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Epidemics are frequently simulated on redundantly wired contact networks, which have
many more links between sites than are minimally required to connect all. Consequently,
the modelled pathogen can travel numerous alternative routes, complicating effective con-
tainment strategies. These networks have moreover been found to exhibit ‘scale-free’
properties and percolation, suggesting resilience to damage. However, realistic H5N1 avian
influenza transmission probabilities and containment strategies, here modelled on the British
poultry industry network, show that infection dynamics can additionally express character-
istic scales. These system-preferred scales constitute small areas within an observed power
law distribution that exhibit a lesser slope than the power law itself, indicating a slightly
increased relative likelihood. These characteristic scales are here produced by a network-
pervading intranet of so-called hotspot sites that propagate large epidemics below the
percolation threshold. This intranet is, however, extremely vulnerable; targeted inoculation
of a mere 3–6% (depending on incorporated biosecurity measures) of the British poultry
industry network prevents large and moderate H5N1 outbreaks completely, offering an
order of magnitude improvement over previously advocated strategies affecting the most
highly connected ‘hub’ sites. In other words, hotspots and hubs are separate functional enti-
ties that do not necessarily coincide, and hotspots can make more effective inoculation
targets. Given the ubiquity and relevance of networks (epidemics, Internet, power grids,
protein interaction), recognition of this spreading regime elsewhere would suggest a similar
disproportionate sensitivity to such surgical interventions.
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1. INTRODUCTION

The past decade has witnessed a sharp rise in outbreaks
of the highly pathogenic H5N1 strain of avian influenza,
instigating substantial culling operations, economic
damage, human fatalities and fears of a global pandemic.
Moreover, disturbing recent field studies have shown that
both pre-emptive and reactive large-scale culling of sus-
ceptibles produces mixed results at best (Capua &
Marangon 2003; Keeling et al. 2003; Stegeman et al.
2004; Capua & Alexander 2006; Menach et al. 2006;
Webster et al. 2006); mass vaccination is in some cases
orrespondence ( jonkers@liverpool.ac.uk).
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impractical (broiler chickens; Truscott et al. 2007) or
may exacerbate silent spreading (already a problem in
ducks) (Keeling et al. 2003; Kishida et al. 2005; Sturm-
Ramirez et al. 2005; Savill et al. 2006); and biosecurity
measures (e.g. exclusion, containment, serological moni-
toring) cannot ensure full protection either (Elbers et al.
2004; Capua & Alexander 2006; Savill et al. 2006). A
more fundamental shortcoming of the empirical record
is its incompleteness, both in terms of the number of
recorded outbreaks (for likelihood estimates) and the
specific transmission circumstances for each susceptible.
This is where numerical simulation of outbreaks can pro-
vide new insights and robust statistics.

In earlier work, Moore & Newman (2000) derived
exact solutions for the percolation threshold in simple
This journal is q 2009 The Royal Society
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Table 1. The six types of H5N1 outbreak simulations.

site-to-site transmissibility

standard high extreme

local spreading rate/day 0.5000 1.000 1.000
slaughter 0.2500 0.500 0.500
feed 0.0625 0.250 0.500
intra-company 0.0156 0.125 0.500
Basic controls BC BCHI BCXT
EU controls EU EUHI EUXT
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networks, and stressed the bimodal outbreak response
that typifies percolation (ca 5% of susceptibles infected
below the threshold, and a giant component of in-
fected sites appearing above it, analogous to a spreading
forest fire) (Rhodes & Anderson 1996; Grenfell et al.
2002). Such epidemiological models are part of the
larger class of heterogeneous, redundantly wired net-
works that feature many possible routes between most
network nodes, e.g. Internet, social and ecological sys-
tems, protein interaction networks, and which exhibit
power law statistics (Rhodes & Anderson 1996; Albert
et al. 2000; Albert & Barabasi 2002; May 2006). This
latter property has led many to conclude that these
‘scale-free’ systems lack characteristic scales altogether,
which has important ramifications for prevention and
containment. Dybiec et al. (2004) claim that it is
impossible to stop epidemics on scale-free networks
unless a large proportion of the population is treated.
Others offer hope in identifying the most highly
connected sites (hubs) as the most vulnerable part of
such systems (Albert et al. 2000; Callaway et al. 2000;
May & Lloyd 2001; Song et al. 2005; Jeger et al. 2007).

