
J. R. Soc. Interface (2010) 7, 439–451
*Author for c

doi:10.1098/rsif.2009.0226
Published online 22 July 2009

Received 10 J
Accepted 26 J
Invasion, persistence and control in
epidemic models for plant pathogens:
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Many epidemiological models for plant disease include host demography to describe changes in
the availability of susceptible tissue for infection. We compare the effects of using two
commonly used formulations for host growth, one linear and the other nonlinear, upon the out-
comes for invasion, persistence and control of pathogens in a widely used, generic model for
botanical epidemics. The criterion for invasion, reflected in the basic reproductive number,
R0, is unaffected by host demography: R0 is simply a function of epidemiological parameters
alone. When, however, host growth is intrinsically nonlinear, unexpected results arise for per-
sistence and the control of disease. The endemic level of infection (I1) also depends upon R0.
We show, however, that the sensitivity of I1 to changes in R0 . 1 depends upon which under-
lying epidemiological parameter is changed. Increasing R0 by shortening the infectious period
results in a monotonic increase in I1. If, however, an increase in R0 is driven by increases in
transmission rates or by decreases in the decay of free-living inoculum, I1 first increases
(R0 , 2), but then decreases (R0 . 2). This counterintuitive result means that increasing the
intensity of control can result in more endemic infection.

Keywords: epidemiological model; R0; endemic equilibrium; disease control
strategies; monomolecular growth; logistic growth
1. INTRODUCTION

Successful invasion and persistence of a pathogen
within a host population depends upon an adequate
supply of susceptible hosts. Too little replenishment
of susceptible hosts leads to the elimination of the
pathogen and, often too, a failure to invade (Anderson &
May 1991). For many diseases of plants and animals,
infected individuals die or, if they recover, they are
immune to reinfection, so that persistence depends
upon birth of susceptibles. Host demography is
especially important when the generation time of the
host is short enough compared with that of the patho-
gen to impact on the outcome of epidemics. Such
dynamics are common for many plant diseases in
which the leaf, root or other organs, rather than the
individual host plant, comprise the natural population
unit among which a pathogen spreads (Gilligan 2002),
and where the densities of these organs change
during the course of an epidemic as plants grow. Simi-
lar host-driven dynamics apply to many viral diseases
of invertebrates and short-lived vertebrate hosts
(Bowers & Begon 1991; Bowers et al. 1993; Begon &
Bowers 1994; Dwyer 1994; White et al. 1996; Bonsall
et al. 1999; Briggs et al. 2000; Liu et al. 2007) and
to certain diseases of animals (Anderson & May
1981) and humans, most notably HIV/AIDS
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une 2009
une 2009 439
(Hyman & Stanley 1988; Jacquez et al. 1988; May
et al. 1988; Castillo-Chavez et al. 1989). Here, we
focus on soil-borne plant diseases, caused by a range
of fungal, viral and bacterial pathogens in crops and
natural environments, as exemplars of pathogens for
which host demography impacts upon epidemic out-
comes. Examples of soil-borne plant pathogens include
Gaeumannomyces graminis, Rhizoctonia solani and
Fusarium solani, in which a single lesion can colonize
or kill an entire root.

The inclusion of host demography is biologically
appealing because it promotes biological realism in
modelling the spread of pathogens through dynamically
changing host populations. It is also attractive to
epidemiologists and modellers as a simple plausible
mechanism to counteract the exhaustion of susceptible
hosts, so allowing coexistence of pathogens and hosts
consistent with empirical studies of disease in plant
and animal populations. The dynamics of these
host–pathogen systems are routinely modelled by
compartmental susceptible–infected–removed (SIR)
epidemic models that incorporate vital dynamics
(birth and death of the host population) and from
which it is possible to derive criteria for invasion of
the pathogen and persistence of both the pathogen
and the host (Anderson & May 1991). Host demogra-
phy has appeared in epidemiological models in
several forms, and there have been extensive and
mathematically elegant analyses of particular models
This journal is q 2009 The Royal Society
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involving vital dynamics (Busenberg & Hadeler 1990;
Busenberg & van den Driessche 1990; Greenhalgh
1990, 1992a,b; Pugliese 1990; Gao & Hethcote 1992;
Hethcote & van den Driessche 1995). However, few
studies have specifically addressed the isolated effect
of growth functions in epidemiological models by expli-
citly comparing the results of models that differ only in
their representation of host demography, although
there have been studies of this kind in models where
recovery from infection is possible (Mena-Lorcat &
Hethcote 1992; Zhou & Hethcote 1994). Very little
attention has been given to a systematic analysis of
the ways in which the particular functions for host
demography can influence epidemiological dynamics
of plant pathogens (Gubbins et al. 2000). In this
paper, we analyse the dynamics of a simple SIR-type
model with vital dynamics involving two commonly
used functions for host growth, the monomolecular
and logistic functions. We show that the choice of
growth function can have unexpected qualitative effects
upon the dynamics of the system, and lead to counter-
intuitive results when using the model to identify
effective control strategies for epidemics. The use of
the compartmental modelling approach adopted here
originates from work on human disease (Kermack &
McKendrick 1927; Anderson & May 1991) and is
readily generalized to human, livestock and
wild-animal as well as botanical epidemics.

