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Relationships between specific surface
area and pore size in electrospun

polymer fibre networks
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From consideration of the extent of contact between fibres in electrospun polymer networks,
we provide theory relating the specific surface area of the network to the characteristic dimen-
sions of interfibre voids. We show that these properties are strongly influenced by the cross-
sectional morphologies of fibres. Whereas porosity has a strong influence on pore dimensions,
in the range of porosities typically obtained in real networks, its influence on specific surface
area is weak. By considering reference geometries of collapsed ribbons and fibres with circular
cross sections, we demonstrate that at a given network porosity, fibre parameters that
increase the specific surface area reduce the characteristic dimensions of voids. The impli-
cations of the theory, mainly in the context of cell proliferation on electrospun polymer
scaffolds, are discussed; the theory has relevance also to future applications of these materials
in composites.
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1. INTRODUCTION

The basic principle of electrospinning is that when elec-
tric charge is applied to a polymer solution or melt, the
polymer deforms because of the mobility of charges at
the surface and within the bulk (Reneker & Chun
1996; Rutledge & Fridrikh 2007). At a critical voltage,
charge repulsion at the surface of the polymer exceeds
the surface tension and a fine jet of polymer can be
seen to be ejected towards an earthed (or charged)
target (Reneker & Chun 1996; Shin et al. 2001;
Rutledge & Fridrikh 2007). Electrospun fibres can be
produced with a range of diameters; typically
0.1–100 mm (Rutledge & Fridrikh 2007). The significant
parameters used to control a typical electrospinning
process are the surface tension of the polymer solution
or melt, the flow rate of the polymer solution or melt
from the electrospinning needle and the electric current
in the jet (Rutledge & Fridrikh 2007). It has been pre-
dicted theoretically that varying the flow rate of the
polymer should result in sixfold changes in the fibre
diameter (Rutledge & Fridrikh 2007). This prediction
has been experimentally validated for a wide range of
polymer solutions (Rutledge & Fridrikh 2007). For a
full review of the effect of process parameters on the
fibre diameters obtained by electrospinning, the
reader is directed to Deitzel et al. (2001). Previously,
we demonstrated that the porous structure of nanofi-
brous networks is highly dependent on fibre diameter
(Eichhorn & Sampson 2005). This means that relatively
simple modification of electrospinning process variables
orrespondence (w.sampson@manchester.ac.uk).
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could be used to modify fibre dimensions to control
network geometries, and hence their functionalities.

The use of electrospun fibres for a range of appli-
cations is well documented in the literature. These
include fibres for tissue engineering subtsrates
(Li et al. 2002), filtration media (Gibson et al. 2001)
and composite materials (Kim & Reneker 1999;
Dzenis 2004). In each of these applications, the control
of the fibre diameter adds specific functionality to the
network. In the case of tissue-engineered substrates, it
has been shown that the onset of fibroblast cell adhesion
and migration depends on a minimum fibre diameter
(Sun et al. 2007). Further, different cell types have
also been shown to exhibit selectivity over the size of
pores which they are able to occupy (Sun et al. 2007).
In a previous publication, we used theory to show
that networks with micrometre-sized fibres have larger
mean pore sizes than those with submicrometre-sized
fibres (Eichhorn & Sampson 2005). This result has
been experimentally verified, whereby networks with
micrometre-sized fibres have been shown to allow cells
to ingress, whereas networks comprising thinner fibres
only allow surface proliferation (Pham et al. 2006). By
making networks with two different sized fibres (micro-
metre and submicrometre), it is possible to have both
surface proliferation and ingress (Pham et al. 2006).
Other authors have also used this result for controlled
adhesion and migration of cells (Ekaputra et al. 2008;
Thorvaldsson et al. 2008; Zhu et al. 2008).

