs,
measles is vulnerable to local extinction through the
inherent randomness in the timing of birth, recovery
and transmission events—so-called demographic sto-
chasticity. As the abundance of measles scales linearly
with host population size (Grenfell et al. 2002), the
probability of stochastic extinction between epidemics
can be defined in terms of a host population size.

This relationship naturally leads to the notion of a
threshold population size above which measles will
persist—termed the critical community size (CCS)
(Bartlett 1957). The island studies of Black suggest a
CCS of above 500 000 (Black 1966), while data from
This journal is q 2009 The Royal Society
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England and Wales suggest a lower CCS of 250 000–
300 000 (Bartlett 1957). The level of the CCS is also
liable to vary between communities with differing
demographic and social structures (Ferrari et al.
2008), with birth rates in particular being a key driver
of persistence (Conlan & Grenfell 2007).
1.1. Modelling the CCS

Despite being a key process in population biology,
stochastic persistence is empirically quantified for only
a very few systems (Hanski & Gaggiotti 2004). Under-
standing persistence and its mechanistic determinants
can inform both the eradication of disease and—in a
more general ecological context—the conservation of
endangered populations (Goodman 1987; Earn et al.
1998). Detailed historical records of measles incidence
have allowed the development and support of mechan-
istic transmission models incorporating seasonality in
transmission (Soper 1929; Fine & Clarkson 1982; Earn
et al. 2000), age structure (Schenzle 1984; Bolker &
Grenfell 1993), spatial structure (Bolker & Grenfell
1995; Xia et al. 2004) and variable infectious and
latent period distributions (Keeling & Grenfell 1997).
While most of these models successfully capture the
temporal pattern of measles outbreaks in England
and Wales, a major question mark remains over
the ability of simple models to predict the level of the
CCS and the relative impact of the above mechanisms
on persistence. In particular, there have been contradic-
tions in the literature concerning the role that
assumptions concerning the infectious and latent
period distributions play in the persistence of measles
within theoretical models (Keeling & Grenfell 1997;
Andersson & Britton 2000; Lloyd 2001c). In this
paper, we systematically review the methodology, philos-
ophy and results of previous studies to resolve these
contradictions and tease apart the relative roles of the
key ingredients determining the level of the CCS: season-
ality, age structure, spatial structure and the waiting
time distribution (WTD) in the infectious and
latent stages.
1.2. Ingredients of the CCS

We focus exclusively on modelling the patterns of
persistence found in the disease records of England
and Wales, where measles exhibited a regular biennial
pattern of epidemics in the 1950s–1960s. The Registrar
General’s weekly return for England and Wales docu-
ments the (weekly) number of reported cases of
measles, and other notifiable infectious diseases,
within certain administrative regions, the number and
size of which vary over the history of its publication.
The most detailed dataset covers the period of 1940–
1964, where incidence was reported for 954 unique
urban districts.

Wavelet analyses have revealed a complex hierarchi-
cal pattern of spatial dynamics with recurrent waves of
extinction and re-colonization of measles within these
districts (Grenfell et al. 2001). In order to compare
theoretical models to empirical estimates of persistence
we must therefore account for this ‘re-seeding’ process.
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Ideally, this should take the form of an explicit spatial
model (Xia et al. 2004). However, owing to the compu-
tational complexity and difficulty in parametrization of
such models, this process has often been modelled
implicitly by assuming that there is a (small) rate of
infectious imports into (otherwise) closed populations.
Such ‘implicit’ models of spatial dynamics and
persistence are the focus of this paper.

The inter-epidemic period of measles, as with many
childhood infections in industrial countries, is deter-
mined by a combination of population birth rates and
the strong seasonal forcing of transmission rates result-
ing from the timing of school terms (Earn et al. 2000).
The inter-epidemic period, in turn, determines the
depth of troughs in the incidence between major
epidemics and is therefore also a strong predictor/
driver of the patterns of persistence (Conlan & Grenfell
2007).
1.3. A puzzle

In his seminal study which introduced the concept of a
CCS for measles, Bartlett (1956) proposed a stochastic
version of an earlier susceptible, infectious, removed
(SIR) model (Soper 1929), which predicted a realistic
value of the CCS of 250 000. Refinements of this
approach have suggested a larger predicted CCS
(Nåsell 1999). However, these analytic results do not
account for the significant seasonal variation in trans-
mission which is an essential component of measles
dynamics in England and Wales (Fine & Clarkson
1982) or the latency period where individuals are
exposed but not yet infectious.

When the persistence of measles was re-visited using
seasonally forced models, they were found to be unable
to match both the dynamics and the patterns of persist-
ence successfully. Homogeneous mixing susceptible,
exposed, infectious and recovered (SEIR) models pre-
dicted a CCS far in excess of 5 million (Bolker &
Grenfell 1995). This discrepancy between models and
data was reduced by the introduction of explicit age
structure—the so-called realistic age-structure (RAS)
models (Schenzle 1984). However, even these models
predicted a CCS in excess of 1 million (Bolker &
Grenfell 1995).

An explanation for this failure of models to capture
the CCS was proposed by Keeling & Grenfell (1997)
who showed that their pulsed realistic age-structure
(PRAS) model provided not only a closer match to
the incidence time series of London than the previous
models, but also generated realistic levels of measles
persistence. This success was attributed to the stochas-
tic dynamics resulting from their use of less dispersed
WTDs in the infectious and latent classes (Keeling &
Grenfell 1998).

The classical SEIR model assumes constant rates of
transition between the exposed, infectious and recov-
ered classes leading to the waiting time that
individuals spend in these states being exponentially
distributed (exponential models henceforth). Household
studies suggest that the infectious and latent periods of
measles are much less dispersed, tightly distributed
about a mean latent period of 8 days and infectious
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period of 5 days (Hope Simpson 1952; Bailey 1954,
1975; Keeling & Grenfell 2002).

More realistic WTDs can be incorporated into a
computationally straightforward fashion in the SEIR
framework by the method of stages (technical appen-
dix), with an increasing number of stages reducing the
dispersion of the WTD (Bailey 1964; Anderson &
Watson 1980). Under this modification to the SEIR
equations, waiting times in the infectious and latent
classes are gamma-distributed (gamma models hence-
forth). WTDs had long been known to be important
for infections with long (order of years) infectious
periods (Blythe & Anderson 1988) but were often
thought to be of negligible importance for ‘fast’
infections with short (order of days) infectious periods.
The analysis of simpler epidemic models with gamma-
distributed infectious periods has demonstrated that
less dispersed infectious period distributions destabilize
epidemics dynamics (Grossman 1980; Lloyd 1996) and
has led to a growing body of work highlighting the
importance that distributional assumptions have for
parameter estimation for ‘fast’ infections (Nowak et al.
1997; Lloyd 2001a; Wearing et al. 2005; Heffernan &
Wahl 2006; Wallinga & Lipsitch 2007).
1.4. A controversy

The model simulations presented by Keeling & Grenfell
(1997) suggested an order of magnitude difference in
the CCS for models with exponential and less dispersed
WTDs. The authors explained this relative pattern of
persistence in terms of a well-established result from
branching process theory. At the beginning of an
epidemic, when the number of susceptibles in the
population is approximately constant, models with
less dispersed WTDs demonstrate less variability in
the number of secondary infections (Malice & Kryscio
1989). During ‘invasion’ into a disease-free population,
this reduced variability in secondary infections leads to
a commensurate reduction in the probability of extinc-
tion and hence an increased probability of successful
invasion. Keeling & Grenfell (1998) suggested that
this effect would also reduce the probability of extinc-
tions in the troughs between epidemics, essentially
arguing that the inter-epidemic persistence of measles
was determined by these invasion dynamics.