Although early investigations of the epidemics
caused by plant pathogens seldom included the demo-
graphics of the host population (van der Plank 1963;
Gilligan 1985, 1990; Brassett & Gilligan 1988), replen-
ishment of susceptible hosts is common in contempor-
ary models (Gilligan 2002, 2008; Jeger et al. 2004;
Madden 2006; Madden et al. 2007). The simplest, and
often the default, approach to modelling host growth
is to introduce an exponential function for the net
birth of susceptible hosts into an SIR epidemic model
(Madden et al. 2007). A similar approach is widely
used to model epidemics in animal populations
(Anderson & May 1991). Unlimited growth of the
host population is prevented by the density depen-
dent effect of the pathogen in killing hosts. Biological
plausibility collapses, however, in the absence of the
pathogen, as then the host population grows without
bound. Frequently, and especially when considering
infection of individual leaves or roots (Gilligan 1985,
2002), but also for invertebrate and some vertebrate
and human populations (Anderson & May 1981;
Hyman & Stanley 1988; Jacquez et al. 1988; May
et al. 1988; Castillo-Chavez et al. 1989; Begon et al.
1992; Bowers et al. 1993; Begon & Bowers 1994),
bounded growth functions are introduced to provide
more realistic approximations of host–pathogen
dynamics. Of particular interest in the case of viral
pathogens of forest-insect pests has been whether or
not cyclic dynamics are promoted by adding density
dependence in host growth (Bowers et al. 1993; Dwyer
1994; White et al. 1996; Bonsall et al. 1999; Liu et al.
2007). In plant epidemiology, the focus has been on
improving the realism of the approximation to host
demography, by adding bounds to reflect the limited
carrying capacity of the field (Gilligan 2002, 2008)
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and representing phenomena including disease-induced
host responses (Gilligan et al. 1997; Bailey & Gilligan
2004; Bailey et al. 2006). We consider epidemics of
plant pathogens to be a practical platform and the
context for our theoretical work, as in addition to exem-
plifying systems for which host demography can
markedly affect the outcome of epidemics, previous
compartmental models of plant disease have been
extensively and successfully confronted with data from
both experimentally controlled systems and field trials
(Gubbins & Gilligan 1996, 1997a,b,c; Gilligan et al.
1997; Bailey & Gilligan 1999, 2004; Bailey et al. 2004,
2005, 2006, 2009).

Two commonly used classes of functions in the
context of host dynamics are typified by the monomole-
cular function (Jeger 1987; Gilligan 1990; Gilligan &
Kleczkowski 1997; Madden et al. 2000; Stacey et al.
2004; van den Bosch et al. 2007) and the logistic func-
tion (Gilligan & Kleczkowski 1997; Gubbins & Gilligan
1997a; Truscott et al. 1997; Webb et al. 1999, 2000;
Park et al. 2001; Gilligan 2002; Bailey & Gilligan
2004; Bailey et al. 2005, 2006; Parnell et al. 2005; Hall
et al. 2007). The monomolecular function introduces a
simple upper bound on host growth (Gilligan 1990),
while the logistic function introduces a nonlinear feed-
back in the net birth rate of the host population.
Accordingly, we use these two functions to analyse
the effects of host growth upon the interpretation of
epidemiological models for invasion, persistence and
control of disease. Specifically, we show that, although
the parameters for host growth do not appear in the
criteria for pathogen invasion, host demography does
affect other pathogen dynamics, notably persistence
and the approach to endemic levels. We also show
that the responsiveness of the pathogen to control
varies with host demography, even when control is
effected through changes in the epidemiological par-
ameters. Finally, we show that progressive increases in
the intensity of disease control can lead to the counter-
intuitive result of an increase in endemic levels of
disease.
2. THEORY AND APPROACHES

2.1. Preamble

We motivate the analysis using a model for epidemics of
plant disease, taking a particular SIRX formulation
within the general compartmental framework outlined
by Gilligan (2002, 2008). The model incorporates dual
sources of infection, with primary infection arising
from ‘free-living’ inoculum (X ) and secondary infection
occurring by transmission from infected to susceptible
hosts, with allowance for different infectious periods
for free-living inoculum and infected hosts, typical of
many soil-borne plant pathogens. We show below
that the invasion characteristics of SIRX epidemics
are controlled by simple sums of primary and secondary
infection, and note that the principal conclusions from
the more generic SIRX model hold for SIR models of
plant and animal epidemics with a single (secondary)
source of infection.



Table 1. Summary of the state variables and parameters.

symbol meaning
dimensionless
analogue

S density of susceptible hosts Ŝ ¼ S/k
I density of infected hosts Î ¼ I/k
R density of removed hosts R̂ ¼ bR/mk

X density of soil-borne inoculum X̂ ¼ bX/ak
t time t̂ ¼ bt
g(S) production of susceptible hosts n.a.
h rate of removal (all classes of

host)
ĥ ¼ h/b

f(S) overall dynamics of susceptible
hosts in the absence of
infection, where f(S) ¼
g(S) 2 hS

see below

Model M f(S) ¼ b(k 2 S) f̂(Ŝ) ¼ 1 2 Ŝ
Model L f(S) ¼ bS(1 2 S/k) f̂(Ŝ) ¼ Ŝ(1 2 Ŝ)
b birth rate 1
k carrying capacity 1
bp rate of primary infection b̂p ¼ bpak/b2

bs rate of secondary infection b̂s ¼ bsak/b
m rate of disease-induced

mortality for infected hosts
1

a rate of production of inoculum
by infected hosts

1

c rate of decay of inoculum ĉ ¼ c/b
m total rate at which individuals

leave class I, with
m ¼ m þ h

m̂ ¼ m/b
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2.2. The model

The SIRX model is specified by the following set of
coupled ordinary differential equations:

dS
dt
¼ gðSÞ � ðbpX þ bsI ÞS � hS ;

dI
dt
¼ ðbpX þ bsI ÞS �mI � hI ;

dR
dt
¼ mI � hR

and
dX
dt
¼ aI � cX ;