Another feature of electrospun networks that can be
controlled by the fibre diameter is the available surface
area. Reducing fibre diameter increases the surface area
to volume ratio, and vice versa. The available surface
This journal is q 2009 The Royal Society
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area of fibres will clearly have an effect on the ability of
cells to attach and migrate. For composite materials, it
has been shown that electrospun fibre reinforced epoxy
has a higher toughness (the ability to prevent the
growth of cracks) than the pure resin (Kim & Reneker
1999). Although the mechanisms for enhanced strength
and stiffness in composite materials are well under-
stood, those leading to enhanced toughness in
nanocomposite materials are not. In the case of spheri-
cal silica nanoparticles in epoxy, it has been shown that
debonding, voiding and subsequent plastic void growth
is the dominant toughening mechanism (Johnsen et al.
2007). For carbon nanotubes, which have a significant
aspect ratio (cf. spherical particles), pull-out has been
suggested as one possible mechanism for enhanced
toughness (Wichmann et al. 2008). Toughening mech-
anisms in nanostructured materials have also recently
been reviewed (Ruiz-Peréz et al. 2008). Both in
the cases of particles and nanofibres, the toughness of
the composite material scales proportionally to the sur-
face area, i.e. the available surface area for contact with
the resin. Since this is intrinsically related to the fibre
diameter, and given that electrospun fibres have been
proposed as possible reinforcements of composites, a
treatment of the relationship between fibre morphology
and available surface fraction is timely. The mechanical
properties of composite materials are affected also by
the distribution of resin within their structure. The
occurrence of resin-rich regions can produce local aniso-
tropy, and so a treatment of the interrelationship
between fibre geometry, the available surface area and
pore dimensions in a network of fibres is timely also.

Electrospun fibres can be formed with a variety of
morphologies: collapsed ribbons, wrinkled, etc.
(Koombongse et al. 2001; Pai et al. 2009). It is now
known that phase separation between moisture from
changes in ambient humidity and the solvents typically
used for electrospinning cause these effects (Pai et al.
2009). These changes in morphology are also known
to effect the mechanical properties of single fibres (Pai
et al. 2009), though the mechanical properties of net-
works as a function of the fibre morphology have not
been fully investigated. It is known that mechanical
properties do, however, play a significant role in terms
of the ability of electrospun networks to support cell
growth (McManus et al. 2006; Mauck et al. 2009).
Accordingly, knowledge of the influence of fibre geome-
try on the structure of electrospun networks will guide
our understanding of the mechanical properties of com-
posite materials and tissue-engineering substrates, and
the ability of cells to migrate within electrospun
networks.

In the main body of this paper, we provide a theory
relating the specific surface area and interfibre pore
dimensions of electrospun networks to fibre and net-
work variables. We do not consider networks of
porous electrospun fibres (Czado et al. 2001), since
we expect the specific surface of these to be insensitive
to interfibre voids and instead to be overwhelmingly
influenced by intrafibre porosity. We shall see that for
networks of solid fibres, specific surface area and pore
dimensions depend strongly on the extent of interfibre
contact and our derivations will use expressions from
J. R. Soc. Interface (2010)
the literature for this property. Accordingly, we begin
with a discussion of these models for fibre contact.
2. FIBRE CONTACT

The classical reference structure for modelling disor-
dered fibrous materials is a random fibre network
where the location of any given fibre is independent of
that of any other fibre, and fibres have an equal
probability of making all possible angles with any
arbitrarily chosen axis (Kallmes & Corte 1960). For
materials such as paper, non-woven textiles and fibrous
filters, fibres have finite length, so fibre centres are
assumed to be distributed according to a point Poisson
process in the plane. For electrospun networks, fibres
can be assumed to have infinite length. Such networks
can be modelled as a random network of infinite lines
that represent the longitudinal axes of fibres and
pass through points distributed according to a point
Poisson process in the plane with uniformly distributed
orientation (Miles 1964).