But as simulations mimic complex reality ever more
closely, new properties are coming to light. Scale-free
networks with non-random mixing (e.g. clustering,
degree correlations) have been found to exhibit a phase
transition to percolation (Eguı́luz & Klemm 2002).
Moreover, heterogeneous transmissibility (in the
number of links, their distances and their infection prob-
abilities) can broaden this transition from sharp
threshold to a separate regime (in our opinion, a highly
relevant one) with emergent patchy islands of linked
sites, outbreaks of all sizes and intermittent dynamics
that invalidate traditional analytical solutions (Bolker &
Grenfell 1995; Sander et al. 2002). In addition, past
emphasis has frequently been placed on network-
architectural properties (e.g. degree distribution, size
of the giant component). However, our current study of
the dynamics predicated upon a highly realistic network
reveals additional features that also merit attention (Kao
et al. 2006). This report shows that almost imperceptibly
small, but targeted changes in structure may radically
alter observed network behaviour (Kao et al. 2007). It
also challenges the notion that these systems are scale-
free and that targeting hubs is our best defence.
2. NETWORK AND SIMULATION
PROPERTIES

We investigated a suite of six H5N1 avian influenza out-
break models in the British poultry industry (table 1),
comprising meat, eggs and game for all eight relevant
species on 11 754 premises, 174 slaughter houses and
86 feed mills, based on recent surveys. All models incor-
porate four different types of transmission: local spread,
feed deliveries, abattoir transports and within-company
movements (Sharkey et al. 2008). The poultry farms
constitute the network nodes; the simulated local
spreading plus transport movements of feed, slaughter
and company lorries that serve multiple farms comprise
about one quarter million (undirected) links between
nodes, with specific transmission strengths (table 1).
J. R. Soc. Interface (2010)
The resulting network is to first order scale-free and
highly heterogeneous in connectivity (figure 1). The
average number of links is ca 21, but two-thirds of the
network has fewer than 10, whereas the top 6 per cent
has over 100.

In addition to standard transmissibilities, simulations
with high (HI) and extreme (XT) infection probabilities
produced worst-case scenarios (table 1). Although the
true likelihoods are still mooted, they likely do not
exceed the parameter ranges explored. We furthermore
compared a basic control (BC) policy of increased biose-
curity, bans on livestock movements and culling upon
detection (the latter with species-dependent delays) to
the more stringent European Union (EU) controls,
which add 3 km protection and 10 km surveillance
zones plus dangerous contact-tracing (all sites directly
connected to an infected one are treated as if within a
protection zone); see electronic supplementary mate-
rial (Eames & Keeling 2003; Dybiec et al. 2004; Kiss
et al. 2005, 2006; Capua & Alexander 2006; Truscott
et al. 2007; Sharkey et al. 2008).

Some 50 simulations produced over 40 million individ-
ual outbreaks in total. Each outbreak consisted of
infecting a randomly selected premise (‘seeding’, prob-
ability 1), and recording all subsequent transmissions
and status changes of each site, until (i) all sites were
virus-free again or (ii) an endemic infection was stopped
by timeout (when the maximum allotted time per seeding
was reached). The latter situation occurred mostly in
high- and extreme-transmissibility simulations, forcing a
lower number of seedings (10 000 per simulation, instead
of one million for the standard cases). Thus, in BC and
EU simulations, each site was seeded about 85 times per
simulation; in HI and XT simulations, about once on aver-
age. As sites could be reinfected multiple times (becoming
susceptible again after each restocking), the outbreak size
represents the number of distinct sites that were ever
infected during one outbreak.
3. DISCRETE SCALE INVARIANCE
QUANTIFIES CHARACTERISTIC
SCALES