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:1Þ

with primary infection arising from free-living inoculum
(X ) and secondary infection occurring by transmission
from infected (I) to susceptible (S) hosts, at rates bp

and bs, respectively. Rather than necessarily consider-
ing a population of individual host plants, host
variables may be defined in terms of number or density
of plants, roots or leaves, depending upon the natural
scale at which symptoms of the epidemic are expressed
(Gilligan 1985, 2008). We clarify the approach with a
specific example for the ubiquitous take-all pathogen
of wheat caused by G. graminis var. tritici, and in
which case we would take a single main root axis
(adventitious or seminal) as the basic host unit, since
the pathogen is capable of incapacitating main root
axes and spreads from main root axis to main root
axis (Bailey & Gilligan 2004; Bailey et al. 2005, 2006).
The numbers of roots of wheat plants increase from 0
to 40 or above over the course of a single season
(Bailey et al. 2005), and it is this change we are consid-
ering when we refer to demography. Infected hosts
remain infectious for m21 units of time before entering
the removed (R) class. New susceptible hosts are pro-
duced at rate g(S), with loss of hosts from all classes,
for example by natural (non-pathogenic) death or
continual harvesting, at rate h. Free-living inoculum
decays exponentially at rate c. It is replenished by
release from infectious hosts with efficiency a, corre-
sponding to infected hosts either producing or becoming
sources of inoculum. This phenomenon is typical of
soil-borne plant pathogens (Gubbins & Gilligan
1997a), and has also been modelled in a similar fashion
for viral pathogens of insects (Anderson & May 1981;
Bowers & Begon 1991; Bowers et al. 1993; Begon &
Bowers 1994; Liu et al. 2007). The complex interplay
between primary and secondary infection has been
previously studied for botanical epidemics (Brassett &
Gilligan 1988; Colbach et al. 1997; Gilligan &
Kleczkowski 1997; Gubbins & Gilligan 1997a; Truscott
et al. 1997; Bailey & Gilligan 1999; Schoeny & Lucas
1999; Gubbins et al. 2000). The dual source of infection
is therefore introduced in the epidemiological model but
the analyses can easily be simplified to account for sec-
ondary infection alone. For convenience, the parameters
of the model are summarized in table 1.
2.3. Host demography

Following common practice in compartmental models
for plant disease (Gilligan 2002), we compare the effects
J. R. Soc. Interface (2010)
of two widely used growth functions on epidemiological
dynamics. The models differ in the feedback used to
limit host growth in the absence of the pathogen. For
convenience we merge the production and loss of
susceptible hosts into a single function, f(S), with
f(S) ¼ g(S) 2 hS, which controls the dynamics of the
host in the absence of the pathogen. We focus upon
the monomolecular and logistic models (denoted as
models M and L, respectively)

Model M: f ðSÞ ¼ bðk� qðSÞÞ; ð2:2Þ

Model L: f ðSÞ ¼ bSð1� qðSÞ=kÞ; ð2:3Þ

where in each model b is a rate parameter controlling
the rate of production of susceptible hosts, k is the
carrying capacity of the susceptible host population in
the absence of the pathogen and q(S) relates the
production rate to the current size of the susceptible
population. For simplicity, we consider q(S) ¼ S
throughout, noting that the qualitative results hold
also for forms such as q(S,I) ¼ S þ I, in which other
classes of host affect the feedback. A derivation of
both models is given in appendix A.
2.4. Non-dimensionalization

For convenience we introduce m ¼ m þ h for the
combined rates of loss of infected hosts (cf.
equation (2.1)). Then introducing the scaled
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dimensionless variables

Ŝ ¼ S
k
; Î ¼ I

k
; X̂ ¼ bX

ak
; R̂ ¼ bR

mk
and t̂ ¼ bt

ð2:4Þ

and the dimensionless parameter groupings

b̂p ¼
bpak

b2 ; b̂s ¼
bsk

b
; m̂ ¼ m

b
; ĉ ¼ c

b
and ĥ ¼ h

b
ð2:5Þ

transforms the model to

dŜ

dt̂
¼ f̂ ðŜÞ � ðb̂pX̂ þ b̂sÎ ÞŜ ;

dÎ

dt̂
¼ ðb̂pX̂ þ b̂sÎ ÞŜ � m̂ Î ;

dR̂

dt̂
¼ Î � ĥR̂

and
dX̂

dt̂
¼ Î � ĉX̂ ;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð2:6Þ

with the dimensionless host dynamics in the absence of
the pathogen, f̂(Ŝ), given by

Model M: f̂ ðŜÞ ¼ 1� Ŝ ð2:7Þ

and

Model L: f̂ ðŜÞ ¼ Ŝð1� ŜÞ: ð2:8Þ

Four parameters, the birth rate of susceptible hosts, the
carrying capacity, the rate at which inoculum is pro-
duced by infected hosts and the rate at which infected
hosts transition to the removed class, do not have
direct analogues in the dimensionless version of the
model after the scaling. Five principal parameters b̂p,
b̂s, m̂, ĉ and ĥ remain, and as these groupings entirely
determine the dynamics of the model, we concentrate
on these dimensionless analogues of the key epidemiolo-
gical parameters in our further analysis. The meanings
and definitions of the dimensionless parameter
groupings are summarized in table 1.
2.5. Methods of analysis

We first determine the reproductive number of the
pathogen, R0, to characterize conditions for the
pathogen to invade when it is introduced into a popu-
lation of susceptible hosts at the carrying capacity
(Diekmann et al. 1990; Anderson & May 1991;
Gubbins et al. 2000). We also perform an explicit
stability analysis of the host–pathogen coexistence
equilibrium, to confirm that the pathogen and host
are able to persist with the other present. Numerical
simulation is used to explore the time to equilibrium
for both variants (M and L) of the host model.
Finally, we analyse the effectiveness of control on
endemic levels of infection by characterizing the
progressive effect of control through changes in
epidemiological parameters.
J. R. Soc. Interface (2010)
3. RESULTS

The basic reproductive number of the pathogen is given
by (appendix B)

R0 ¼
1
m̂

b̂p

ĉ
þ b̂s

 !
; ð3:1Þ

with a natural partitioning (that is useful in later ana-
lyses) into independent components corresponding to
primary and secondary infection,

R0 ¼ Rp
0 þ Rs

0; ð3:2Þ

where Rp
0 ¼ b̂p/(m̂ĉ) and Rs

0 ¼ b̂s/(m̂).
The M model exhibits two equilibria. There is a

pathogen-free equilibrium, at which the host is present
at its carrying capacity,