Partly motivated by his bifurcation analyses of
gamma-distributed models, Lloyd (2001b) argued
that—in an isolated population—the CCS for a broad
range of infectious diseases should increase as the
dispersion of the WTDs is reduced (Lloyd 2001c).
Although Lloyd found some evidence for parameter
regimes where the ‘Keeling and Grenfell’ effect led to
enhanced persistence, the study brought into doubt
the generality of Keeling and Grenfell’s results. Lloyd
was also unable to reproduce the same magnitude of
increase in persistence as reported by Keeling &
Grenfell (1997)—a disparity which has not been
resolved satisfactorily (Lloyd 2001c; Keeling & Grenfell
2002).

Comparison between different studies in the litera-
ture is complicated as individual authors have made a
series of different assumptions concerning the structure
J. R. Soc. Interface (2010)
and parametrization of models. Analytical results offer
some insights into the impact of key parameters on per-
sistence; however, the intractability of incorporating
seasonality and imports of infection makes direct
comparisons to the data impossible. Andersson &
Britton (2000) studied the time to extinction (t) in
SEIR models with variable WTDs and demonstrated
that t increases with community size and the average
length of the infectious period. For ‘large enough popu-
lations’ t was shown to increase with both the average
length and the variance of the latent period. If the
average duration of latency was short (or zero), then t

was found to increase with the variance of the infectious
period. In general, however, the time to extinction was
found to have a non-monotonic relationship with the
variance of the infectious period. This complexity
echoes the results of Lloyd (2001b) where the relative
impact of WTDs was found to vary in different
parameter regimes.

There are clear philosophical differences between the
central studies of Lloyd and of Keeling and Grenfell.
Lloyd carried out a theoretical study with the desire
to infer general results in as broad a context as possible.
By contrast, Keeling and Grenfell were concerned with
achieving the best possible biological description using
all of the available sources of data for one particular
disease, measles, in one particular environ, England
and Wales, in the 1950s and the 1960s. Keeling and
Grenfell’s model incorporated age structure and an
implicit model of spatial imports designed to mimic
the role played by London in driving measles epidemics
in England and Wales (Grenfell et al. 2001). This com-
plexity made it difficult to generalize their results,
motivating later studies to examine persistence within
the setting of simpler homogeneous mixing models
(Lloyd 2001c; Keeling & Grenfell 2002) where the
dramatic results of Keeling & Grenfell (1997) could
not be replicated.
1.5. Prospectus

In this paper, we first seek to understand the impact of
WTDs on the persistence within homogeneous mixing
models. We shall show that the impact of WTDs on
the persistence depends critically on how we choose to
compare between models in terms of the choice of par-
ameters and measures of persistence. In order to make
these comparisons, we require a comprehensive review
of the statistical measures we can employ to quantify
persistence and the methods of parametrization applied
by previous authors (§2).

We demonstrate that trajectory-matching tech-
niques can lead to a larger theoretical value of R0

during the deepest troughs in incidence for models
with less dispersed WTDs (§3). Despite this parametric
difference, we find that trajectory-matched models exhi-
bit similar patterns of persistence as models where the
parameters are held constant for different WTDs (§4).
However, under different measures of persistence, we
show that less dispersed WTDs can both increase and
decrease the stochastic persistence of measles validating
both Keeling and Grenfell’s and Lloyd’s studies (Lloyd
2001c; Keeling & Grenfell 2002).
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Figure 1. Fade-out statistics for measles in England and Wales. Fade-out statistics for the 954 urban districts of England and
Wales (1940–1964) are plotted in grey, with a smooth spline trend line overlaid in white. Population size of a district is taken
to be the median population size over the period. (a) Mean annual fade-outs of measles (defined as 3 or more weeks with no
reported cases) against population size. (b) Proportion of zero reports—the proportion of weeks with no reported cases of measles.
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We conclude by re-visiting the effect of WTDs on
persistence within age-structured models (§5). We find
that the order of magnitude improvement in persistence
reported for the PRAS model (Keeling & Grenfell 1997)
was not due to the use of gamma-distributed WTDs,
but rather to a consequence of an unfair comparison
between models introduced by the use of an approxi-
mate model of ageing. Most importantly, we find
that if we require the models to describe the same
historical disease record, then the magnitude of the
CCS is comparable (Keeling & Rohani 2007) no
matter the choice of WTDs or the measure of persistence
(figures 4 and 5).
2. QUANTIFYING THE PERSISTENCE
OF MEASLES

Characterization of the level of the CCS from the dis-
ease record is complicated as our best sources of data
come not from isolated populations, but from the
disease records of England and Wales and other
countries where hierarchical spatial dynamics repeat-
edly re-introduce infection after local extinctions (Xia
et al. 2004). The most appealing theoretical measures
of persistence—the probability of extinction or expected
time to extinction (t)—relate to single isolated popu-
lations. Empirical measures of persistence—based on a
time series of case reports—inevitably capture
information not only on the persistence of disease
after an epidemic but also on the invasion dynamics
associated with the ‘re-seeding’ of infection from
neighbouring districts.

Provided we have regular notifications of disease, we
can quantify persistence by building statistics based on
the proportion or on the frequency of zero reports in a
given reporting interval. Given the delays inherent in
the presenting and reporting of new infections,
persistence statistics are typically defined in terms of
‘fade-outs’: defined for measles in England and Wales
(where weekly reports are available) as three or more
consecutive weeks with no reported cases (Bartlett 1957).
J. R. Soc. Interface (2010)
2.1. Mean annual fade-outs

The conflation of invasion and persistence is amply
demonstrated by what has become perhaps the most
common measure of persistence—the mean annual
number of fade-outs (MAFs; Bolker & Grenfell 1995;
Keeling & Grenfell 1997, 2002; Lloyd 2001c). Plotting
MAFs against population size results in a ‘hump-
backed curve’ with low numbers of fade-outs in large
and small populations (figure 1a). Comparison with
another commonly used persistence measure—the pro-
portion of zero reports, figure 1b (Bjornstad et al.
2002)—reveals that the proportion of time ‘faded-out’
increases with decreasing population size. The maxi-
mum value of the MAFs is therefore limited by the
rate at which a population experiencing fade-out is
challenged by external sources of infection.

This potentially misleading property of the MAFs is
well known, and empirical studies will typically only
present MAFs along with a complementary measure
of the length of fade-outs (e.g. fade-out length or pro-
portion of weeks with no reported cases; Bolker &
Grenfell 1995; Keeling & Grenfell 1997; Bjornstad
et al. 2002; Broutin et al. 2005). The ideal measure of
persistence should not only account for the frequency
and proportion of zero reports, but also provide some
discrimination between the relative roles of persistence
and invasion dynamics.
2.2. Fade-outs post epidemic