The six main models were analysed in terms of discrete
scale invariance (DSI), a feature of many complex sys-
tems (Saleur et al. 1996; Johansen & Sornette 1998;
Sornette 1998). This statistically stationary signature
of preferred scales expresses itself as a log-periodic
modulation superposed on a power law probability
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Figure 1. Network connectivity. The log–log frequency plot of
the number of links per site shows that connectivity is highly
heterogeneous and approximates a scale-free distribution.
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Figure 2. DSI (grey line) modulates a power law probability
distribution (black straight line, log–log scale); intersections
of the modulation with lesser slope than the power law
(circled) identify characteristic scales. Changes in DSI
parameter values comprise power law intercept and slope,
and phase, amplitude and frequency of the superposed
modulation (arrows).
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distribution function (figure 2). In sufficiently large net-
works, spatial heterogeneity (e.g. in connective
topology or transmission probabilities) may create a
weak threshold response function (cf. May & Lloyd
2001), causing some small range of outbreak sizes to
have a marginally higher likelihood than predicted by
a ‘pure’ power law describing all outbreaks. Any such
local adjustment to scaling implies that other scales
become less likely, yielding an oscillatory pattern
along the power law slope; see electronic supplementary
material, Sornette (1998) and Jonkers (2007) for the
mathematical underpinnings.

Unless one is aware of DSI’s features, it is easy to
misinterpret it as a ‘noisy’ power law distribution.
Thus, whenever scale-free systems are studied (as in epi-
demiology), it may be useful to test for the presence of
DSI. For an empirical example of apparent (but unac-
knowledged) DSI in the context of network structure,
see Palla et al. (2005, fig. 4b), and in the more relevant
context of real epidemics, see Rhodes & Anderson
(1996, fig. 1). Apart from providing a new measure
with which to compare networks statistically, the pres-
ence of DSI in networks implies three relevant
epidemiological properties: (i) spreading dynamics
operate below the percolation threshold, yet (ii) pro-
duce a full spectrum of outbreak sizes, and (iii) large
epidemics are extremely vulnerable to targeted
inoculation (see below).

We applied a bootstrap technique (Jonkers 2007)
to the model-generated sequences of outbreak sizes to
quantify their associated recurrence times. This lat-
ter quantity expresses the number of outbreaks that
on average pass before an epidemic of selected size (or
larger) occurs. For example, a recurrence time of
500 implies a likelihood of 0.2 per cent. It is a station-
ary statistic, affected by network and simulation
J. R. Soc. Interface (2010)
parameters, but unrelated to seasonality and simulation
duration.

Our H5N1 simulations provide suitable datasets for
DSI analysis as their sample size is large, and recorded
outbreak sizes and recurrence times each span several
orders of magnitude. Figure 3 depicts the resulting
log–log plots of minimum outbreak size versus recur-
rence time, for the six studied models. In all but the
most extreme cases, the data not only exhibit a power
law but additionally display a clear residual modu-
lation. Characteristic scales are here defined as the
coordinates (arrows) where this modulation intersects
the power law with a lesser slope than the power law.

By definition, these characteristic scales form a pair;
it is the joint profile of a characteristic outbreak size
coupled with its characteristic recurrence time that
typifies the system. For example, in the EU model, a
characteristic outbreak size of ca 10 sites is associated
with a typical recurrence time of one in 456 outbreaks,
i.e. about 0.2 per cent chance of at least 10 premises
becoming infected. This implies that in EU-type
models, the range around this particular outbreak size
has a slightly higher probability than the first-order
approximation of the power law probability distribution
of outbreak sizes predicts.

