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A general model explaining the origin of allometric laws of physiology is proposed based on
coupled energy-transducing oscillator networks embedded in a physical d-dimensional space
(d ¼ 1, 2, 3). This approach integrates Mitchell’s theory of chemi-osmosis with the Debye
model of the thermal properties of solids. We derive a scaling rule that relates the energy gen-
erated by redox reactions in cells, the dimensionality of the physical space and the mean cycle
time. Two major regimes are found corresponding to classical and quantum behaviour. The
classical behaviour leads to allometric isometry while the quantum regime leads to scaling
laws relating metabolic rate and body size that cover a broad range of exponents that
depend on dimensionality and specific parameter values. The regimes are consistent with a
range of behaviours encountered in micelles, plants and animals and provide a conceptual
framework for a theory of the metabolic function of living systems.
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1. INTRODUCTION

Metabolism designates the set of chemical transform-
ations carried out by an organism in converting
nutrients with chemical, osmotic and mechanical work.
Metabolic rate, the rate at which these transformations
occur, is constrained by the total size of the organism.
This observation goes back to Lavoisier and Laplace
who were the first to investigate the calculus of energy
transduction in living organisms. The systematic empiri-
cal study of the relations between metabolic rate, which
began with Rubner (1908) and Kleiber (1961) and was
pursued later by Hemmingsen (1960), led to an allometric
relation of the form: P ¼ aWb, where P is the metabolic
rate and W the body size. The proportionality constant
a varies within and between species. The scaling exponent
b varies between taxa and ranges typically from 2/3 in the
case of small animals to 1 for certain plants. An exhaustive
study of the values of the scaling exponents across 3006
species covering 20 orders of magnitude in mass has
been recently conducted by Makarieva et al. (2008) in
terms of mass-specific metabolic rates.

The problem of explaining these empirical rules in
mechanistic terms has engaged several generations of
researchers and is still largely unresolved. The more
recent efforts have been based largely on macroscopic
organismic properties such as elastic similarity and frac-
tal geometry of network pathways. These models
invariably assume that the scaling exponent always
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takes a value b ¼ 3/4, thus ignoring a large body of
empirical observations at variance with it. In particular,
the study by Makarieva et al. (2008) concludes that a
single exponent b does not exist; in fact the values
reported in this meta-analysis range from approxi-
mately 0.6 to 1.0 and have significant uncertainties
associated with them. This study, however, indicates
that across the many life forms, a physiological
window has been found for a metabolic optimum
(Makarieva et al. 2008).

Empirical studies of the mechanistic basis of the allo-
metric relations indicate that both the proportionality
constants and the scaling exponents are in large part
dependent on cellular level properties (Rolfe & Brown
1997; Hochachka & Somero 2000) and not only on
macroscopic scale organization. This observation was
exploited in a new model proposed to explain the allo-
metric relations (Demetrius 2003, 2006). The model is
based on an analysis of molecular dynamics at the
cellular level. A crucial hypothesis is that metabolic
activity within an organism has its origin in the process
of energy transduction localized in three types of
bio-membranes: (i) the plasma membrane in uni-cells;
(ii) the inner membrane of mitochondria in animals;
and (iii) the thylakoid membrane in plants (Harold
1986). These structures give rise to dimensionality
differences in terms of the energy-transducing enzymes
embedded in them. Alignment in a single direction can
be locally seen in the case of uni-cells where the enzymes
are aligned within the inner membrane. This may also
This journal is q 2009 The Royal Society
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be the case in mitochondria. Alignment in two
dimensions typically occurs in mitochondria while
three-dimensional alignment appears characteristic of
some mitochondria and chloroplasts. As we demon-
strate later in the paper, the dimensionality of the
network of energy-transducing enzymes plays a dec-
isive role in the determination of the scaling rule for
the metabolic rates as a function of the body mass.