One approach, largely overlooked since being intro-
duced by Bartlett (1957), is to calculate the
proportion of epidemics of a certain size which are
terminated by fade-out—the fade-outs post epidemic
(FPE). Such a measure seeks to exclude the small, inva-
sive outbreaks in the troughs between major epidemics
and unlike MAFs is a measure which is independent of a
time scale of observation. The major practical limit-
ation of this measure is the somewhat arbitrary choice
of what constitutes an epidemic. Bartlett applied the
criterion that the epidemic preceding fade-out had to
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Figure 2. Alternative fade-out statistics for measles in England and Wales. Fade-out statistics for the 954 urban districts of
England and Wales (1940–1964) are plotted in grey, with a smooth spline trend line overlaid in white. Population size of a
district is taken to be the median population size over the period. (a) Fade-outs post epidemic—number of fade-outs, defined
as 3 or more weeks with no reported cases, divided by the number of epidemics over the period. (b) Number of epidemics—an
epidemic is counted when the number of weekly reported cases falls below a ( per capita) threshold value (T ) of cases after pre-
viously rising above the same threshold; here we choose T ¼ 1/2000 per capita. (c) Fade-outs post invasion—number of fade-outs,
defined as 3 or more weeks with no reported cases, divided by the number of invasions over the period. (d) Number of invasions—
an invasion is counted when the number of weekly reported cases crosses an absolute threshold (T ) after a week with zero reports;
here we choose T ¼ 1.
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exceed a ( per capita) threshold of weekly reported cases
of 1 per 4000 of population. This threshold was chosen
and applied by Bartlett (1957) through individual
inspection of the time series of case reports for the 19
towns examined in his study. With the full dataset of
reporting districts of England and Wales available
to us, it is desirable to employ a more algorithmic defi-
nition which can be applied systematically to empirical
and simulated data.

Following Bartlett, we define an epidemic as begin-
ning when the reported cases in a given week cross a
( per capita) threshold value T. We define an epidemic
as ending when the weekly number of case reports
crosses T for the second time. Three or more consecu-
tive weeks of zero-case reports immediately following
the end of an epidemic are counted as a ‘fade-out’.
We define the FPE as the ratio of the number of
‘fade-outs’ and the number of epidemics for a given
time series.

The usefulness of this statistic depends critically on
the choice of threshold T. If T is too large, then the
weekly notifications in small populations will never
rise high enough for an ‘epidemic’ to be counted
whereas if T is too small then we shall not achieve the
J. R. Soc. Interface (2010)
discrimination which we set out to achieve. This selec-
tion is made all the more delicate for time series
which exhibit noisy, multi-annual cycles of incidence,
where fluctuations around the threshold value of cases
are liable to lead to ‘over-counting’ of epidemics.
Bartlett (1957) addressed this issue by reducing T in
an ad hoc way for small populations, again based on
visual inspection of the data. Here, we choose a compro-
mise value of T ¼ 1/2000 per capita, which, although
counting too many epidemics in mid-range populations,
generates a smooth relationship between persistence
and population size (figure 2a,b).
2.3. Fade-outs post invasion

By calculating the FPE, we seek to limit the impact
which invasion dynamics have on our measure of per-
sistence and remove the implicit time scale of
observation which is inherent with MAFs. By setting
a per capita threshold T we achieve a measure of control
over the size of epidemics which are allowed to contrib-
ute to the fade-out statistic. Given the proportionality
between the host population size and the abundance
of measles, it is natural to define this threshold as a



628 WTDs and the persistence of measles A. J. K. Conlan et al.
proportion of the host population size rather than an
absolute value.

However, it is also desirable to understand how this
form of persistence measure relates to MAFs. By choos-
ing a fixed absolute threshold of T ¼ 1, we will generate
a measure of FPE which is consistent with MAFs (in
the sense that it is calculated on the same set of fade-
outs). We can then systematically exclude smaller, inva-
sive, outbreaks by increasing the (absolute) value of T.

We define an invasion as beginning when the
reported cases in a given week cross an absolute
threshold value T after a preceding week of zero reports.
Three or more consecutive weeks of zero case reports
immediately following the end of an invasion are
counted as a ‘fade-out’. We define the fade-outs post
invasion (FPI) as the ratio of the number of ‘fade-
outs’ and the number of invasions for a given time
series.

FPIs offer some advantages and limitations, as
compared to both FPEs and MAFs. FPIs demonstrate
a simpler, approximately log-linear, relationship with
population size across the whole range of population
sizes in England and Wales dataset (figure 2c,d). The
number of ‘invasions’ is not subject to the problems of
‘over-counting’ which arise with noisy time series for
FPEs. However, the definition of ‘invasions’ is proble-
matic for large populations, such as London, which
experience no weeks of zero reports over the period. In
this situation, the FPIs will be undefined, as the defi-
nition will count zero ‘invasions’. For logical
consistency, we define the FPI to be zero when no
invasions are counted.
2.4. Biases in reporting

No matter the choice of persistence measure, the
estimates of the CCS from incidence data are
potentially confounded by under-reporting (failure of
cases to seek medical attention be correctly diagnosed
or be reported after diagnosis) and over-reporting
(misdiagnosis of measles cases). The reporting rates of
measles in England and Wales have been estimated
between 50 per cent (Finkenstadt & Grenfell 2000)
and 67 per cent (Fine & Clarkson 1982). Under-
reporting of measles cases has the potential to increase
the length of periods of zero reports leading to
an overestimate of the CCS. However, provided
that the rate of reporting does not vary through
the year, the impact of under-reporting can be straight-
forwardly modelled as a sampling process (He et al.
in press).

Conversely, over-reporting has the potential to
increase the estimates of the persistence of measles and
is more difficult to quantify. Although the clinical symp-
toms of measles, particularly the presence of Koplik’s
spots (Black 1984), are generally held to have a high
degree of specificity, in practice contemporary confir-
mation rates are quite low at around 20 per cent
(Health Protection Agency (HPA), http://www.hpa.
org.uk). Current trends reported by the HPA support
an anecdotal association between the accuracy of diag-
noses and the abundance of measles (in recent years
during periods of low incidence of measles confirmation
J. R. Soc. Interface (2010)
rates fell to as low as 1%). Unfortunately, with no
historical estimates of the specificity of measles diag-
noses, it is impossible to model the effect that the
dynamics of notification have on the estimates of the
CCS, leaving very little choice other than to treat all
reported cases as measles.
3. PARAMETRIZATION OF
HOMOGENEOUS MIXING MODELS

Previous models for the persistence of measles fall into
two distinct categories: homogeneous mixing models
(of which the most parsimonious is the seasonally
forced SEIR model which we will refer to as the
simple model) and RAS models which we will return
to in the next section.

Homogeneous mixing models have traditionally been
parametrized by fixing the value of R0 to give an
appropriate mean age of infection and then adjusting
the amplitude of seasonal forcing (a, defined below)
to match the trajectory of the observed epidemic
dynamics. With only one source of seasonal forcing,
the simple model is amenable to statistical estimation.
Although more modern, and rigorous, state-space
methods have been developed (Ionides et al. 2006;
Cauchemez & Ferguson 2008; He et al. in press), for
consistency with the literature we limit our discussion
to a review of the trajectory fitting method of Keeling
& Grenfell (2002).

Recent research has highlighted the importance of
distributional assumptions for estimating the basic
reproductive potential of a pathogen from incidence
data (Nowak et al. 1997; Lloyd 2001a; Wearing et al.
2005; Heffernan & Wahl 2006; Wallinga & Lipsitch
2007). The basic reproductive ratio, R0, quantifies the
maximum reproductive potential of a pathogen and is
defined as the average number of secondary cases
when a single infective individual is placed in a fully
susceptible population. Under the assumption of a
homogeneously mixing population, R0 for measles is
estimated to be in the range 16–18 (Anderson & May
1991). However, plausible bounds which take account
of the age dependence of transmission are wider,
within the range 7.17–45.41 (Wallinga et al. 2001).