The expected mass per unit area, or areal density b̄

(kg m22), of a stochastic fibrous material is determined
by the total fibre length per unit area, t (m21), and the
linear density of the constituent fibres, d (kg m21),
such that

�b ¼ t d: ð2:1Þ

Random lines in the plane partition the space into poly-
gons and Miles (1964) showed that the distribution of
radii of circles inscribed within these polygons has an
exponential distribution and that the mean polygon
area is independent of the width of the lines. Miles
also showed that the locations of the points of intersec-
tion of lines, or crossings, are distributed according to a
point Poisson process in the plane and that the number
of crossings per unit area depends on the total fibre
length per unit area, t, only, according to the equation

nlines
c ¼ t2

p
: ð2:2Þ

The number of fibres covering a point in the plane of
support of the network is a random variable called
coverage, c. Kallmes & Corte (1960) modelled fibres
as rectangles of finite length l and width v and quanti-
fied the intensity of the fibre process in the plane by the
mean coverage, c̄. For a process of nf fibres per unit area,
the mean coverage is

�c ¼ nf lv; ð2:3Þ

and the probability that a point in the plane of support
of the network is covered by precisely c fibres is given by
the Poisson distribution:

PðcÞ ¼ e��c �cc

c!
for c ¼ 0; 1; 2; . . . : ð2:4Þ

Often, it is convenient to calculate the mean coverage
using the areal density of the network and the linear
density and width of the constituent fibres, as

�c ¼
�bv

d
: ð2:5Þ
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Kallmes & Corte (1960) considered the special case
of ‘two-dimensional’ random fibre networks and defined
these as having sufficiently low mean coverage that the
Poisson probability of coverage greater than 2 is less
than 0.01; it turns out that this criterion is met for net-
works with mean coverage less than about 0.5 (Deng &
Dodson 1994). Typically, real networks will exhibit
much higher mean coverages than two-dimensional net-
works and will have a significant structural component
perpendicular to their plane. A consequence of this is
that vertically adjacent fibres may or may not make
contact with each other, depending on the influence
of nearby fibres. We will take account of such effects
in our subsequent analysis. In the two-dimensional
case, however, we may assume that every crossing gen-
erates an interfibre contact. On this basis, Kallmes and
Corte derived the expected number of crossings
between fibres per unit area in a two-dimensional net-
work as

nfibres
c ¼ �c2

pv2 : ð2:6Þ

Now, the total fibre length per unit area in a network of
finite length fibres is

t ¼ nf l; ð2:7Þ

so nf ¼ t/l and c̄ ¼ t v. The expected number of cross-
ings per unit area for a Poisson fibre process is therefore

nfibres
c ¼ t2

p
; ð2:8Þ

which is the same as the number of crossings per unit
area in a network of infinite lines, as given by equation
(2.2). This is convenient because it means that the stat-
istics of interfibre crossings in stochastic fibrous
materials are not influenced by the length of fibres,
but are determined instead by the total fibre length
per unit area. An extension of this is that fibre curva-
ture does not influence the expected number of
crossings in the network. This conclusion was drawn
also by Berhan et al. (2004) who arrived at equation
(2.8) by considering the probability of intersection of
segments of finite length curved fibres and confirmed
its validity through simulation studies for networks of
fibres with sinusoidal curvature with differing sinusoi-
dal frequency. For completeness, we note the finding
of Komori et al. (1979) that whereas the expected
number of crossings per fibre is insensitive to fibre
curvature, the variance of the number of crossings
per fibre increases with increasing fibre curvature for
two-dimensional networks.

Each fibre crossing generates a contact with finite
area dependent on the width of the fibres and the
angle of intersection of the pair of fibres generating a
given contact. The fraction of the fibre surface in con-
tact with other fibres is termed the fractional contact
area, F. Only a small fraction of a two-dimensional net-
work has coverage greater than 3, so, assuming full
contact over the projected area of a crossing, Kallmes
et al. (1963) considered the Poisson probabilities of
the network having coverage 1, 2 or 3 to derive the
fractional contact area of a two-dimensional network
J. R. Soc. Interface (2010)
and obtained