Living organisms produce the biochemical energy
unit, ATP, from energy sources mainly via oxidative
phosphorylation. Hydrolysis of ATP is used to store
energy in cells for intermediate metabolism. A domi-
nant role for the mitochondria (Scheffler 2008) is the
production of ATP. This is done by oxidizing the
major products of glucose, pyruvate and NADH,
which are produced in the cytosol. This process of
cellular respiration, also known as aerobic respiration,
is dependent on the presence of oxygen. When oxygen
is limited, the glycolytic products are metabolized by
anaerobic respiration, a process that is independent of
the mitochondria. The production of ATP from glucose
has an approximately 13-fold higher yield during
aerobic respiration compared with anaerobic respir-
ation. The commonly held assumption that energy
production by metabolic enzymes requires the presence
of chemical gradients (Scheffler 2008) is certainly
correct, although this is also accompanied by dynamical
molecular processes as has been argued by several
groups of authors as we describe below.

The transfer of electrons in a bio-membrane is
accompanied by a series of redox reactions in a cyclic
scalar process that induces a vectorial process character-
ized by a net movement of protons from one molecular
centre to another. Energy transduction in bio-
membranes can be analysed in terms of the
chemi-osmotic coupling of two molecular motors:
(i) the redox chain, which describes the transfer of elec-
trons between redox centres within the bio-membrane
and (ii) the ATPase motor, which is involved in the
phosphorylation of ADP to ATP. A fundamental
assumption of the model that we advance in this
paper is the molecular oscillator hypothesis, which
states that the energy generated by the redox reactions
can be stored in terms of coherent dynamical modes of
the molecular oscillators embedded in the bio-
membrane. This assumption is consistent with
Froehlich’s theory of biological coherence that was
based on quantum interactions between dipolar con-
stituents of bio-molecules (Froehlich 1968). Froehlich
proposed momentum–space correlations within a
living system such as a membrane, a cell or an organism
(Froehlich 1972, 1980). This dynamic order would be a
characteristic feature that distinguishes living systems
from inanimate matter. The Froehlich model of biologi-
cal coherence is based on a condensate of quanta of
collective polar oscillations (Froehlich 1968). Various
experiments appeared to demonstrate the sensitivity
of metabolic processes to certain frequencies of electro-
magnetic radiation above the expected Boltzmann
probability level. Raman scattering experiments of
Webb (1980) found non-thermal effects in Escherichia
coli but could not be reproduced by other laboratories.
Irradiation by millimetre waves of yeast cells showed
J. R. Soc. Interface (2010)
increased growth at specific frequencies (Rowlands
et al. 1983). While some of these experiments illustrate
non-thermal effects in living matter that would require
nonlinear and non-equilibrium interactions for expla-
nation, no unambiguous experimental proof has been
furnished to date to support Froehlich’s hypothesis,
although its basic premise remains attractive.

Synchronization of metabolic cycles through gene and
enzyme regulation within and between cells have been
demonstrated to involve collective and coordinated tran-
scriptional cycles in both cultured yeast and mammalian
cells (Bianchi 2008). Evidence is mounting that a living
cell is an oscillator exhibiting collective behaviour in gene
regulation coordinating mitochondrial and metabolic
functions (Klevecz et al. 2008; Palumbo et al. 2008). In
a large body of work, Tsong and collaborators have
shown the existence of dynamical processes involving
metabolic enzymes that can capture and transmit
energy from oscillating electric fields (Westerhoff et al.
1986) involving electro-conformational coupling (Tsong
1987) and electric modulation of membrane proteins
(Tsong 1990). We conclude that a number of specific
molecular processes may be at play, resulting in the
oscillatory behaviour of energy-transducing enzymes.
These biological oscillators can be synchronized under
favourable conditions.

In this paper we will exploit the methods of the quan-
tum theory of solids to investigate the relation between
(i) the total metabolic energy generated by the molecu-
lar oscillators and (ii) the cycle time, the mean time of
the molecular processes within the bio-membrane. The
mean cycle time is a function of: (i) the external
resources that drive the metabolic processes in the
cells and (ii) the intrinsic properties of the metabolic
network that transforms the external resources into
osmotic, muscular and synthetic work.

In earlier studies (Demetrius 2003, 2006), it was
shown that the relation between metabolic energy and
cycle time can be characterized in terms of two classes of
constraints. The critical property is the relation between
the mean cycle time and the characteristic cycle time,
which is the average time required for the synchronization
of enzymatic metabolic activities within the network.