The effect of such distributional assumptions on the
estimation of the amplitude and seasonal patterns of
transmission has been less well studied. Less dispersed
WTDs require a smaller amplitude of seasonal forcing
(a) to generate the same epidemic dynamics (Lloyd
2001b). By considering a simple time-since-infection
model (Kermack & McKendrick 1927) together with a
‘term-time’ forcing function, we set out to quantify
how the seasonality of the basic reproductive ratio is
shaped by the WTD and the implications this has
for trajectory fitting methods (and more general
time-series techniques).

We shall show that the methodology used to parame-
trize published ‘best-fit’ models of measles in London
(Keeling & Grenfell 2002) introduced systematic biases
which may contribute to the difference in the levels of
persistence observed between the gamma-distributed
and the exponential models.

http://www.hpa.org.uk
http://www.hpa.org.uk
http://www.hpa.org.uk
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3.1. Seasonal forcing

Homogeneous mixing models for childhood diseases
typically assume that the force of infection, the rate of
susceptibles acquiring infection, takes the standard
form of frequency-dependent transmission (Begon
et al. 2002)

l ¼ bðtÞ
N

I ; ð3:1Þ

where b(t) is the time-dependent transmission
parameter. Modern studies have favoured the so-called
‘term-time’ forcing functions which take a binary form
with a high value (bH) within school terms and low
value in the holidays (bL) based on the term times for
England and Wales (Keeling et al. 2001). The ampli-
tude of seasonal forcing can be defined as a ¼ (bH 2

bL)/kb(t)l, with kb(t)l denoting a time average and
t calendar time in days (Bauch & Earn 2003). Theoreti-
cal studies have often made the simplifying assumption
that the time dependence of transmission can be
represented by a sinusoidal forcing function

bðtÞ ¼ kblð1þ a cosð2ptÞÞ:

The estimates of a obtained in Keeling & Grenfell
(2002) were achieved by minimizing the x2-error of
simulated data to the average biennial pattern of
measles incidence in London (1950–1964). This pro-
cedure was intended to keep all other parameters
constant—in particular the time-averaged transmission
parameter (kb(t)l)—to ensure that all models had the
same value of R0. In fact, we shall show that this was
not the case. In order to understand why, we need to
consider the interaction of the term-time forcing func-
tion with different WTDs on long and short time scales.
3.2. Interaction of seasonal forcing
and the WTD

For endemic infections, provided data are available,
there are typically two sources of information suitable
for the estimation of transmission parameters for a
particular disease.

(i) Time-independent, cross-sectional, measures
(serology, age-stratified case notifications) allow
us to estimate R0.

(ii) Time series of incidence (time-series methods,
trajectory-matching, state-space models) allow
us to estimate how transmission parameters
vary seasonally (e.g. the amplitude of seasonal
forcing, a).

Seasonal variation in transmission parameters
should be introduced in such a way that, irrespective
of the amplitude of seasonality, the long-term time
average of R0 is kept constant and consistent with the
estimates from time-independent measures of R0. For
binary forcing functions, b(t) is assumed to take a con-
stant value bt for each day of the year (h ¼ 364).
Motivated by previous work on the estimation of repro-
ductive rates for diseases with discrete generation times,
the trajectory fitting method of Keeling & Grenfell
J. R. Soc. Interface (2010)
(2000) kept the geometric mean constant

GðbÞ ¼
Yh

t¼1
ðbtÞ1=h;

rather than the arithmetic mean

AðbÞ ¼
Xh

t¼1

bt

h
:

Given the multiple overlapping generations in
measles epidemics, this assumption is not appropriate
and comparison with model simulations shows that
this introduces a relationship between a and R0 in the
fitted models in line with previous studies (technical
appendix; Williams & Dye 1997).

The persistence comparisons performed in Keeling &
Grenfell (2002) assumed that R0 was kept constant
between models, but the parametrization method
resulted in R0 varying with the seasonality a. Across
the different models fitted, R0 varies from 17.1 to
18.7—negligible compared to the accuracy to which
R0 can be measured in a real population, but large
enough to change the dynamics of the idealized
model. However, we note that to replicate the same
dynamics, a much smaller a is required as the WTD
is made less dispersed (Lloyd 2001b). By this method
of fitting, R0 varies directly with a, so the less dispersed
models actually have the lower R0 (and may naively be
expected to have lower levels of persistence).

To fully explain the difference in the levels of persist-
ence of the models in Keeling & Grenfell (2002), we
need to consider the interaction of seasonality in trans-
mission and the WTD on a shorter time scale. On a
scale of the order of the infectious period, we might
expect considerable variation in an individual’s R0

when the transmission parameter changes significantly.
Individuals infected around the break-up and com-
mencement of school terms will lead to a different
number of secondary cases for different WTDs. We
can construct the expected response of the reproductive
ratio for different WTDs by convolving the probability
of being infectious (as a function, pI(t), of time since
infection) with the term-time forcing function.

We define the individual basic reproductive ratio as a
convolution

RindivðtÞ ¼
ð1

�1

bðt þ t0Þp Iðt0Þdt0: ð3:2Þ

Because b(t) has period equal to the school year,
Rindiv(t) is also therefore defined to be a periodic func-
tion. We calculate the value of Rindiv for each day of
the year numerically using the values of bt and the con-
volution theorem for Fourier transforms (Riley et al.
2002). This definition makes the assumption that the
transmission parameter is constant across individuals
and the variation in the reproductive number is
purely due to the WTD and the form of the seasonal
forcing function b(t). This is therefore a special
case of the instantaneous reproductive number
(Fraser 2007) of Kermack–McKendrick type time-since-
infection models (Kermack & McKendrick 1927).
Essentially, Rindiv is the basic reproductive ratio of the
pathogen, R0, for individuals who become infected on a
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specific day—a running average of the underlying binary
step structure of b with a kernel given by the WTD.

We can derive an expression for pI(t) by assuming
that the latent and infectious periods are gamma-
distributed with shape parameters kI, kE and scale
parameters uI, uE. The probability density function
for the time an individual is infectious is then

pGðt; uI; kIÞ ¼ tkI�1 e�t=uI

ukI
I GðkIÞ

; ð3:3Þ

where G(kI) is the gamma function
GðkIÞ ;

Ð1

0 xkI�1 e�x dx. We can control the dispersion
of the WTD using the shape parameter kI (coefficient
of variation of gamma distribution ¼ 1=

ffiffiffiffiffi
kI
p

), adjusting
uI to maintain a constant mean value (TI ¼ kIuI). For
integral values of the shape parameter, the gamma
distribution (equation (3.3)) arises from a sum of inde-
pendent, identical, exponential terms. This property
allows gamma distributions to be straightforwardly
incorporated within standard compartmental models
by subdividing the infectious and latent classes into
stages (the number of which are identical to the shape
parameter of the gamma distribution).

The probability of being infectious at time t after
entering the infectious state is

1� PG t;
T I

k I
; k I

� �
; ð3:4Þ

where PG is the cumulative distribution function and uI

is the reciprocal of the infectious period (TI ¼ 5 days).
Accounting for the latent period distribution (of mean
duration TE ¼ 8 days) using the law of total probability
gives the required expression

pIðtÞ ¼
ðt

0
pG t0;

TE

kE
; kE

� �
1� PG t � t0;

TI

kI
; kI

� �� �
dt0;

ð3:5Þ

where kE is the shape parameter for the latent period
distribution.

The magnitude of the drop in Rindiv in response to
the fall in transmission during a vacation period
(b(t) ¼ bL) is dependent on the length of the vacation
and inversely related to the dispersion of the WTDs,
i.e. as kE, kI increase, the temporal variation in Rindiv

decreases (figure 3a). The sinusoidal forcing function
generates a pattern which is in sharp contrast to
term-time forcing, with much less marked variation in
Rindiv owing to the smoother underlying pattern in
transmission (figure 3b). We would therefore expect
that WTDs will have most impact on model fitting
when there exist sharp discontinuities, such as term-
time effects, in the underlying transmission process.