F2D ¼ 1� 1� e��c

�c
: ð2:9Þ

For networks of infinite mean coverage, contact
between vertically adjacent fibres is influenced by
their proximity to nearby fibres and the fractional con-
tact area can be expressed in terms of the network
porosity, e (Sampson 2008)

F1 ¼ 1� e ð1� eÞ ð2� eÞ
logð1=eÞ : ð2:10Þ

In networks with a finite mean coverage c̄, fibres in the
outermost surfaces contact other fibres on one side only,
such that the fractional contact area is less than that of
an infinitely thick network. The fraction of the total
fibre length located in the surfaces has recently been
derived by consideration of the Poisson probabilities
of coverage at points (I’Anson & Sampson 2007); to a
reasonable approximation for networks with mean cov-
erage greater than about 10, this fraction is (1 2 1/c̄),
so the fractional contact area of a network with finite
mean coverage is

F � 1� 1
�c

� �
F1: ð2:11Þ

When considering networks with mean coverages much
less than 10, the equations provided in I’Anson &
Sampson (2007) should be applied.

Inevitably, the specific surface area of a fibre network
will be influenced by the fraction of the total fibre
surface that is in contact with other fibres. If the spe-
cific surface area of a fibre is Sf (m2 g21), then the
specific surface area of a network of such fibres is

Sn ¼ Sf ð1�FÞ: ð2:12Þ

Electrospun networks typically have porosity greater
than about 0.7 (Li et al. 2006; Pham et al. 2006;
Frey & Li 2007) and, using approximate expressions,
we previously showed that F � F1 in this range
(Eichhorn & Sampson 2005); the same approximation
holds using equations (2.10) and (2.11).
3. PORE DIMENSIONS

Fibre contacts influence the characteristic dimensions of
pores also. In a Poisson line process in the plane, each
crossing is associated with four polygons, and Miles
(1964) showed that the expected number of sides per
polygon is also four, this being subsequently confirmed
in simulation studies (Crain & Miles 1976; George
1987). Accordingly, the expected number of polygonal
voids per unit area in the xy-plane is expected to be
close to the expected number of crossings per unit
area. On this basis, Sampson (2009) has recently
shown that the expected area of a polygonal void in a
two-dimensional network is

�a ¼ pv2

log2ð1=eÞ
; ð3:1Þ

where e is now the fractional open area of the network,
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Figure 1. Mean in-plane pore diameter in units of the fibre
width, as given by equation (3.3), plotted against the mean
pore height in units of the fibre thickness, as given by equation
(3.4). Broken line represents d̄/v ¼ 2h̄/t.
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i.e. the fraction of the network that is not covered by
fibres. We use the same notation for this property and
for the porosity of networks with finite thickness since
the two-dimensional model can be considered to apply
to an infinitesimally thin slice within the bulk and
parallel to the plane of a network with finite thickness.
Such thin slices will have a fractional open area
equivalent to the network porosity. We note also
that Abdel-Ghani & Davies (1985) obtained the
approximation

�a � p ev2

1� eð Þ2
; ð3:2Þ

and this gives close agreement to equation (3.1) for e

greater than about 0.4.
A convenient measure of the characteristic in-plane

dimension of a polygonal void is the diameter of
a circle with the same area. From equation (3.1),
we can estimate the mean equivalent diameter of a
polygonal void as

�d ¼ 2

ffiffiffiffi
�a
p

r
¼ 2v

logð1=eÞ : ð3:3Þ

Equations (3.1) and (3.3) provide, respectively, the
expected in-plane area and equivalent diameter for arbi-
trary planes parallel to that of the network. Although
individual fibres may bend so that along their length
they occupy space in adjacent planes through the thick-
ness of the material, this does not influence the
applicability of equations (3.1) and (3.3) since what is
important is the probability that a given point in
space is occupied by a fibre or not, i.e. the fractional
open area of a planar section or the porosity of a section
with finite thickness. Thus, the influence of fibre flexi-
bility, and any other parameters that may influence
packing efficiency, is accounted for implicitly through
their influence on porosity.