We established the following.

(i) If the mean cycle time, t, is much shorter than
the characteristic cycle time, t*, then the scaling
relation is b ¼ 3/4.

(ii) If the mean cycle time, t, is much longer than the
characteristic cycle time, t*, then the scaling
exponent is b ¼ 1.

These relations provide an explanation for the differ-
ences in scaling exponents that characterize certain
plants (b ¼ 1) and animals (b ¼ 3/4). The argument
that underlies the above relations implicitly assumed
that the enzyme molecules that are embedded in the
bio-membrane and that constitute the origin of the
energy transduction process are distributed uniformly
in space, a condition that entails a dimensionality
d ¼ 3 for the molecular oscillator network.

This article will generalize the argument devel-
oped in these earlier papers in an effort to explain



Table 1. Formal relation between thermodynamic variables
and metabolic parameters.

thermodynamic variables metabolic parameters

temperature cycle time
heat capacity metabolic rate
thermodynamic entropy entropy production rate
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the diversity of scaling exponents documented in
Makarieva et al. (2008) and Glazier (2005). We will
derive a scaling relation for systems of arbitrary dimen-
sion and in arbitrary regimes of mean cycle time and
characteristic cycle time ratios. We will show that
when the mean cycle time is much less than the char-
acteristic cycle time, then the relation between
metabolic rate, P, and body size, W, is given by

P ¼ gCDpWd=ðdþ1Þ: ð1:1Þ

Here, 1 , d , 1, and d denotes the dimension of the
interacting molecular oscillator network embedded in
the bio-membrane. The parameters C and Dp are
bio-energetic parameters; C denotes the proton conduc-
tance of the bio-membrane and Dp is the proton-motive
force. We will show furthermore that when the mean
cycle time is much greater than the characteristic
cycle time, we now have an isometric relation between
metabolic rate and body size.

The methodology that underlies the derivation of the
above equation is the quantum theory of solids as
formulated originally by Einstein and Debye. The
quantum theory of solids was aimed at explaining in
mechanistic terms a class of relations between the specific
heat of solids and absolute temperature. The model pro-
posed by Einstein treated the atoms in a crystalline solid
as vibrating independently of each other about fixed
lattice sites. The extension owing to Debye assumed
that the vibrations are mutually coupled, leading to the
propagation of elastic waves. Both classes of models
assumed that the molecular oscillators were quantized
and applied Planck’s quantization rule to derive
expressions relating the total energy generated by the
molecular oscillations with the absolute temperature.

Quantum metabolism, the term we have invoked to
describe the methodology that underlies this work,
rests on the observation that the molecular oscillations
in bio-membranes and the material oscillations in
crystalline solids can be analysed in terms of essentially
the same mathematical formalism. This recognition is
derived from a formal correspondence between the ther-
modynamic variables that describe material systems and
the metabolic parameters that define certain biological
processes (Demetrius 2003). We summarize this
correspondence in table 1. The correspondence between
thermodynamic variables and metabolic parameters is
a consequence of the following analytical fact (Arnold
et al. 1994). The growth rate parameter in metabolic pro-
cesses satisfies a variational principle that is formally
analogous to the minimization of the free energy in ther-
modynamic systems. The conceptual framework and the
analytical methods that define quantum metabolism
form an extension of this mathematical principle.
2. ENERGY TRANSDUCTION IN
BIO-MEMBRANES

The energy-transducing bio-membrane is the basic struc-
ture in our analysis of metabolic activity and the relation
between metabolic rate and body size. The basic
information on the structure of bio-membranes has led
to the fluid mosaic model (Singer & Nicholson 1972),
J. R. Soc. Interface (2010)
which describes the membrane as a sheet-like structure
with a thickness of approximately 10 nm and consisting
of non-covalently bound lipid–protein complexes. The
constituent proteins, which are embedded in the phos-
pholipids layer, are held together by many cooperative
non-covalent interactions.