Comparing Rindiv for the range of previously pub-
lished ‘best-fit’ models for London, we find that the
trajectory-matching method is equivalent to fitting
the response of Rindiv for the first (which happens to
be the shortest) vacation of the year—the autumn
half-term holiday—with all model fits corresponding
closely at this point (figure 3d). Given that the
autumn half-term holiday occurs during the attack of
the major epidemic—and the impact of it is particularly
J. R. Soc. Interface (2010)
sensitive to the WTD (figure 3c)—it is natural that it is
this response that is picked out by trajectory-matching
methods. The requirement that models correspond in
their response to the autumn half-term holiday implies
that models with less dispersed infectious period distri-
butions will always have a lower amplitude of seasonal
variation in Rindiv and therefore a higher Rindiv in the
long summer holiday (days 313–365, counting from
the beginning of the school year) where the majority
of extinction events occur.
4. PERSISTENCE OF THE SIMPLE MODEL

In this section, we review the persistence properties of
homogeneous mixing SEIR models of measles with
exponential and gamma-distributed infectious (and
latent) periods under the criteria of constant par-
ameters and trajectory-matched dynamics. Persistence
characteristics of models are obtained by the numerical
simulation of a fully stochastic, seasonally forced, SEIR
model which we refer to as the simple model (see
technical appendix for details).

We have argued that parametric differences are
introduced when models with different WTDs are
required to match the same major epidemic dynamics
in a historical time series. We now revisit the persistence
characteristics of trajectory-matched models and com-
pare the qualitative patterns of persistence under the
alternative criterion of maintaining constant par-
ameters. For the purposes of this comparison, we use
a rate of imports of infection which is scaled with
the square root of population size (0.02

ffiffiffiffiffi
N
p

per year;
Keeling & Grenfell 2002).

We take advantage of the increase in the available
computational power to generate a larger number of
ensemble replicate simulations than in the previous
studies. One hundred replicates of 24 years (approx.
equal to the longest pre-vaccination time series of
measles reports available for England and Wales) were
generated for each population size and model parame-
trization. We quantify persistence using the three
measures introduced in §2: MAFs, FPE and FPI.

4.1. Constant parameters versus
trajectory-matched dynamics

In figure 4a,b, we compare the persistence of models
with different WTDs using the ensemble average
(over 100 replicates of 24 years) of MAFs. The WTDs
in the latent and infectious classes are modelled once
more as gamma distributions, using the method of
stages (Anderson & Watson 1980). The infectious and
latent classes are subdivided into kE and kI compart-
ments with a constant rate of flow between the
compartments set at kE/TE and kI/TI to maintain
the mean time spent in the latent (TE ¼ 8 days) and
infectious (TI ¼ 5 days) classes. kE and kI are therefore
limited to take integral values. The exponential model
corresponds to the limiting case of kE ¼ 1 and kI ¼ 1,
with increasing values of kE and kI reducing the dis-
persion of the WTDs. Modifying the WTDs leads to a
correction to the algebraic form of R0 which is small,
of the order of mortality rate (m) (Lloyd 2001b). For
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Figure 3. Interaction between seasonal forcing and the WTD. (a) The individual reproductive ratio for a term-time forcing func-
tion (R0 ¼ 17.0, a ¼ 0.17) resulting from gamma-distributed WTDs in the latent and infectious stages with shape parameters
kE ¼ kI ¼ k. Dates of school terms are quoted in the electronic supplementary material. Black line, k ¼ 1; blue line, k ¼ 2; red
line, k ¼ 5; green line, k ¼ 20. (b) The individual reproductive ratio for a cosine forcing function (R0 ¼ 17.0, a ¼ 0.17) resulting
from gamma-distributed WTDs in the latent and infectious stages with shape parameters kE ¼ kI ¼ k. (c) Detail on the response
of the individual reproductive ratio to the autumn half-term holiday. Parameters as in (a). (d) The individual reproductive ratio
calculated for the trajectory-matched model fits from Keeling & Grenfell (2002). Transmission rates are reproduced in the
electronic supplementary material (table a). Black lines are the two models with exponential WTDs (kE ¼ kI ¼ 1), red lines
the two gamma (8,5) models (with kE ¼ 8, kI ¼ 5).
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all of the model simulations presented here, stages of 1
day were used for the gamma model (kE ¼ 8, kI ¼ 5),
henceforth the gamma (8,5) model, to maintain
consistency with Keeling & Grenfell (2002).

Under the constant parameter comparison, both the
exponential and the gamma (8,5) models have fixed
R0 ¼ 17.0, a ¼ 0.17. For the trajectory-matched com-
parison, we consider a pair of trajectory-matched
models with (R0 ¼ 17.522, a ¼ 0.2535) for the exponen-
tial model and (R0 ¼ 17.2991, a ¼ 0.1984) for the
gamma (8,5) model.

We find that, when scaling the level of infective
imports with population size, all models predict a simi-
lar level of the CCS lying between 500 000 and
1 million, albeit predicting greater levels of persistence
overall in smaller populations than the data would
suggest. Under both criteria (constant parameters
versus trajectory-matched dynamics), the gamma
(8,5) model appears to exhibit greater persistence in
populations smaller than the CCS, in line with the pre-
dictions of Keeling & Grenfell (1998). However, under
the constant parameters comparison, the fade-out
curves cross over (close to the CCS) with the
J. R. Soc. Interface (2010)
exponential model exhibiting marginally greater per-
sistence in the large population limit (populations
larger than the CCS).
4.2. Sensitivity to measure of persistence

We have already discussed the potentially misleading
properties of the mean number of annual fade-outs as
a measure of persistence (§2; quantifying persistence,
figure 1) and argued that the proportion of FPE
could provide a more consistent description of epi-
demic persistence. Calculating the ensemble average of
FPE from the same model simulations, we find that
the relative patterns of persistence between the expo-
nential and the gamma (8,5) models are dramatically
different from those suggested by MAFs. In terms
of the FPE, the exponential model exhibits greater
persistence than the gamma (8,5) model over the
whole range of population sizes considered for both
the trajectory-matched and the constant parameter
models.

The seemingly opposite conclusions suggested by
these two persistence measures can be resolved
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Figure 4. Persistence in the simple model: mean annual fade-outs and fade-outs post epidemic. (a,b) Ensemble average (over 100
replicates of 24 years) of mean annual fade-outs against (log10) population size for exponential (black) and the gamma (8,5) (red)
models based on the comparison criteria of (a) constant parameters and (b) trajectory matching. Inset plots based on same simu-
lated data, showing detail for large populations. (c,d) Ensemble average (over 100 replicates of 24 years) of fade-outs post
epidemic (T ¼ 1/2000 per capita) against (log10) population size for exponential (black) and the gamma (8,5) (red) models
based on the comparison criteria of (c) constant parameters and (d) trajectory matching. Parameter values as described in
the main text. Shaded envelope represents a 95 per cent confidence interval calculated as 1.96 standard errors, based on
100 replicates of 24 years. Imports of infection are scaled with the square root of population size (0.02
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by repeating the comparison once again using our final
persistence measure—FPI. With a threshold value of
T ¼ 1 (chosen such that the FPIs are calculated from
the same subset of epidemics as the MAFs), the FPI
for the exponential and gamma (8,5) models displays
the same relative patterns of persistence (figure 5a,b)
suggested by the MAFs (figure 4a,b). Under this persist-
ence measure, there is once again a clear crossing over of
the fade-out curves—with the gamma model exhibiting
greater persistence in small populations. However,
when the value of T is increased to T ¼ 5 (figure 5c,d;
excluding all of the small invasive outbreaks where the
number of weekly reports of measles never exceeds 5),
the exponential model exhibits greater persistence over
the entire range of population sizes in line with the
comparison under FPE.