These DSI-derived characteristic scale pairs quantify
the severity of the typical outbreaks in each of the differ-
ent models. For example, the aforementioned EU policy
(figure 3a(i)) compares favourably with the equivalent
BC strategy (figure 3b(i)), which produces a typical out-
break size of ca 53 sites (over five times larger than EU)
coupled with an only slightly longer recurrence time
(once per 686 outbreaks). In the worst-case scenario
(BCXT), a characteristic outbreak size of 769 premises
(nearly 80 times larger than in EU) is associated with a
likelihood of about 3 per cent (about 14 times worse
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Figure 3. DSI profiles for the British poultry industry network on a log–log scale of minimum outbreak size (initial seeding
excluded) versus its typical recurrence time. The best-fitting DSI modulation (grey) is superposed on the pure power law (straight
line); black dots represent imposed thresholds in outbreak size; arrows mark characteristic scales for (a) EU and (b) BC controls
with (i) normal, (ii) HI and (iii) XT transmissibilities. (a(iii),b(iii)) Smaller power law slopes greatly increase the likelihood of
large outbreaks. Dashed vertical lines highlight the continuity of characteristic scales between the three panels of each control
strategy. Aspect ratios adjusted for clarity.
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than in EU). Overall, these values indicate that increased
transmissibility (moving down panels) has a greater
effect on aggravating outbreaks than does a weakened
biosecurity imposed (moving right from EU to BC).

Moving vertically between panels in either the EU or
the BC column of figure 3, the effect of increasing trans-
missibility can be studied. These comparisons evince
how large outbreaks emerge as a new pair of more
severe characteristic scales, which gain predominance
at the expense of the smaller variety (still vaguely dis-
cernable in figure 3a(iii),b(ii)). Thus, the most serious
epidemics (figure 3a(iii),b(iii)) do not arise out of a gra-
dual up-scaling of the least harmful ones
(figure 3a(i),b(i)), but are a distinct phenomenon that
even coexists with the original outbreak distribution in
the transitional middle panel (dashed vertical lines
between panels mark the continuity of the two distinct
statistical signatures). This suggests that containing
large epidemics may require a different strategy from
one that mitigates small ones.
J. R. Soc. Interface (2010)
A final feature of figure 3 is the captured transition
to percolation. A related shift is observed in the total
distribution of outbreak sizes, which transforms from
a power law (in the standard EU and BC models) to
a bimodal one for XT simulations (see electronic sup-
plementary material. Thus, in a percolating network
like BCXT, viral spread either remains local or becomes
network-wide. This state can be reached by reducing
biosecurity, increasing transmissibility or both. Another
observed shift concerns whether a site likely partakes in
many or few outbreaks. These likelihoods become about
equal for all sites in the extreme models, whereas the
standard cases recover a power law profile (few sites
partake in many outbreaks and vice versa). Bootstrap
DSI profiles express the network’s distance to the perco-
lating state in the power law slope, which decreases
from 1.16 in EU and 0.62 in BC (figure 3a(i),b(i)) to
below 0.1 in both XT simulations (figure 3a(iii),b(iii)),
rendering the concept of characteristic scales less mean-
ingful there. DSI is thus also of potential benefit for
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Figure 4. The number of H5N1 avian influenza outbreaks that exceed a given outbreak size in the British poultry industry,
for European (EU, grey) and basic containment controls (BC, black), before (solid lines) and after (dotted lines) targeted
inoculation. (a) Disabling transmissions from the 1195 network hubs (sites with 40þ connections) yields moderate, propor-
tional improvements. (b) Inoculating network hotspots (325 sites under EU controls, 669 under BC) prevents large and
medium-sized outbreaks altogether. Sample size: one million outbreaks per simulation.
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determining whether such systems reside in the transi-
tional regime below percolation (Sander et al. 2002).
This dangerous regime exhibits a full spectrum of out-
break sizes, but unlike a percolating network, it is
acutely vulnerable to targeted countermeasures.
4. TARGETED INOCULATION
OF SPECIFIC SITES