According to Mitchell’s chemi-osmotic theory, the
energy released in oxidation is coupled by proton
translocation across the bio-membrane to ADP phos-
phorylation. The energy transformation involves the
inter-conversion of three forms of energy.

(i) The redox potential difference, that is, the actual
redox potential between the donor and acceptor
couples in the electron transfer chain.

(ii) The proton-motive force, which describes the
free energystored in themembrane electrochemical
proton gradient.

(iii) The phosphorylation potential for ATP synthesis.

Transfer of electrons in a bio-membrane is accompanied
by a series of redox reactions in a cyclic scalar process
that induces a vectorial process with a net movement
of protons from one molecular centre to another. The
transit time of this cyclic process determines the total
metabolic flux, that is, the number of proton charges
released by the redox reactions. The electron transport
between redox centres is coupled to the outward pump-
ing of protons across the membrane, thus generating an
electrochemical gradient, called the proton-motive
force, Dp. If C denotes the proton conductance of the
membrane and J denotes the proton current induced
by the electromotive force, applying Ohm’s law to the
proton circuit, we obtain J ¼ CDp. Accordingly, the
energy generated per cycle is given by E ¼ gt, where
g ¼ J/NA, NA denotes Avogadro’s number and t

denotes the cycle time, the mean turnover time of the
enzymes in the reaction process.

The range of values assumed by the various bio-
energetic parameters is highly dependent on taxa as
briefly discussed below.

(i) The proton conductance is given by C ¼ Co

exp(2DE/RT), where DE is the activation
free energy, R is the gas constant and T the
absolute temperature. C tends to be higher in
endotherms than in other organisms because of
their temperature dependence.

(ii) The proton-motive force Dp is given by Dp ¼
DC2(2.3RT/F)DpH, where DC is the mem-
brane potential and F denotes Faraday’s con-
stant. The values of Dp, DC and DpH depend
on the geometry and chemical composition of
the energy-transducing membrane and differ



Table 2. The values of Dp, DC and DpH for three types
of membranes.

membrane DC (mV) DpH Dp (mV)

bacteria 70 22 185
mitchondria 140 21.4 220
chloroplasts �0 3.5 2200
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between bacteria, mitochondria and chloroplasts
(table 2). The bacterial membrane and the mito-
chondrial inner membrane have equivalent
topologies with respect to inside and outside.
The chloroplast inner membrane is oriented
inside-out relative to these other two cases.
Accordingly, this leads, in the case of chloro-
plasts, to a positive value for DpH and a negative
value for Dp.

(iii) Cycle time. The cycle time is the mean turnover
time of the enzymes in the reaction process. Based
on typical data for ion pumps in biological mem-
branes, the range of values expected for t is between
1026 and 1023 s (Tsong&Astumian1988; Liu et al.
1990). The mean cycle time generally increases
with the size of the organism according to a
1/4 power law (Schmidt-Nielsen 1984).

3. QUANTIZATION EFFECTS, METABOLIC
ENERGY AND CYCLE TIME

If N denotes the number of molecular groups involved in
the energy transduction process taking place across the
bio-membrane, then the system has 3N degrees of free-
dom in three spatial dimensions, hence the molecular
oscillations of the system can be described in terms of
3N normal modes of excitation, each with a character-
istic frequency. Molecular oscillations are considered
to be collective properties of the membrane as a
whole. We will compute the metabolic energy, a prop-
erty that is generated by the molecular oscillations of
the membrane-bound energy-transducing groups.

3.1. The mean energy

We assume that the oscillatory modes of the molecular
groups are quantized and then apply a statistical argu-
ment to obtain the average energy for each independent
mode of oscillation. For a given energy, En ¼ (n þ 1/2)�
hv, the probability, Wn, that the oscillation has an
energy corresponding to its nth allowed value is

Wn � exp �En

~E

� �
; ð3:1Þ

where ~E ¼ gt.
The mean energy value E* associated with an

independent mode of oscillation is now given by

E� ¼
X

EnWn; ð3:2Þ

which becomes, in view of equation (3.1)

E� ¼ h� v
expðh� v=gtÞ � 1

: ð3:3Þ
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3.2. The total metabolic energy