In networks of finite thickness, vertically adjacent
fibres may not generate a contact owing to the presence
of nearby fibres. The probability that a pair of vertically
adjacent fibre surfaces do not make contact and thus
represent the boundaries of a void is (1 2 F1) and
their separation is termed the pore height. The mean
pore height, h̄, is given by

�h ¼ logð1=eÞ t
ð2� eÞ ð1� eÞ2

when �c � 1; ð3:4Þ

where t is the thickness of fibres, i.e. their dimension
perpendicular to the plane of the network. The deri-
vation of equation (3.4), following the treatment
provided in Sampson (2009), is given in appendix A.
An alternative expression for the mean pore height
was obtained by Niskanen & Rajatora (2002)

�h ¼ e t
1� e

: ð3:5Þ

We note, however, that equation (3.5) was obtained
without accounting for contact between fibres, so will
underestimate the mean pore height.

Figure 1 shows the mean in-plane pore dimension in
units of the fibre width, as given by equation (3.3),
J. R. Soc. Interface (2010)
plotted against the mean pore height in units of the
fibre thickness, as given by equation (3.4). The broken
line represents 2h̄/t and we observe that d̄/v is asymp-
totic to this line with increasing porosity. Thus, for
networks with porosity greater than about 0.7, we
have the approximation

�d
�h
¼ 2

v

t
: ð3:6Þ

For fibres with circular cross section v ¼ t, so d̄ ¼ 2h̄
and for collapsed ribbons t , v, so d̄ . 2 h̄. Thus, pores
exhibit anisotropic dimensions in the principal planes
of the network and the mean height is always less than
half the mean in-plane dimension of pores. In the context
of cell proliferation in an electrospun fibrous scaffold, this
implies that connectivity between cells is limited by the
vertical dimension of pores in the network and not by
their in-plane dimensions. At a given porosity, these
will be smaller for networks of collapsed ribbons than
they are for fibres with circular cross section. We note
that theoretical analysis of experimental measurements
of the pore size distribution in paper, i.e. a stochastic
layered network of cellulosic fibres, suggests that
around 70 per cent of the measured distribution arises
from the pore height distribution with the remainder
being associated with the in-plane distribution of pore
diameters (Sampson & Urquhart 2008).

We proceed to use reference geometries for fibre cross
sections to develop relationships between the specific sur-
face area of the network and its mean pore height, with
a view to identifying opportunities to optimize these prop-
erties for application as scaffolds in tissue engineering.
While our interest and discussion of the theory is focused
on this application, the expressions derived can be applied
also to general classes of stochastic fibrous materials.
4. CROSS-SECTIONAL FIBRE
GEOMETRIES

We have seen that the characteristic dimensions of
voids are closely related to those of the constituent
fibres. Inevitably, the cross-sectional dimensions of
fibres influence their specific surface area and, thus,
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Figure 2. Model fibre cross-sectional geometries. (a) Solid circle, (b) uncollapsed circular tube and (c) fully collapsed ribbon.
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that of the network, cf. equation (2.12). Three cases of
interest are shown in figure 2. In what follows, we con-
sider only the cases of the solid circular cross section
(figure 2a) and the fully collapsed ribbon (figure 2c);
the geometry of the uncollapsed hollow fibre
(figure 2b) is included since it guides our parametriza-
tion of the dimensions of interest in a manner that
permits a single choice of variables to characterize the
geometries shown in figure 2a,c.

Koombhongse et al. (2001) found that the cross-
sectional perimeter of collapsed ribbons was very close
to that of the polymer jet from which they are spun,
so the diagrams in figure 2 are all drawn with the
same outer perimeter and in what follows we will use
this perimeter, P, as the characteristic dimension of
the fibre. Although this may not seem an intuitive
choice of characteristic dimension, the fibre perimeter
is relatively easy to measure by image analysis of
cross-sectional micrographs of electrospun mats,
whereas fibre diameter, for example, may be less well
defined for irregular cross-sectional geometries and,
for example, helically twisted fibres (Canejo et al.
2008). We shall see also that specific surface area and
pore dimensions exhibit simple relationships with fibre
perimeter, permitting convenient characterization of
their interdependence.