ðŜ ; Î ; R̂; X̂Þ ¼ ð1; 0; 0; 0; 0Þ; ð3:3Þ

and a coexistence equilibrium, at which the density of
susceptible hosts is depressed below the disease-free
value,

ðŜ ; Î ; R̂; X̂Þ ¼ 1
R0

;
1
m̂

1� 1
R0

� �
;

1

ĥm̂
1� 1

R0

� �
;

�

1
ĉm̂

1� 1
R0

� ��
: ð3:4Þ

There are three equilibria for the L model: a pathogen-
free and host-free equilibrium in which both species are
eliminated; a pathogen-free equilibrium; and a host–
pathogen coexistence equilibrium, given respectively by

ðŜ ; Î ; R̂; X̂Þ ¼ ð0; 0; 0; 0Þ; ð3:5Þ

ðŜ ; Î ; R̂; X̂Þ ¼ ð1; 0; 0; 0Þ ð3:6Þ

and

ðŜ ; Î ; R̂; X̂Þ ¼ 1
R0

;
1

m̂R0
1� 1

R0

� �
;

1

ĥm̂R0
1� 1

R0

� �
;

�

1
ĉm̂R0

1� 1
R0

� ��
: ð3:7Þ

For both models, the equilibrium that is attained in the
long term is controlled by the value of R0 (see appendix
C for stability analysis). Unsurprisingly, if R0 , 1, the
pathogen is unable to invade and is always eradicated,
and the models predict that the susceptible host
population will stabilize at its carrying capacity. The
pathogen-free and host-free equilibrium (equation
(3.5)) for model L is unstable and so is unlikely ever
to be attained in practice. If R0 . 1, the pathogen is
always able to invade and persist in the host popu-
lation, and both models predict a non-zero density of
infected tissue for all time. The models differ, however,
with respect to the stability of the coexistence equili-
brium. For Model M, the coexistence equilibrium is
always stable for R0 . 1, and the density of infected
hosts reaches the level predicted by equation (3.4).
Even for relatively large values of R0, the equilibrium
is attained directly with no oscillatory character to
the fixed point (figure 1).
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Model L exhibits a more complex behaviour
(figure 2). For intermediate values of R0, the behaviour
is similar to that of Model M, and the densities of
susceptible and infected hosts stabilize at the levels pre-
dicted by equation (3.7). For sufficiently large values of
R0, however, the coexistence equilibrium of Model L can
lose its stability, and a periodic cycle can be generated,
with the densities oscillating about their equilibrium
values. A large value of Rp

0 is required for the oscil-
lations to appear. Moreover, this large value must be
attained via increases to the dimensionless analogue of
the rate of primary infection b̂p (driven by increases
to parameters such as bp or a) rather than by decreases
to the dimensionless analogue of the rate of decay of the
inoculum ĉ. When it occurs, the amplitude of the limit
cycle can be large compared with the equilibrium
densities and is entirely independent of the initial con-
ditions (so long as the initial densities of both host
and pathogen are non-zero). In general, the size of the
oscillations increases with the value of b̂p. We note
that even if the parameters are not suitable for
the limit cycle to appear, the coexistence equilibrium
in Model L is approached by weakly damped oscil-
lations, ensuring that the equilibrium is reached
relatively slowly in comparison with Model M.

We have shown that the density of infected hosts at
equilibrium depends upon R0. More insight is obtained
by examining how changes to individual parameters
within R0 affect the response (figure 3). The key deter-
minant of the behaviour is whether or not m̂ (the rate of
death/removal of infected hosts) is changing. In par-
ticular, for Model M, if the parameter m̂ is varied in
order to alter R0, then the infected density at equili-
brium increases indefinitely, whereas if changes to any
of the other parameters are driving the change in the
reproductive number, the infected density remains
bounded (although the density increases with R0 as
might be expected). That the infecteds can be
unbounded in Model M when there is also a carrying
capacity for susceptibles is a subtle point, which can
be explained as follows. The behaviour of Model M as
R0 increases without bound depends critically upon
the parameter that is altered to effect the change. In
all cases, a large value of R0 leads to a small number
of susceptible hosts at equilibrium, and in Model M
the dynamics of host production mean that a relatively
large (but bounded) number of new susceptible hosts
therefore enter the S compartment per unit time.
When any increase to R0 is caused by altering the
rate(s) of infection, this bounded rate of influx of new
susceptible hosts puts a bound on the maximum
number of newly infected hosts per unit time, no
matter how large the rates of infection become, and
very large increases to the endemic density are effec-
tively constrained by this bounded influx of new hosts
rather than by alterations to the rate parameters.
This may be contrasted with increasing R0 by decreas-
ing the rate at which infected hosts decay. In this
case the non-zero influx of infected hosts ultimately
owing to the non-zero birth term cannot be balanced
by the ever-decreasing outflow corresponding to
disease-induced death, and so there is an unbounded
response in endemic density to decreases to m. That
J. R. Soc. Interface (2010)
the response with changes to R0 caused by alterations
to m in Model L is not unbounded is due to the low
rates of birth at low susceptible density (caused by
high R0) specified in the host dynamics of that model.

The pattern for the equilibrium density of infected
hosts in Model L is more striking. If R0 is increased
upwards from the bifurcation at R0 ¼ 1 by decreasing
m̂, there is a monotonic (but bounded) increase in the
infected density. If, however, an increase in R0 is
driven by appropriate increases in b̂p and b̂s or
decreases in ĉ, the density of infected hosts first
increases (R0 , 2) but then decreases (R0 . 2). This
counterintuitive result has important implications for
control (see below). Note that these patterns can be
explained analytically by characterizing the response
of the equilibrium to the dimensionless parameters:
the mathematical details are given in appendix D.
3.1. Control

Control of plant disease is routinely achieved by geneti-
cal, chemical, cultural or biological means. Here we
interpret the generic effects of control by analysing
the effects of changes in the key epidemiological
parameters (b̂p, b̂s, m̂, ĉ) on the dynamics of infection.
For example, chemical control may reduce the trans-
mission rates or the infectious periods (Hall et al.
2004), while cultural or biological control may acceler-
ate the decay of inoculum in soil (Cook & Baker
1983). We distinguish between eradication, in which
the pathogen is entirely removed from the system and
is unable to persist (table 2); and reduction, in which
the density of infected hosts is reduced (table 3).