The total metabolic energy, u, generated by the redox
reaction and stored in the bio-membrane is given by

u ¼
X3N

k¼1

h� vk

expðh� vk=gtÞ � 1
: ð3:4Þ

In a coarse-grained approach approximating the dis-
crete structure of the membrane by a homogeneous
elastic medium, we find an expression for the total
metabolic energy from different standing wave patterns
generated by the oscillations of the molecular groups.
Thus, the number of standing waves in an enclosure
with frequencies in the range from v to v þ dv is deter-
mined by the geometry of the network of coupled
oscillators. The density of modes for a system of oscil-
lators located in a d-dimensional space depends on
dimensionality d according to Mihaly & Martin
(1996): f ¼ Avd21, where A depends on the spatial
distribution of the elements of the oscillator system,
i.e. the type of lattice they may form in space.

In the case of perfect lattice periodicity, the inte-
gration needs to be performed only over the interval
2p/2a , k , p/2a, where a denotes the mean separ-
ation between the neighbouring oscillators. When
perfect lattice periodicity is absent, as would be typical
of enzymes in a bio-membrane, there will still be a finite
limit imposed on the integration owing to the finite
spacing between neighbouring oscillators. At steady
state, the average occupation number for each mode is
given by the Bose–Einstein statistics because there is
no obvious exclusion principle at work for a number
of energy quanta associated with a given excitation
state. Hence, the statistical average of the occupation
number nj in a given mode is found as

knjðk
Q

Þl ¼ 1
eh� pb � 1

;

where we have introduced the biological parameter b ¼

(gt)21. To calculate the average value of the metabolic
energy u, it is more convenient to perform mode counting
in frequency space than in the space of wavevectors k. This
requires the introduction of the density of states, which
can be viewed as a Jacobian of this type of transformation.
The density of the oscillator states, D(v), as a function of
frequency v is, in general, found as

DðvÞ ¼ L
2p

� �dð
v¼vðk

Q

Þ

1

r
ðk
Q

Þ
vðk

Q

Þ
����

����
dSv; ð3:5Þ

where Sv represents the surface boundary and the
denominator in the integrand describes the gradient of
the dispersion relation in reciprocal (wavevector) space
(Haken 1983). The conservation of the number of states
leads to the normalization condition

Xdr

j¼1

ðvD

0
DðvÞdv ¼ N dr;

where r is the degeneracy of the oscillatory modes. We
then assume that the dispersion relation between the



Table 3. Correspondence between the Debye theory and
quantum metabolism.

Debye theory variables quantum metabolism variables

kB: Boltzmann constant g ¼ C Dp: cell specific
membrane conductance

T: absolute temperature t : mean time between
environmental nutrient
supply

h� : Planck’s constant h� : Planck’s constant
v: characteristic oscillator

frequency
v0: enzymatic network’s

turnover frequency
tD: Debye period of the

oscillators ¼ (2p/vs)
� (4pV/3N)1/3

tmin: minimum turnover time
for the enzymes ¼2a/v

TD: Debye temperature ¼
hvmax/kB

t*: characteristic cycle time
(¼ h� /gtmin)

Allometric scaling of metabolic rates L. Demetrius and J. A. Tuszynski 511
frequency and the wavenumber is jrðkQÞvðk
Q

Þj ¼ v
(i.e. v ¼ kv; k ¼ jðk

Q

ÞjÞ; where v is the velocity of the exci-
tation waves propagating through the biological medium.
Note that as in the Debye theory of solids, the vib-
rational states can only be occupied up to a cut-off
value (the Debye frequency) vD determined by the mean
distance between the neighbouring oscillators.

In table 3, we have summarized the correspondence
between the Debye theory of solids and quantum
metabolism and introduced the mean separation
between interacting enzymes in a network, a, the signal-
ling speed, v, and the volume of the oscillator network,
V, with N oscillators present.