We explored the effect of inoculating various subsets of
sites, i.e. preventing specific sites to pass on infections
to others, to determine (i) their role in viral spreading,
(ii) necessary and sufficient conditions for large epi-
demics, and (iii) the most effective countermeasures.
Inoculation is here meant in the literal sense of ‘being
rendered harmless’. Through which means (vaccination,
increased biosecurity or otherwise) this should be
achieved is outside the scope of our models and this
paper. Furthermore, targeted inoculation was here
applied not as a replacement for, but as an addition
to, the BC or EU policy, as detection and eradication
are deemed indispensable for effective outbreak contain-
ment (Lee & Suarez 2005).

Following existing advice (Albert et al. 2000; Song
et al. 2005; Jeger et al. 2007; Dent et al. 2008), we focused
first on hubs; all other sites we call peripherals. We define
hubs here as having at least 40 links to other sites,
thereby selecting the top 10.2 per cent of sites when
ordered by connectivity. Figure 4a shows the profile of
one million outbreak sizes shifting proportionally left-
ward when all 1195 hubs are inoculated, under BC and
J. R. Soc. Interface (2010)
EU controls, respectively. Although this strategy works
moderately well, we can do far better, as figure 4b demon-
strates. Here, we target network hotspots, which we
defined as those sites participating in the greatest
number of (i) outbreaks, or (ii) viral transmissions or
(iii) that have largest characteristic outbreak scales; all
three definitions yield largely overlapping subsets and
similar results.

Surprisingly, most hotspots are peripherals. More-
over, the reduction under BC in figure 4 is achieved
by inoculating 669 hotspots only (5.7% of the network),
whereas the target set for EU comprises a mere 325 sites
(2.8%). Both subsets are thus considerably smaller than
the number of hubs, yet targeting hotspots substan-
tially outperforms hubs in reducing large epidemics.
Moreover, the resulting outbreak distribution appears
to be an absolute lower bound. Much larger subsets of
targets yield a virtually identical profile, suggesting
that only massive interventions would prevent these
modest outbreaks.

Our ongoing investigations of several different net-
works focus on discovering what peculiar features
distinguish hotspots from ordinary sites, so as to
enable practical a priori hotspot recognition in future
(unlike the a posteriori methods described above).
Interestingly, the presence of long-distance links is
neither a necessary nor a sufficient condition for hot-
spot formation in our models. Instead, hotspots tend
to associate spatially (over short distances) to span
large areas in thin strands, and, crucially, share many
mutual contacts with other hotspots that extend this
overlap network-wide (Newman 2003; Palla et al. 2005).
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This structure provides multiple paths between many
local clusters of linked sites that are otherwise poorly
connected (compare human-imposed firewalls to pre-
vent percolation, or natural firewalls comprising bands
of immune sites as in Sander et al. 2002).

This property of ‘connecting up the network’ has
previously been identified by Kao et al. (2007), but in
our interpretation, hotspots function as a single collec-
tive rather than as numerous individual bridges. To
test this assumption, we ran EU and BC simulations
in which only local and intra-company transmissions
between hotspots were prevented, whereas their feed
and abattoir associations were redistributed to mini-
mize intra-hotspot contacts. This rewiring strategy
proved just as effective as inhibiting all outward hot-
spot transmissions. In a second test, we merely
rewired feed and abattoir hotspot links without inhibit-
ing any transmission, yet a significant reduction in
outbreaks was still achieved (see electronic supplemen-
tary material). Contrastingly, targeting up to 100
hotspots has hardly any beneficial effect. This under-
lines our main conclusions that hotspots are
functionally distinct from hubs, constitute a collective
network-wide entity and can make more (cost-)effective
inoculation targets.
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R. G. Bowers, K. L. Morgan, S. E. Robinson and J. Rees for
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