The results for eradication are common to both M
and L models. Decreasing m̂ is effective in eradicating
the pathogen, irrespective of whether Rp

0 . 1, Rs
0 . 1,

or Rp
0, Rs

0 . 1 (table 2). The possibility of eradication
by altering one of the other parameters depends upon
the partitioning of the reproductive number into
components for primary and secondary infection. For
example, a pathogen with Rs

0 . 1 can never be
eradicated by changes to the parameters associated
with primary infection, even if the rate of primary infec-
tion (b̂p) is decreased to zero or if the rate of decay of
primary inoculum (ĉ) is increased without bound
(table 2). This is simply because R0 � Rs

0 . 1.
Similarly, if the epidemic is driven by primary infection
(and so has Rp

0 . 1), then a strategy based around
intercropping (which alters the rate of secondary infec-
tion b̂s), for example, will never be able to control the
disease in an agricultural crop, no matter how much
of the available land is turned over to the non-crop
species (even in the limit b̂s! 0).

The results for the reduction in endemic levels of
pathogen density differ between the two host growth
models. Whereas for Model M there is a predictable
monotonic response in the endemic level of infection
with changes in each of b̂p, b̂s, m̂ or ĉ, the corresponding
responses for Model L are more complex (table 3). It
follows that for Model M, the more effort that is put
into control, measured by changes in parameter
values, the greater the effect in reducing the endemic
level of infection (I(t!1)). With the exception of
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changes in m̂, this is not true for Model L (table 3)
because of the non-monotonic response of the endemic
level of infection to changes in R0 (figure 3; appendix
C). The behaviour depends upon the balance between
primary and secondary infection, the magnitude of R0

and the control strategy that is applied. Progressively
ramping up the intensity of control to decrease the
transmission rates b̂p and b̂s, and so to decrease the
value of R0, can lead first to an increase and then to a
decrease in the endemic level of infection as the relevant
parameter itself and so R0 decreases through 2. A
similar result applies to control that progressively
increases the loss of inoculum ĉ (table 3).
4. DISCUSSION

We have shown that the selection of commonly used
functions for host growth to control the supply of
susceptible tissue in epidemiological models can have
profound effects on the invasion, persistence and con-
trol of plant pathogens. This means that care must be
taken not only in coupling host demography with epi-
demic models to predict disease dynamics, but also in
optimizing the effectiveness of control. We have used
a combination of non-dimensionalization to simplify
an SIRX model, reducing the numbers of free par-
ameters to assist biological interpretation, together
with R0 to analyse invasion, and endemic stability
analysis to characterize persistence. Following Gubbins
et al. (2000), we show that the form of R0 is unaffected
J. R. Soc. Interface (2010)
by host demography and that for this class of model, R0

is the sum of two distinct components that correspond
to primary and secondary infection (Rp

0 and Rs
0,

respectively). This allows us to determine suitable
eradication strategies for particular host–pathogen
interactions, or alternatively to motivate preventative
strategies to stop pathogen invasion. We note that, in
particular, a pathogen with Rp

0 . 1 can only be
eradicated by altering rates associated with primary
infection and that there is an analogous result for
secondary infection. While this is unsurprising to epide-
miologists, it switches the focus to mechanistic and
biologically meaningful parameters that affect the
dynamics. This differs from conventional assays
and analyses of control that have tended to concentrate
on physiological responses such as reduction in
lesion growth, without translating these effects into
epidemiologically meaningful parameters to gauge
whether or not control will be successful in arresting
epidemiological spread.

Whereas Gubbins et al. (2000) used generic functions
for host demography, we have focused on two specific
functions, the monomolecular and logistic. Much
previous work in botanical epidemiology has included
analogous forms, using monomolecular (Jeger 1987;
Gilligan 1990; Gilligan & Kleczkowski 1997; Madden
et al. 2000; Truscott & Gilligan 2003; Stacey et al.
2004; van den Bosch et al. 2007) or logistic growth
(Gilligan & Kleczkowski 1997; Gubbins & Gilligan
1997a; Truscott et al. 1997; Webb et al. 1999, 2000;
Park et al. 2001; Gilligan 2002; Bailey & Gilligan



1.0
(a) R0 = 0.50 (βp = βs)

0.5

S,
 I

 (
de

ns
iti

es
)

(b)

(c) (d )

(e) ( f )

(g) (h)

R0 = 2.00 (βp = βs)

R0 = 4.00 (βp = βs) R0 = 8.00 (βp = βs)

R0 = 8.00 (large βs) R0 = 8.00 (small μ)

R0 = 8.00 (large βp (S0 = 0.9)) R0 = 8.00 (large βp (S0 = 0.1))

1.0

0.5

S,
 I

 (
de

ns
iti

es
)

0 10 20 30 40 50 0 20 40 60 80 100

1.0

0.5

S,
 I

 (
de

ns
iti

es
)

0 20 40 60 80 100 0 20 40 60 80 100

1.0

0.5

S,
 I

 (
de

ns
iti

es
)

0 50
t (time) t (time)

100 150 0 50 100 150

0 2 4 6 8 10 0 5 10 15 20

Figure 2. The behaviour of Model L for different values of R0, showing the susceptible (solid) and infected (dotted) host densities
as functions of time. Comparing graphs (d)–( f ) with (g) illustrates the qualitatively different behaviour that is possible for epi-
demics with the same value of R0, and comparing (g) with (h) illustrates that the amplitude of the limit cycle is independent of
the initial condition. Even when the limit cycle is not present, and the coexistence equilibrium is stable (i.e. graphs (b)–( f )), it is
attained via damped oscillations and very slowly in comparison with Model M (cf. figure 1). Graph (a) shows the behaviour when
the pathogen is unable to invade.
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Figure 3. The terminal density of infected hosts at the coexistence equilibrium as a function of R0. Graphs (a)–(c) show the
behaviour of Model M, whereas graphs (d)–( f ) show the behaviour of Model L. The response and stability of the endemic
equilibrium depend upon which dimensionless parameter is altered in manipulating the reproductive number. The values of
bp for which there is a limit cycle are shaded in (d).
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Table 2. Eradication control (for both variants of the model).