A crystalline solid composed of N coupled oscillators
will manifest quantum statistical behaviour (such as the
power-law scaling of the specific heat with temperature)
in the low-temperature range: T� TD, where the
Debye temperature is TD ¼ hvD/kB. Likewise, a net-
work of coupled enzymatic oscillators will manifest its
quantum dynamics provided the mean time for nutrient
supply is below the mean turnover time for the enzy-
matic processes, or t� t*. Thus, the control parameter
in the case of metabolism, the rate of nutrient supply,
replaces temperature in equilibrium thermodynamics
as an environmental variable. The inherent oscillator
frequency of crystal oscillators is replaced by the mean
turnover time of the enzymatic processes as an internal
variable of the system that characterizes it. Therefore,
the presence of quantum conditions for metabolism is
predicated on the condition for the time between nutri-
ent supply events to be shorter than the inherent
enzymatic turnover time. Conversely, the classical
limit occurs when t� t*, where tmint* ¼ h/2pg with
the minimum turnover rate for enzymes determined
by the speed of the signalling processes v such that
tmin ¼ 2a/v. The signalling process may be electromag-
netic, mechanical or chemical depending on each
particular case considered. With a fixed value of the
environmentally determined period of nutrient supply,
an elongation of the minimum cycle time leads to a
classical limit. This corresponds to a relative oversupply
of metabolic substrates. Conversely, a quantum metab-
olism phenomenon can be linked to the restricted
supply of metabolic energy in analogy with the
restricted amount of thermal energy in quantum solids.

We can now proceed to the mathematical determi-
nation of metabolic rate as a function of physical
dimensionality d and the conditions set by the environ-
ment in terms of nutrient supply rates. Using x ¼ h� bv,
the average metabolic energy is calculated as

u ¼ d
ðvD

0

DðvÞh� vjðk
Q

Þ
expðh� vjðk

Q

ÞbÞ � 1

 !
dv

¼ L
pvh� b

� �dd
b

ðxD

0

xd

ex � 1
dx; ð3:6Þ

where L is the linear dimension of the system. Hence,
the metabolic rate is given by

P ¼ L
pvh� b

� �d

kB

ðxD

0

xdþ1ex

ðex � 1Þd
dx; ð3:7Þ
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where the integral is proportional to the so-called Debye
function (in n-dimensional space) defined as follows:

DnðxÞ ¼
n
xn

ðx

0

tn

et � 1
dt; ð3:8Þ

which is plotted in figure 1 using the logarithmic scale.
Note that the limit as the integral goes to infinity is known:

Dnð1Þ ¼
n
xn

ð1

0

tn

et � 1
dt

¼ n!zðn þ 1Þ ¼

p2

6
for n ¼ 1;

7:2123 for n ¼ 2;
p4

15
for n ¼ 3;

8>>>><
>>>>:

ð3:9Þ

thus,

n
xn

ð1

x

tn

et � 1
dt ¼ n! zðn þ 1Þ � DnðxÞ: ð3:10Þ

Consequently, the total metabolic energy can be
found by integration as

u ¼
ð

3h� v
2p2c2 �

vddv
expðh� v=gtÞ � 1

¼ dNgtDd
t�
t

� �
; ð3:11Þ

where Dd is the Debye function of order d defined above.
We now consider the computation of equation (3.11)
under two extreme cases defined by t* and t.

(i) We consider the case t�t* (quantum limit) that
yields the scaling of the metabolic energy with the
characteristic cycle time as

u ¼ C1t
dþ1; ð3:12Þ

where the coefficient C1 is proportional to the number
of oscillators N, dimensionality d and the parameter g
that contains universal constants and dimensionality-
dependent coefficients found in equation (3.9). We
assume that the metabolic energy is proportional to
the weight of the organism W, u ¼ rW, and hence the
cycle time scales with weight according to

t ¼ C2W 1=ðdþ1Þ; ð3:13Þ

where C2 ¼ (r/C1)
1/(dþ1).
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Figure 1. Log–log plots of the Debye functions
DnðxÞ ¼ n

xn
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Higher dimensions give lower curves.
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Therefore, to obtain the basal metabolic rate (BMR)
in the organism, P, as the value of energy per unit time,
we divide u by t and find that

P ¼ aWd=ðdþ1Þ; ð3:14Þ

where a ¼ gCDp based on equation (1.1) and
a ¼ (a/C1)

d/(dþ1) based on equations (3.12) and (3.13).
This is our central mathematical result in this paper.