It should finally be noted that the differences in per-
sistence between all of the models, no matter the choice
of persistence measures, only become apparent when
comparing the ensemble average over multiple replicate
simulations. In particular, in the range of population
sizes relating to the estimated level of the CCS
(250 000–500 000), all of the models exhibit similar
levels of persistence. This agreement with the data is
guaranteed by the choice of a rate of infectious imports
J. R. Soc. Interface (2010)
which leads to levels of persistence comparable with the
data. The dynamics of forced SEIR models are known
to be exceedingly sensitive to differing rates of infective
imports (Engbert & Drepper 1994; Bolker & Grenfell
1995). The quantitative differences in persistence
between models can be modified somewhat by the
rate of imports (results not shown). The differences
between models are still small compared to the impact
of varying the import rate itself.
5. RAS MODELS

Serological surveys (Anderson & May 1982, 1983, 1985;
Edmunds et al. 2000) and the analysis of age-structured
cases reports (Wilson 1904; Collins 1924, 1929;
Sydenstricker 1928; Godfrey 1930; Hedrich 1930)
reveal that the probability of acquiring measles varies
substantially with age. In industrial countries before
vaccination, there is a generally consistent pattern of
a peak in transmission for 5 to 10-year-old children.
Incidence data show a clear link between the epidemic
timing and the pattern of school terms (Fine &
Clarkson 1982). This implies that the heterogeneity in
mixing with age is the consequence of higher mixing
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Figure 5. Persistence in the simple model: fade-outs post invasion. (a,b) Ensemble average (over 100 replicates of 24 years) of
fade-outs post invasion against (log10) population size for exponential (black) and the gamma (8,5) (red) models based on the
comparison criteria of (a) constant parameters and (b) trajectory matching with threshold T ¼ 1. (c,d) Ensemble average
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threshold T ¼ 5. Parameter values as described in the main text. Shaded envelope represents a 95 per cent confidence interval
calculated as 1.96 standard errors, based on 100 replicates of 24 years. Imports of infection are scaled with the square root of
population size (0.02
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rates of school-age children within the classroom
(Schenzle 1984).

The availability of parallel age-structured prevalence
data and weekly incidence data has allowed detailed,
dynamic, age-structured models to be developed for
England and Wales (Schenzle 1984). These so-called
RAS models have notably been used in the modelling
of persistence (Bolker & Grenfell 1993) and forecasting
the impact of vaccination (Babad et al. 1994). RAS
models explicitly account for the age dependence of
transmission and are therefore a more biologically rea-
listic description of measles epidemiology than models
assuming homogeneous mixing.

The PRAS model (Keeling & Grenfell 1997) demon-
strated an order of magnitude smaller CCS than the
previously published RAS models. This result was attrib-
uted to the use of less dispersed WTDs, a mechanism
which the simulations presented in the previous section
bring into doubt. The PRAS model introduced several
innovations which modified the parametrization of the
model somewhat from the previous RAS models,
the most significant of which was using an approximate
fractional ageing method (discussed below).

We compare the persistence characteristics of the
PRAS model with two earlier RAS models which we
J. R. Soc. Interface (2010)
refer to as the Bolker model (Bolker & Grenfell 1993)
and the Babad model (Babad et al. 1994). We take the
same approach as with the simple model, quantifying
the differences in parametrization before comparing
persistence characteristics by numerical simulation.
5.1. RAS model framework

The proper accounting of age structure within an epi-
demic model necessitates a considerable increase in
model complexity over the simple model. Theoretically,
transmission parameters and the proportions of the
population SEIR will vary continuously with age. A for-
mulation based on partial differential equations would
be the most natural formulation (Anderson & May
1991). Such systems are notoriously difficult to simulate
efficiently—particularly with the incorporation of
stochasticity. At best, the data can provide us with
differences in transmission between birth cohorts or
broad age classes. We can therefore considerably sim-
plify our model by considering only coarse yearly
cohorts, and assume that transmission parameters
only vary between broad age classes determined by
the grain of the data (Schenzle 1984; Anderson & May
1991). In addition to the computational advantages,
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this approach is arguably more epidemiologically correct
as it is a child’s (school) year group which determines
their disease risk rather than their calendar age.

Each compartment of the simple model (S,E,I,R) is
further subdivided into discrete age classes with
bounds a1, a2, a3, . . . , an and of widths Da1, Da2,
Da3, . . . , Dan. Serological studies reveal that newborns
are protected from measles through maternally trans-
ferred antibodies, for a period that typically ranges
between three and six months (Cáceres et al. 2000).
In industrial countries, such as England and Wales,
this period is of little epidemiological importance and
exceedingly short compared to the mean age of infec-
tion. For completeness this is accounted for in the
RAS framework by the inclusion of a fifth epidemiologi-
cal compartment, M, for maternally protected infants
who are transiently immune to infection.

The frequency-dependent formulation of the force of
infection used in the simple model must be generalized
to take into account different transmission parameters
between age classes

liðtÞ ¼
Xn

j¼1

bij
IjðtÞ
N

: ð5:1Þ

The transmission parameter assumed for homo-
geneous mixing is replaced with a matrix, b. This
matrix defines the coupling between susceptibles in
age class i with infectives in age class j. The instan-
taneous force of infection acting on an age class is a
sum of the total infectives in the population by age,
weighted by the elements of b. Assuming that the popu-
lation is in demographic equilibrium and fully
susceptible, a basic reproductive ratio can be defined
for the expected number of new infections within a
given age group when a single infectious individual is
introduced into a second age group. Together, these
age-group specific basic reproductive ratios form the
next generation matrix K (Diekmann et al. 1990),
which has elements

kij ¼ TIbijwi; ð5:2Þ

where TI is the average length of the infectious period
and wi is the proportion of the population that is con-
tained within the ith age class. Under the assumption
of a type I survival function (Anderson & May 1991)
wi ¼ Dai/L, where L is the life expectancy in the
population.

We can interpret bijwi as the potential number of
effective contacts per unit time between an infectious
individual in age class j with susceptible individuals in
age class i (Wallinga et al. 2001). Therefore, each
element of K gives the expected number of secondary
cases within age class i on introduction of a single infec-
tive into age class j. The basic reproductive ratio, R0, is
given by the dominant eigenvalue of K. In the same
way that the effective reproductive ratio R is reduced
by the buildup of immunity in a population, an age pro-
file of susceptibility si (defined as the proportion of age
class i which is susceptible) leads to a reduction in the
observed reproductive ratios

Rij ¼ kijsi: ð5:3Þ
J. R. Soc. Interface (2010)
The overall effective reproductive ratio (R) in an age-
stuctured population will therefore be given by the
dominant eigenvalue of Rij.