In an ideal case, when a fibre of tubular cross section
with skin thickness, ts, is fully collapsed (figure 2b), the
height of the fibre ribbon (figure 2c) is

t ¼ 2 t s; ð4:1Þ

and its width is

v ¼ p ðv0 � 2 t sÞ
2

þ 2 t s

¼ P
2
� ðp� 2Þ t s

� P
2
� t s: ð4:2Þ

When ts ¼ v0/2, P ¼ pv0 and equation (4.2) yields v ¼
v0. Accordingly, equations (4.1) and (4.2) provide a
unified notation for fibres with solid circular cross
section or for fully collapsed ribbons.
J. R. Soc. Interface (2010)
5. SPECIFIC SURFACE AREA

The specific surface area of fibres with linear density d

and cross-sectional perimeter P is

Sf ¼
P
d
¼ P

A r
; ð5:1Þ

where A (m2) is the cross-sectional area and r (kg m23)
is the density of the polymer. If we assume that the
cross-sectional area of a fibre is not influenced by the
collapsing process then we have

A ¼ p ðv0 � tsÞ t s

¼ p
P
p
� t s

� �
t s

¼ ðP � p t sÞ t s; ð5:2Þ

such that

Sf ¼
P

r ðP � p t sÞ t s
; ð5:3Þ

and for fibres with solid circular cross section, ts ¼ v0/2,
P ¼ pv0 and Sf ¼ 4/(rv0).

The specific surface area of a fibre, as given by
equation (5.3), is plotted against the mean skin thick-
ness, ts, in figure 3 for fibres with different perimeter,
P. A polymer density of r ¼ 1000 kg m23 has been
assumed in generating figure 3; although this is lower
than the density of typical polymers, it allows straight-
forward determination of Sf for fibres formed from other
polymers by dividing the values on the ordinate by their
specific gravity. For each perimeter considered, the
range of skin thickness plotted is 0 , ts � P/(2p) such
that the maximum skin thickness in the range corre-
sponds to a fibre with solid circular cross section.
Although the curves provide the relationship between
Sf and ts independent of the state of collapse, collapsed
ribbons are more likely to occur for fibres with larger
perimeters. The shaded region represents the envelope
of realizable structures: the lower bound represents
the case when ts � P and equation (5.3) reduces to
Sf � 1/(rts) and the upper bound represents the
case of fibres with solid circular cross section and with
diameter v0 ¼ 2ts such that Sf ¼ 2/(rts).

The inverse proportionality to ts of the boundaries of
the shaded region in figure 3 suggests that the curves
plotted may be scaled to each other to yield a master
curve. If we define a dimensionless shape parameter
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a ¼ ts/P then we obtain

Sf ¼
1

ð1� paÞa rP
for 0 , a � 1

2p
: ð5:4Þ

So for fibres formed from a given polymer with density
r, the product SfP depends only on a ¼ ts/P. This is
plotted for fibres with density r ¼ 1000 kg m23 in
figure 4 which includes some illustrations of fibre cross
sections with constant perimeter to aid interpretation.
In their analysis of electrospun polymer ribbons,
Koombhongse et al. (2001) report skin thicknesses
of the order of a few hundred nanometres and inspection
of their micrographs suggests perimeters of around
10–20 mm; accordingly, we may consider ribbons with
a between about 0.01 and 0.05 to be realizable.