R0 of pathogen eradication possible with changes to one parameter?

Rp
0 . 1 Rs

0 . 1 decreasing b̂p decreasing b̂s increasing m̂ increasing ĉ

X X
p p p p

p
X

p
X

p p

X
p

X
p p

X
p p

X X
p

X

Table 3. Reduction control in Model L. (The symbol # indicates that the parameter change in question (which always leads to
a decrease in the reproductive number) also leads to a decrease in the density of infected hosts at equilibrium, " indicates that
it always leads to an increase and "# indicates that it leads first to an increase then to a decrease depending upon the
magnitude of the change. Note that these results apply only to Model L; the simpler results of analogous changes in Model M
are discussed in the main text.)

R0 of pathogen effect of control on infected host density

R0 . 2 Rp
0 . 2 Rs

0 . 2 decreasing b̂p decreasing b̂s increasing m̂ increasing ĉ

X X X # # # #
p

X X "# "# # "#
p p

X "# " # "#
p

X
p

" "# # "
p p p

" " # "
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2004; Bailey et al. 2005, 2006; Parnell et al. 2005; Hall
et al. 2007). The choice of a particular function was
usually arbitrarily determined by selection of a phenom-
enological description to satisfy the characteristics of
host population growth in the absence of infection.
The generality of the models in Gubbins et al. (2000)
essentially restricted analyses to determining thresholds
for invasion only. Here by defining functions explicitly
we derive explicit expressions for the density of infected
hosts at the endemic equilibrium, and analyse the
stability of these equilibria. We find that the extra non-
linearity associated with logistic growth leads to a
reduction in endemic stability, and indeed if the par-
ameters are suitable, a limit cycle can appear. We
note that, in a previous continuous-time model of
viral pathogens of insects with free-living infective
stages (Bowers et al. 1993), adding host density depen-
dence has the opposite effect, and reduces the range of
parameters for which stable cycles are possible (White
et al. 1996). However, their model is a direct elaboration
of Anderson & May’s (1981) original model, in which
both susceptible and infected hosts are able to
reproduce. This is not the case in our model, in which
infection and the consequent expression of disease
prevents an infected unit (which may be a plant, leaf
or root, depending upon the pathogen of interest)
from contributing fully to the production of new
plants, leaves or roots via decreases to the fecundity,
the photosynthetic capacity or nutrient uptake of the
associated plant, respectively. A more relevant compari-
son is with models of viral pathogens of insects in which
births come from susceptible hosts alone (Dwyer 1994),
and for which it is acknowledged that density depen-
dence acts to stabilize cycles (Bonsall et al. 1999).
There is also a more recent model of Liu et al. (2007)
J. R. Soc. Interface (2010)
that investigates the influence of the particular type
of density dependence upon the dynamics of these
systems and which again concludes that density depen-
dence often promotes cycling. A similar conclusion is
apparent from an (arguably) more realistic model of
temperate forest insects which includes a discrete-
time, between-season component (Bonsall et al. 1999),
in which density dependence acts to counteract the
strongly destabilizing effects of the time lag (May
1974), and to stabilize the divergent oscillations
predicted by the underlying model.

The efficacy of control strategies that reduce but do
not eradicate disease were investigated by mapping con-
trol onto the non-dimensionalized parameters and
examining changes in the endemic levels of infection.
For Model M, in which there is a simple linear growth
function, the responses are straightforward: the par-
ameters are changed by control to reduce the rate(s)
of transmission and/or to increase the rate(s) of decay
of infectious material, and so to decrease R0, the term-
inal density of infected hosts is invariably reduced.
However, in Model L, in which there is nonlinear
growth, this is not always the case. If R0 . 2, then
ramping up the intensity of control can lead to a para-
doxical increase in disease, despite the smaller value of
R0. The unexpected behaviour depends upon which
component of R0 is altered to effect the reduction.

In summary, our results highlight the importance of
using epidemiological parameters to analyse the effec-
tiveness of treatments for control. They also emphasize
that careful thought should be given to the interplay
between host demography and epidemiological
dynamics. Although there has been some analysis of
the effect of vital dynamics on generic classes of
model without reference to particular host–pathogen
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pairs (Mena-Lorcat & Hethcote 1992; Zhou & Hethcote
1994), there has been no investigation of diseases of
plants nor of how demography affects disease control.
While we acknowledge that our underlying modelling
framework was rather simple, by restricting ourselves
to a variant of the SIR framework, we have avoided
the proliferation of state variables and parameters
which would have been associated with more complex
models and avoided obscuring the underlying message
of this work. We have also ensured maximum transfer-
ability across the widest range of host pathogen systems
by using the common currency of the field, and
have illustrated our results in a class of model that
has been experimentally tested for plant disease
(Gubbins & Gilligan 1996, 1997a,b,c; Gilligan et al.
1997; Bailey & Gilligan 1999, 2004; Bailey et al. 2004,
2005, 2006, 2009). We note that previous investigations,
including our own (Gilligan et al. 1997; Bailey &
Gilligan 2004; Bailey et al. 2006), have focused on
elaborations such as disease-induced host responses to
infection. Our results here suggest that seemingly
benign choices can have unexpected and counterintui-
tive results in even the simplest models. Future work
in the context of plant disease will now analyse inter-
actions induced by alternative forms for host growth
and disease-induced host responses to infection.
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studentship (N.J.C.) and a professorial fellowship (C.A.G.).
We also thank Stephen Parnell for helpful comments upon
an early draft of the paper and the two anonymous referees
for their close reading and helpful feedback.
APPENDIX A. MOTIVATING THE
GROWTH FUNCTIONS