5.1.1 The WAIFW matrix. The structure of b, often
referred to as the ‘who acquires infection from whom’
(WAIFW) matrix (Anderson & May 1991), determines
the dynamics of the model and the long-term age distri-
bution of susceptibility. Yet, as with the mean
transmission parameter of the simple model, we
cannot directly measure the values of this matrix
directly from data. Although some novel methods for
estimating mixing rates empirically have been suggested
(Edmunds 1997; Mossong et al. 2007), in general the
only constraint on the elements of b is that they repro-
duce the long-term average force of infection li, or
equivalently the serological age profile of susceptibility
si. There is therefore considerable scope for a whole
spectrum of WAIFW matrices (with widely varying
transmission parameters and basic reproductive
ratios) to fit the same force of infection data. Models
for England and Wales typically concentrate trans-
mission in the core group of 5 to 10-year-olds in line
with the peak in transmission in school-age children
(Anderson & May 1991) and term-time forcing
hypothesis.

RAS models with different values of R0 can match
the same levels of incidence in an endemic population
provided that they generate the same age profile of inci-
dence and share a similar overall effective reproductive
ratio R. All of the models considered here have different
values of R0 (PRAS 10.6, Babad 8.6, Bolker 5.5) but
share a similar effective reproductive ratio R at a fixed
birth rate of 13.3 per 1000. (Details of the parametriza-
tion of these models can be found in the technical
appendix, §2.)

5.2. Impact of fractional ageing on
parametrization of RAS models

In the original RAS model, annual age classes were used
(Schenzle 1984). Birth is a continuous process into the
first age class, which is emptied into the next age
class annually. Successive cohorts are promoted to
higher age classes annually, so we refer to this as a
cohort ageing method. This discrete ageing method
leads to an additional source of seasonal forcing in
RAS models (beyond the term-time forcing which is
also included in homogeneous mixing models) resulting
from the injection of susceptible children starting school
for the first time.

Keeling & Grenfell (1997) introduced a fractional
ageing method, where the numbers of individuals in
each epidemiological state are classified only within
the five coarse age groups (ai with age ranges 0–5, 5–
10, 10–15, 15–25, 25þ) relating to the structure of
the epidemiological data. Rather than ageing a whole
birth cohort, each year a constant fraction 1/Dai is
aged.

This assumption introduces considerable com-
putational advantages, reducing the number of
compartments in the model to the minimum required
detail to model the available data. However, the
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Figure 6. Static age distributions under cohort and fractional ageing. The predicted susceptible proportion, before and after
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implication of this assumption is that the proportion of
susceptibles moving between mixing classes is altered.
Keeling & Grenfell (1997) assumed that the dynamical
consequence of this approximation would be accounted
for by their trajectory-matching methodology. We can
calculate the static age distribution which we would
expect in models with cohort and fractional ageing by
calculating the flux of susceptible individuals moving
between the coarse age groups (see technical appendix).
We see (figure 6) that the fractional ageing method
leads to a higher proportion of susceptibles in the
peak transmission (5–10 year) age class as compared
to cohort ageing.

This modification to the age profile of susceptibility
is liable to modify the effective reproductive ratio R
for the PRAS model as compared to a model using an
accurate ageing method. Given the importance of the
core group in driving the dynamics of RAS models,
the increased flux of susceptibles that a coarse age
grain affords should give a significant advantage for
persistence in the minor epidemic year. Seasonality in
transmission and incidence will substantially alter the
predicted age profile from this static analysis. In order
to test this hypothesis, we must resort again to using
numerical simulation, comparing cohort ageing, and
coarse age-grained models, with different WTDs.
5.3. Persistence in RAS models

For consistency with previously published studies
(Bolker & Grenfell 1995; Keeling & Grenfell 1997), we
compare the persistence properties of RAS model
under the assumption of a rate of infective imports
which is not scaled by population size and fixed at 10
imports per year. It should be noted that, although not
previously reported, Keeling & Grenfell (1997) shaped
this import rate by the average deterministic biennial
attractor of the PRAS model. This approximation was
intended to mimic the seasonal fluctuations in import
rates likely to occur in real populations. Introducing
this extra layer of complexity does not qualitatively
change the results of this section, so we take the simpler
J. R. Soc. Interface (2010)
assumption here of a fixed (non-seasonal) rate of imports
(see technical appendix for more details).

In figure 7, we revisit the comparison from Keeling &
Grenfell (1997) using the newly introduced persistence
measures of FPE and FPI. We compare the persistence
of a suite of RAS models with different parametriza-
tions (differing by their WAIFW matrices and
amplitude of term-time forcing) using fractional and
cohort ageing methods (figure 7).

We first note that the fractional ageing models
(figure 7a,c) all demonstrate markedly greater persist-
ence than the more accurate cohort based models
(figure 7b,d). We present three different model parame-
trizations for comparison under the fractional ageing
method: PRAS (1,1), PRAS (8,5), Bolker (1,1).
PRAS (8,5), red lines, is the original PRAS model
published by Keeling & Grenfell (1997; i.e. a gamma
(8,5) model with PRAS transmission parameters and
fractional ageing). We re-fitted this model to produce
the same qualitative dynamics in a model with expo-
nential WTDs (PRAS (1,1), black lines), using a
trajectory-matching technique (Conlan 2006). Under
this comparison, we see similar relative patterns of
persistence between the PRAS (1,1) and the PRAS
(8,5) models as those presented earlier (§4) for the
homogeneous mixing model (figures 4 and 5).

The order of magnitude difference between exponen-
tial and gamma (8,5) models reported by Keeling &
Grenfell (1997) is not apparent between these two
appropriately parametrized models (figure 7a,c). The
comparison made in Keeling & Grenfell (1997) was
made with a fractional ageing model using the Bolker
transmission parameters (Bolker (1,1), blue lines) unad-
justed for the novel fractional ageing method
(figure 7a,c). The dramatic difference in persistence is
therefore attributable not to the WTD, but to the
differences in the transmission parameters between
the Bolker and the PRAS WAIFW matrices.

In the final comparison, we compare the persistence
characteristics of RAS models with three different
transmission matrices (PRAS, Bolker and Babad) and
exponential WTDs under the more accurate cohort
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Figure 7. Persistence in age-structured models: fractional versus cohort ageing. PRAS, Bolker and Babad models use transmission
parameters estimated by Keeling & Grenfell (1997), Bolker & Grenfell (1995) and Babad et al. (1994), respectively. The
shape parameters used for the (gamma distributed) infectious and latent periods for each model are indicated by parentheses
(kE, kI). (a,b) Ensemble average (over 100 replicates of 24 years) of fade-outs post epidemic against population size for (a) frac-
tional and (b) cohort ageing (T ¼ 1/2000 per capita). (c,d) Ensemble average (over 100 replicates of 24 years) of fade-outs post
invasion against population size for (c) fractional and (d) cohort ageing (T ¼ 1). Shaded envelope represents a 95 per cent
confidence interval calculated as 1.96 standard errors, based on 100 replicates of 24 years. Imports of infection are fixed
(independent of population size) at 10 infectious imports per year. Black line, PRAS (1,1); red line, PRAS (8,5); blue line,
Bolker (1,1); green line, Babad (1,1).
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ageing model (figure 7b,d). Once again, the PRAS
transmission matrix is corrected by a small reduction
in the core-group transmission parameter in order to
achieve the fairest comparison (i.e. maintaining the
same trajectory-matched dynamics). With an accurate
ageing model, the persistence of the PRAS model falls
in line with the previously published Bolker and
Babad models. We conclude that the increase in persist-
ence reported by Keeling & Grenfell (1997) was a
consequence of the approximate ageing model.
6. DISCUSSION

We have addressed the controversy over the effect of
more realistic, less dispersed, WTDs on the persistence
of measles. Using numerical simulations, we illustrate
that—depending on the measure of persistence which
is used—the introduction of realistic WTDs can both
increase (Keeling & Grenfell 2002) and decrease
(Lloyd 2001c) the persistence of measles, as compared
to the exponential model (figures 4 and 5).