We have seen that the specific surface of the fibres is
less than that of the network by a factor (1 2 F) that
depends only on the interfibre porosity. Assuming
that F ¼ F1 and substituting equations (5.4) and
(2.10) into equation (2.12) yields, on manipulation,

Sn P ¼ 1
ð1� paÞa r

e ð1� eÞ ð2� eÞ
logð1=eÞ : ð5:5Þ

Substituting t ¼ 2ts ¼ 2aP into equation (3.4) yields

�h
P
¼ 2a logð1=eÞ
ð2� eÞ ð1� eÞ2

: ð5:6Þ

Given the relationship between d̄/v and h̄/t and that
between v and t discussed earlier, equations (5.5) and
(5.6) fully parametrize the relationship among porosity,
specific surface area and pore dimensions. Since we have
identified the pore height as the dominant variable con-
trolling cell proliferation and barrier properties, the
surface characterizing the dependence of Sn P and h̄/P
on each other and on porosity is shown in figure 5.
Again, this surface has been plotted assuming r ¼

1000 kg m23. The relative influence of porosity and
fibre collapse are more readily determined by inspection
of a two-dimensional rendering of the surface shown in
figure 5 and this is provided in figure 6.
J. R. Soc. Interface (2010)
Now, the surface shown in figures 5 and 6 depends
only on network porosity and the cross-sectional geome-
try, as parametrized by the variable a. Substituting
a ¼ ts/P into equation (5.2) and multiplying by the
polymer density give the linear density of the fibres in
terms of their perimeter, P, and a:

d ¼ aP2 1� pað Þ r; ð5:7Þ

such that when a ¼ 1/(2p), we have fibres of solid
circular cross section and d ¼ rP2/(4p). For fibres
formed from a polymer with a given density r, three
geometry-dependent cases must be considered to inter-
pret the relationship between pore height and specific
surface area.

Case A. Constant perimeter and variable linear den-
sity. From equation (5.7), if the fibre perimeter is
constant, then fibre ribbons (a , 1/(2p)) have lower
linear density than fibres with solid circular cross sec-
tion (a ¼ 1/(2p)) and thus have higher specific
surface area. This effect is shown in figure 4, though
for fibres assembled in a network we have an additional
influence of network porosity and figure 6 shows that
this is significant for porosities lower than about 0.9.
At higher porosities, the specific surface area of the net-
work is rather insensitive to porosity and approaches
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that of the constituent fibres, consistent with the exper-
imental observations of Deitzel et al. (2001). In
contrast, the mean pore height becomes increasingly
sensitive to porosity as porosity increases and, at a
given porosity, a network formed from ribbons will exhi-
bit smaller pore dimensions than one formed from fibres
with solid circular cross section. We expect also that col-
lapsed fibres will be more flexible and thus will form
networks with lower porosity than those with solid cir-
cular cross section, so there may be an additional
decrease in mean pore height and a slightly weaker
increase in specific surface area compared to that
obtained assuming constant porosity. We expect that
networks with this structure will be less able to allow
cells to ingress, and surface proliferation may take
place more readily.

Case B. Variable perimeter and variable linear den-
sity. For a given cross-sectional geometry, changes in
the perimeter will influence the linear density of the
fibres in proportion to the square of the perimeter.
This behaviour is fully accounted for by scaling the
curves in figure 6. So, regardless of geometry, doubling
the perimeter will halve the specific surface area of the
network and double the pore height.

Case C. Variable perimeter and constant linear
density. If we denote the perimeter of a fibre with solid
circular cross section P0, then equating A ¼ P0

2/(4p)
with equation (5.2) yields the perimeter of a
collapsed ribbon with the same linear density as a
multiple of P0:

P ¼ P0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa ð1� paÞ

p : ð5:8Þ

The curves shown in figure 6 still apply, but now the
scaling factor, P, applied to the axes depends on the
cross-sectional geometry of the fibres. The influence of
this scaling on specific surface and pore height is best
illustrated by example. Consider two fibre networks
with porosity e ¼ 0.9 formed from fibres with r ¼

1000 kg m23. One network consists of fibres with circu-
lar cross section and perimeter, P0, the other consists of
ribbons with the same linear density and with a ¼ 0.05.
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Equation (5.8) gives the perimeter the ribbons as
P � 1.4P0. For the circular fibres, equations (5.5) and
(5.6) give Sn � 12/P0 and h̄ � 3P0, respectively. For
the ribbons we obtain Sn � 22/P ¼ 22/(1.4P0) ¼
16/P0 and h̄ � P ¼ 1.4P0. Thus, the specific surface
area of the network formed from ribbons is about 30
per cent greater than that of the network formed from
fibres with solid circular cross section and the mean
pore height is about 50 per cent less.