We present a motivation for the monomolecular and
logistic functions used in the main text. In each case
we consider the dynamics of the host in the absence
of infection, which are controlled by (cf. equation (2.1))

dS
dt
¼ gðSÞ � hðSÞ ¼ f ðSÞ: ðA 1Þ

We consider three plausible scenarios:

I: constant birth rate, with g(S) ¼ r;
II: constant per capita birth rate, with g(S) ¼ rS; and
III: linearly decreasing per capita birth rate, with

g(S) ¼ rS(1 2 pS);

and determine which lead to biologically plausible (i.e.
finite) host densities. In scenario I, we can rewrite
f(S) ¼ b(k 2 S), where b ¼ h and k ¼ r/h, and so the
model predicts a monomolecular increase in the absence
of infection, with well-defined carrying capacity k.
Similarly scenario III leads to f(S) ¼ bS(1 2 S/k)
where b ¼ r 2 h and k ¼ (r 2 h)/rp, and so a logistic
increase is predicted. However, in scenario II, f(S) ¼
(r 2 h)S, and so the model predicts an exponential
increase in the number or density of susceptible hosts
in the absence of infection (if r . h). This is unrealistic,
and so scenario II is rejected.
J. R. Soc. Interface (2010)
APPENDIX B. BASIC REPRODUCTIVE
NUMBER

We calculate this key threshold using the next-
generation method (Diekmann et al. 1990), which is a
general procedure to determine R0 in compartmental
models with multiple infectious classes (Heffernan et al.
2005). We choose a permutation of the n¼ 4 state vari-
ables such that the first m ¼ 2 are infected, with x¼
(Î, X̂, Ŝ, R̂)T, and find (in the notation of van den
Driessche & Watmough (2002)) that the disease-free equi-
librium is x0¼ (0, 0, 1, 0)T, that the operator F, which
reflects the rate at which new infections arise, is given by

F ¼ b̂s b̂p
0 0

� �
ðB 1Þ

and that the operator V, which reflects the rate at which
compartments corresponding to infection are exited, is
given by

V ¼ m̂ 0
�1 ĉ

� �
: ðB 2Þ

Therefore, the next-generation matrix is

FV�1 ¼ 1
m̂ ĉ

b̂sĉ þ b̂p b̂pm̂

0 0

� �
; ðB 3Þ

and, since R0 is the spectral radius of this matrix (which
in this case is just the first element),

R0 ¼
1
m̂

b̂p

ĉ
þ b̂s

 !
: ðB 4Þ
APPENDIX C. LOCAL STABILITYANALYSIS

The linear stability of any equilibrium of the model
system in equation (2.6) is controlled by the eigenvalues
of the Jacobian matrix, which at the general point (Ŝ, Î,
R̂, X̂) is given by

J ¼

@ f̂

@Ŝ
� b̂pX̂ þ b̂sÎ
� �

�bsŜ 0 �b̂pŜ

b̂pX̂ þ b̂sÎ bsŜ � m̂ 0 b̂pŜ

0 1 �ĥ 0

0 1 0 �ĉ

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ðC 1Þ

It is clear by considering the third column that one
eigenvalue is always 2ĥ, and so stability is controlled
by the ‘deflated’ Jacobian corresponding to the Ŝ, Î
and X̂ component:

J� ¼

@ f̂

@Ŝ
� b̂pX̂ þ b̂sÎ
� �

�bsŜ �b̂pŜ

b̂pX̂ þ b̂sÎ bsŜ � m̂ b̂pŜ

0 1 �ĉ

0
BBBBB@

1
CCCCCA: ðC2Þ

We use J* to investigate the stability of each
equilibrium in turn.
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C.1. Pathogen-free and host-free equilibrium
(Model L only)

The deflated Jacobian reduces to

J� ¼
1 0 0
0 �m̂ 0
0 1 �ĉ

0
@

1
A; ðC 3Þ

from which it is immediately apparent that the
additional eigenvalues are 1, 2m̂, 2ĉ and so that this
equilibrium is always a saddle point (and so is
unstable).
C.2. Pathogen-free equilibrium

For both models, the deflated Jacobian becomes

J� ¼
�1 �b̂s �b̂p

0 b̂s � m̂ b̂p
0 1 �ĉ

0
B@

1
CA; ðC 4Þ

as @ f̂/@Ŝ ¼ 21 for both models when Ŝ ¼ 1, and
therefore the characteristic equation

ð1þ lÞ l2 þ ðm̂ þ ĉ � b̂sÞlþ ĉðm̂ � b̂sÞ � b̂p

� �
¼ 0

ðC 5Þ

defines the additional eigenvalues l. Clearly, one eigen-
value is always 21, and the Routh–Hurwitz (R–H)
criterion (Britton 2003) applied to the inner quadratic
equation indicates that the other eigenvalues will have
negative real part if and only if

m̂ þ ĉ � b̂s . 0

and

ĉðm̂ � b̂sÞ � b̂p . 0:

9>>=
>>; ðC 6Þ

The rearrangement of this pair of inequalities

m̂ � b̂s . �ĉ

and

m̂ � b̂s .
b̂p

ĉ

9>>>>=
>>>>;

ðC 7Þ

indicates that if the second condition is satisfied, then
the first is definitely true, and therefore that it is suffi-
cient to work with the second inequality. However, the
second inequality may be rearranged as

1 .
1
m̂

b̂p

ĉ
þ b̂s

 !
¼ R0; ðC 8Þ

indicating that R0 , 1 is a necessary and sufficient
condition for all three eigenvalues to have negative
real part (or equivalently for the pathogen-free equili-
brium to be stable). As the R–H criterion is a
two-way implication, we also see that whenever R0 . 1
that the pathogen-free equilibrium is definitely
unstable, and that the pathogen is always able to
initially invade a host population at its carrying
capacity.