The ‘Keeling and Grenfell’ effect—of enhanced
persistence for models with gamma-distributed
WTDs—appears to be limited to the small outbreaks
between major epidemics which are generated in
J. R. Soc. Interface (2010)
models with a small rate of infective imports. We have
shown that when these small ‘invasion’ epidemics are
removed from the calculation of the persistence measure
(essentially by changing our definition of what constitu-
tes an epidemic), the exponential model exhibits greater
persistence across the range of population sizes and
‘realistic’ parameter regimes considered in this paper
(figure 5). This observation helps to unify the
apparently contradictory results of Lloyd (2001c) and
Keeling & Grenfell (2002).

The fundamental difference between these two
studies ultimately lies in the authors’ differing
interpretation of what persistence means. The CCS as
a philosophical concept relates to isolated populations.
However, in isolation any stochastic population model
will eventually become extinct. Any measure of persist-
ence is therefore implicitly tied to a time scale of
observation. In his theoretical studies, Lloyd assessed
the persistence of disease by calculating the proportion
of simulations which faded out in a truly isolated popu-
lation over a period of 10 years (Lloyd 2001c).
Philosophically, this comparison is more resonant with
the notion of the CCS as an isolated community con-
cept and most closely corresponds to the probability
of fade-out occurring after a large epidemic.
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Keeling and Grenfell’s approach, comparing the fre-
quency of fade-outs under a rate of imports of
infection, additionally captures the persistence between
large epidemics. The time scale of observation of
persistence is therefore dependent on the rate of infec-
tious imports and the definition of the fade-out
statistic. This comparison inevitably measures both
the persistence after an epidemic and the persistence
during small invasion epidemics. The MAFs can lead
to a misleading comparison between different models
leading to greater relative enhancement of persistence
(figure 4) than is evident under other persistence
measures (figures 4 and 5). However, we find that, no
matter the measure of persistence, models fitted to
the historical patterns of incidence in England and
Wales (specifically London) predict a CCS within a rea-
listic range regardless of the choice of WTD (figures 4
and 5).

Lloyd chose to investigate the impact of different
WTDs by comparing models with identical parameters
(Lloyd 2001c), specifically fixing R0 and the amplitudes
of seasonal forcing. Given the independent estimates of
these quantities, this would indeed be the stronger com-
parison as we could select between models on the basis of
which provides a closer representation of the historical
data. Despite recent advances in the estimation of
sociological contact patterns (Brockmann et al. 2006;
Mossong et al. 2007), in practice transmission
parameters must, in some way, be inferred from epidemic
time-series data and serological profiles of susceptibility.

In the large population limit, models of infectious
diseases must, at a minimum, be able to match the his-
torical patterns of incidence. Estimates of transmission
parameters are known to be sensitive to the assump-
tions of the WTD (Lloyd 2001a; Wearing et al. 2005;
Heffernan & Wahl 2006; Wallinga & Lipsitch 2007).
This necessitates that the parametrization of models
whose parameters are obtained by trajectory matching
must change with different WTDs. We use a simple
construction, the individual reproductive ratio Rindiv,
to demonstrate the subtleties of the interaction of the
WTD with term-time forcing functions. The distri-
bution of waiting times in the exposed and infectious
states attenuates our ability to estimate the amplitude
of seasonality in transmission parameters. We would
expect this attentuation to affect the structure of any
statistical estimates of the instantaneous reproductive
ratio (R) from time series (Finkenstadt & Grenfell
2000; Fraser 2007; Cauchemez & Ferguson 2008). At
the very least, the dispersion of WTDs will affect the
fidelity with which we can estimate the seasonal
patterns in transmission.

Keeling & Grenfell (2002) compared models with
different WTDs which were fitted to the historical
time series of measles incidence for London before vac-
cination. We argue that the fitting method introduced
systematic parametric differences between models with
different WTDs, notably in the basic reproductive
ratio R0. However, these differences do not affect the
qualitative comparison between the persistence of
the exponential and gamma-distributed models which
is identical under Lloyd’s comparison criteria of equal
parameters (Lloyd 2001c).
J. R. Soc. Interface (2010)
The dramatic reduction of the level of the CCS
reported for the PRAS model (Keeling & Grenfell
1997) cannot be attributed to the use of less dispersed
WTDs. The fractional ageing assumed by the PRAS
model may provide an excellent match to the dynamics
of England and Wales; however, it is not a true rep-
resentation of the age structure of a real population.
Restoration of an accurate, cohort-based, ageing
model leads to levels of persistence consistent with
previously published studies (Bolker & Grenfell 1995).
The qualitative comparison between the exponential
and the gamma-distributed models was exaggerated
by the use of different transmission matrices for the
RAS and PRAS models—with a theoretical R0 for the
PRAS model twice as large as the RAS model.

Simple epidemic models of measles can account for
both the dynamics and the persistence of measles in
England and Wales provided there is a rate of infective
imports which is scaled by the population size (Keeling &
Rohani 2007). However, we should be cautious about
interpreting what this means for the CCS of measles in
a truly isolated population. Given a large enough rate of
infectious imports, we can all but guarantee the persist-
ence of measles in a population of any size. On the other
hand, it would be just as unreasonable to expect theoreti-
cal models of transmission for England and Wales to
exhibit the correct levels of persistence without some
accounting for the re-introduction of disease after
fade-out (Grenfell et al. 2001).

Age structure and the detailed distribution of the
infectious and latent period distributions can modify
the overall patterns of persistence. With the inclusion
of infective imports which scale with the population
size, explicitly age-structured models will also predict
similar levels for the CCS (Conlan 2006). For some
measures of persistence, the Babad and Bolker models
demonstrate different levels of persistence (figure 7d)
in line with their respective values of R0 (8.6 versus
5.5). Current RAS models assume a particular form of
WAIFW matrix, which effectively sets the value of R0

and limits the way in which seasonality in transmission
can be modelled while remaining consistent with the
historical data (technical appendix 3.4.5). Conse-
quently, seasonality in transmission has been treated
in a very ad hoc and inconsistent fashion between differ-
ent RAS models. Novel research on the structure of
mixing patterns in populations (Mossong et al. 2007)
and specifically within schools (Eames & Conlan
2008) may allow us to select between WAIFW matrices
on a more quantitative basis. In turn, this should allow
for the development of more refined age-structure
models from which seasonality can be estimated in a
more rigorous fashion.

We must conclude that the assumptions concerning
spatial imports of infection are the primary determi-
nant of persistence in theoretical, single population,
models. In reality, and in spatial network models,
there will be considerable feedback between the rates
of extinction in subpopulations and the effective rates
of epidemiological coupling. Although our results
cannot be directly related to explicitly spatial epidemic
models, they suggest that the differences between
models with different latent and infectious period
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distributions (in terms of persistence and epidemic
thresholds) will be most pronounced in weakly coupled
networks of small host populations, in contrast to the
core-satellite dynamics exhibited by childhood diseases
in England and Wales (Grenfell et al. 2001). A defini-
tive understanding of the processes necessary for
explaining the level of the CCS for measles must incor-
porate spatial processes explicitly. The persistence and
spatial dynamics of measles cannot be separated from
each other.
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Grenfell, B. T., Gueǵan, J. F. & Rohani, P. 2005 Epidemio-
logical impact of vaccination on the dynamics of two
childhood diseases in rural Senegal. Microbes Infect. 7,
593–599.
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