Although the influence of fibre dimensions on the
specific surface area and pore height is somewhat less
for case C than that observed for cases A and B, the
fundamental constraint remains: at a given porosity,
the fibre parameters that increase specific surface area
inevitably reduce the mean pore dimensions. This
means that for the support of cells in a tissue engineer-
ing application, although increased surface area may
assist in cell adhesion, the potential for cells to ingress
into the networks will be restricted.

Naturally, the expressions we have derived and inter-
preted apply strictly only to the model fibre cross sections
shown in figure 2. Nonetheless, the general dependencies
observed can be expected to apply to networks of fibres
with less regular cross-sectional geometries.
6. CONCLUSIONS

We have extended models from the literature describing
the structure of random fibrous materials to establish
theoretical relationships between the specific surface
area of an electrospun polymer network and the charac-
teristic dimensions of its voids. For a given network
porosity, the product of the specific surface and fibre per-
imeter exhibits a one-to-one relationship with the mean
pore height divided by the fibre perimeter; this relation-
ship varies with porosity to yield a unique surface
characterizing the relationship among these variables.

Our treatment has considered primarily the mean
pore height as the characteristic dimensions of voids,
though we bear in mind our earlier comments that
there is a direct relationship between mean pore
height and the mean in-plane pore dimension and
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that this is determined by the cross-sectional fibre
dimensions and porosity such that the mean pore
height is less than half the mean in-plane pore dimen-
sion. Conveniently, both specific surface area and pore
height increase with porosity. Further, whereas specific
surface area is only weakly dependent on porosity at
porosities greater than about 0.9, pore height exhibits
its greatest sensitivity to porosity in this region. We
conclude therefore that when seeking to maximize
specific surface area and pore dimensions, primary con-
sideration should be given to the selection of fibre
geometries to maximize specific surface area allowing
pore height to be subsequently controlled by targeting
network porosity.
APPENDIX A

Here we derive equation (3.4) following the treatment
provided in Sampson (2009).

Consider the occurrence of voids between fibres
covering points with coverage c. No interfibre void
can occur at points with coverage zero or 1 and at all
points with coverage c � 2, voids may exist between
vertically adjacent fibres.

For networks with mean coverage greater than
about 3, the fraction of the network with coverage
zero and 1 is negligible, so, to a good degree of approxi-
mation, the expected number of interfaces between
fibres occurring above any point in the network is
(c̄ 2 1). The probability of contact between a pair of
vertically adjacent fibres is F1. Thus, the expected
number of voids located over a point with coverage c is

nv ¼ �c � 1ð Þ 1�F1ð Þ: ðA 1Þ

The expected thickness of a network with mean pore
height h̄ is

�z ¼ �c � 1ð Þ 1�F1ð Þ �h þ �c t; ðA 2Þ

and the expected total height of all voids at any point in
the network is

�c � 1ð Þ 1�F1ð Þ �h: ðA 3Þ

It follows that the mean porosity e is

e ¼ �c � 1ð Þ 1�F1ð Þ �h
�c � 1ð Þ 1�F1ð Þ �h þ �c t

: ðA 4Þ

Rearranging equation (A 4) yields

�h ¼ �c
�c � 1

e

1� e

�t
1�F1

: ðA 5Þ

On manipulation, substitution of equation (2.10) into
equation (A 5) yields equation (3.4):

�h ¼ �c
�c � 1

logð1=eÞ
ð2� eÞ ð1� eÞ2

t

� logð1=eÞ
ð2� eÞ ð1� eÞ2

t for �c � 1:
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