An equivalent result is derived directly using the
next-generation method in appendix B; the preceding
J. R. Soc. Interface (2010)
analysis is included to motivate the more complex
analysis that follows.
C.3. Coexistence equilibrium

Noting that at this equilibrium b̂pX̂ þ b̂sÎ ¼ m̂Î/Ŝ, the
deflated Jacobian may be rewritten as

J� ¼

@ f̂

@Ŝ
� m̂ Î

Ŝ
�bsŜ �b̂pŜ

m̂ Î

Ŝ
b̂sŜ � m̂ b̂pŜ

0 1 �ĉ

0
BBBBBB@

1
CCCCCCA
; ðC 9Þ

which after some algebra indicates that the character-
istic equation is given by

l3 þ a1l
2 þ a2lþ a3 ¼ 0; ðC 10Þ

with coefficients

a1 ¼ ĉ þ m̂ � b̂sŜ �
@ f̂

@Ŝ
þ m̂ Î

Ŝ
;

a2 ¼ ĉ m̂ � b̂sŜ �
@ f̂

@Ŝ
þ m̂ Î

Ŝ

 !

þ b̂sŜ
@ f̂

@Ŝ
� m̂

@ f̂

@Ŝ
þ m̂2Î

Ŝ
� b̂pŜ

and

a3 ¼ ĉ b̂sŜ
@ f̂

@Ŝ
� m̂

@ f̂

@Ŝ
þ m̂2Î

Ŝ

 !
þ b̂pŜ

@ f̂

@Ŝ
:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ðC 11Þ

The R–H criterion for cubic equations indicates that
the additional eigenvalues have negative real part,
and so the coexistence equilibrium is stable whenever
the three conditions

a1 . 0;

a3 . 0

and a1a2 � a3 . 0

9>=
>; ðC 12Þ

are simultaneously satisfied.
In the case of Model M, it is possible to simplify the

formidable looking expressions in equation (C 11) and
to prove explicitly that the R–H criterion is satisfied
at the coexistence equilibrium. The coefficients of the
characteristic equation may be reduced to

a1 ¼ ĉ þ R0 þ
b̂p

ĉR0
;

a2 ¼ R0ðĉ þ m̂Þ � b̂s

R0

and a3 ¼ ĉm̂ðR0 � 1Þ;

9>>>>>>>=
>>>>>>>;

ðC 13Þ

from which it is clear that the first two parts of the
R–H criterion in equation (C 12) are definitely satisfied
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whenever R0 . 1. After some rearrangement, we see
that

a1a2 � a3 ¼ ĉ þ R0 þ
b̂p

ĉR0

 !
ĉR0 þ

b̂p

ĉR0

 !

þ m̂ðR0 � 1Þ R0 þ
b̂p

ĉR0

 !
; ðC 14Þ

and as the right-hand side contains only positive terms,
the sufficiency of the condition R0 . 1 for stability
of the pathogen-present equilibrium in Model M is
proved.

However, it is impossible to adapt this analysis for
Model L. In fact, with logistic host dynamics the
condition R0 . 1 does not guarantee that the patho-
gen-present equilibrium is stable, and for certain sets
of parameters it is possible to have R0 . 1, but
a1a2 2 a3 , 0, and so eigenvalues with real parts of
mixed sign. This indicates that the coexistence equili-
brium is unstable for these sets of parameters. However,
as R0 . 1, the pathogen-free equilibrium is also unstable,
and as we know that the trivial equilibrium of Model L
is always unstable, none of the three equilibria can be
attained in the long term. In fact, as the parameters
are changed through the threshold at which a1a2 2

a3 ¼ 0, there is a Hopf bifurcation, with the associated
loss of stability of the coexistence equilibrium (via a
pair of complex eigenvalues bifurcating to have a
positive real part (Glendinning 1994)). The system
exhibits a periodic limit cycle, with the densities of all
three state variables forever oscillating around their
respective equilibrium values. It is possible to determine
a condition upon the parameters that ensures the
existence of the periodic cycle, but it is difficult to
interpret. However, extensive numerical work indicates
that the cycle requires a large rate of primary
infection, b̂p.
APPENDIX D. VARIATION OF THE
INFECTED DENSITY WITH CHANGES
TO THE DIMENSIONLESS PARAMETERS

In Model M, the partial derivatives of the endemic
infected host density are given by

@Î

@b̂p

¼ Rp
0

m̂b̂pðR0Þ2
;

@Î

@b̂s

¼ Rs
0

m̂b̂sðR0Þ2
;

@Î
@m̂
¼ � 1

m̂2

and
@Î
@ĉ
¼ � Rp

0

m̂ ĉðR0Þ2
;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðD 1Þ

and so there is always an increase in the density of
infected hosts with any increase in the transmission
rates and/or a decrease in the infectious periods.
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However, in Model L, the corresponding expressions are

@Î

@b̂p

¼ Rp
0

m̂b̂pðR0Þ3
ð2� R0Þ;

@Î

@b̂s

¼ Rs
0

m̂b̂sðR0Þ3
ð2� R0Þ;

@Î
@m̂
¼ � 1

m̂2ðR0Þ2

and
@Î
@ĉ
¼ � Rp

0

m̂ ĉðR0Þ3
ð2� R0Þ;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðD 2Þ

and so (for all parameters except m̂) the behaviour
depends upon whether or not R0 is greater than 2, as
described in the main text.
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