The dependence on the dimension leads to the following.
For example, in linear geometry, d ¼ 1, the scaling law
obtained gives an exponent 1/2, while in planar geometry,
d ¼ 2, it becomes 2/3 and finally in three dimensions, d ¼
3, we find the exponent to be 3/4. Note that as the embed-
ding spatial dimensionality of the biological system of
oscillators, d, increases asymptotically, the exponent
tends to one. This corresponds also to what we refer to as
the classical exponent that is found in the limit of t� t*.

(ii) We now consider the case t� t *. It is important
to stress that the quantum limit corresponds to t� t *
and the classical limit to t� t*; the latter results in
the other asymptotic limit of the Debye function and
consequently for the metabolic energy we obtain

u ¼ dNgt: ð3:15Þ

Hence, P ¼ dNg, which is proportional to the number of
oscillators and scales with W, i.e. BMR scales with mass
linearly in the classical limit. Note that up to the leading
order, the same isometric scaling relationship applies to
the Einstein methodology in which the quantum oscil-
lators are decoupled from one another. The pre-factor in
both models is proportional to the number of degrees of
freedom (dN) and hence also to the spatial dimensionality.
Thus, in addition to a difference in the scaling exponent
b ¼ d/(d þ 1), the value of the metabolic rate depends
on dimensionality d. Thus, the higher the dimensionality,
the greater the metabolic rate is expected to be.

In both these asymptotic limits (infinite dimension-
ality and/or long cycle time), we have obtained
isometric scaling relations. The present model has
been able to lead to a range of exponents between
1/2 and 1 (figure 1), which cover all empirically
observed values, by changing either the dimensionality
J. R. Soc. Interface (2010)
(d ¼ 1, 2 or 3) or cycle time. To the best of our knowledge,
there is no other cell-level-based model capable of doing
this. Both for infinite dimensionality and for all t values,
as well as in the limit of large t and arbitrary d, we end
up with the same (linear) scaling law. This situation can
be interpreted in physiological terms as taking place
under the conditions of nutrient oversupply. Interestingly,
isometry is often found in biological conditions where this
is indeed the case, such as in plants that have a virtually
boundless supply of light energy and in certain bacteria
that live in abundant nutrient conditions.

Note that these scaling laws apply strictly speaking
to the continuum limit of the model, which means the
finite value of the distance between the neighbouring
molecular oscillators plays no role here. However, as
can be seen from figure 1, in the asymptotic limit of
the Debye function argument x! 0, the exponent
changes continuously, flattening the curve on approach-
ing the origin, which means that effectively the
dimensionality tends to zero (d ¼ 0) and the scaling
exponent for BMR disappears as the metabolic rate P
no longer depends on the weight of the organism.

Within the Debye methodology, the scaling law
applies strictly speaking only to the asymptotic
regime (the so-called quantum regime). As in the
opposite case (the classical regime) the resultant
relationship is an isometry, it is not difficult to find
out that the intermediate ranges of cycle times result
in power-law relationships interpolating between the
two extremes (Landau & Lifshitz 1984).
4. DISCUSSION

The empirical studies that have been documented in the
works of several authors and organized in the recent
studies byGlazier (2005) and Makarieva et al. (2008) indi-
catea largevariation inboth theproportionality constants
and the scaling exponents that describe the allometric
rules. The proportionality constants are highly taxon
dependent. They also vary between endotherms and
ectotherms. The scaling exponents are also taxon depen-
dent with b ¼ 1 for plants and prokaryotes and b ¼ 2/3
and 3/4 for animals. These values deviate somewhat
from the precise fractions depending on the species
(Makarieva et al. 2008). However, the exponent is not
uniquelydefinedbythe taxonandmaydependonenviron-
mental conditions (availability of resources, for example).

Our model indicates that the proportionality con-
stant a is determined by the bioenergetic properties of
the membrane as a ¼ gCDp, where C is the proton
conductance, g is a proportionality constant and Dp
the proton-motive force. The quantities C and Dp vary
between uni-cells, mitochondria and chloroplasts
(table 2). The scaling exponent b is dependent on two
properties: (i) the relation between the resource
constraints (mean cycle time, t) and the characteristic
cycle time t* and (ii) the dimension of the enzymatic
distribution of the molecular networks.

The condition t� t* corresponds to the case where
the cycle time describing nutrient flow is relatively
short. This reflects well the characteristics of animals
that derive their nutrients from plants. In this case, the



Allometric scaling of metabolic rates L. Demetrius and J. A. Tuszynski 513
energy transduction process is quantized and the scal-
ing exponent b will be now dependent on the dimension
of the molecular oscillator network. Here, we have b ¼

d/(d þ 1), so if the enzymes are located in a chain along
a line, then d ¼ 1 gives b ¼ 1/2, if they are located
anisotropically on a plane, then d ¼ 2 gives b ¼ 2/3
and if these enzymes are distributed uniformly in
space, d ¼ 3 gives b ¼ 3/4.

The condition t� t * corresponds to the case where
the cycle time is long. This situation will be typical of
plants (which use light as the source of energy) and pro-
karyotes, which generally have a large nutrient supply
available. Energy transduction in this model will be
continuous or classical. The scaling exponent is now
given by b ¼ 1. For most large organisms, taxa deter-
mine whether t� t * or t� t *. Hence, taxa largely
define whether the system is in the quantum or classical
regime. In colonial organisms, external conditions may
result in a shift from t� t * to t� t *, which is a
shift from the quantum to the classical state.

This latter situation is exemplified by the experiment
on colonial organisms described by Nakaya et al. (2003),
which has indicated that environmental conditions may
induce a shift from a 3/4 scaling rule to isometry.
Hence the scaling exponent is highly dependent on the
interactions between cells in the organism that merits
special attention in the context of the present work.

Colonial organisms are composed of units that are
identical in size and form, populating a two-dimen-
sional surface. Unitary organisms are composed of
units that are identical in size and populate a three-
dimensional volume. In the ordinary state, there are
strong interactions between individual units while the
take-over state is characterized by either no or weak
interactions between the individual units. Importantly,
there was an observed 50 per cent reduction in the total
metabolic rate in the take-over state, with no change in
the supply of nutrients to the colony. We can interpret
this as a shift from an adequately supplied metabolizing
system to one that is oversupplied (by a factor of 2) with
metabolic substrates. This could then be brought to
bear on the theory presented in this paper. We argue
that the ordinary state is a three-dimensional quantum
metabolic state with an exponent b ¼ 3/4 while the
take-over state is energy-oversupplied (i.e. a classical
state), leading to an isometry and hence b ¼ 1.
5. CONCLUSIONS AND IMPLICATIONS

The thrust of our approach in this paper was to derive
at a cellular level a general expression for the metabolic
rate as a function of cycle time and the dimensionality
of the physical space embedding the set of energy-trans-
ducing enzymes. Uni-cells, mitochondria in eukaryotes
and thylakoid membrane in chloroplasts have different
geometrical structures leading to different scaling laws
for their metabolic rates. We have derived a relationship
between the metabolic energy, u, and the cycle time, t,
and spatial dimensionality of the oscillator network, d,
to show that for one-dimensional systems the metabolic
rates scale with mass through a 1/2 exponent, in two-
dimensional systems through a 2/3 exponent, while in
J. R. Soc. Interface (2010)
three-dimensional systems, the 3/4 exponent is found.
When the embedding dimensionality d tends to
infinity, the scaling relationship becomes an isometry.
Moreover, we obtained a condition characterizing a
transition from a quantum metabolic regime whose
scaling exponent is dimensionality dependent to a clas-
sical state that leads to an isometry in all dimensions.
The criterion separating the classical from the quantum
regime is analogous to the Debye criterion used for
solids, and it basically links it to the oversupply
(classical metabolism—isometry) or adequate supply/
undersupply of nutrients (quantum metabolism—
allometry) in the surrounding environment. These results
form a cornerstone of our explanation of the experimental
observations accumulated by various authors over
many decades. They also suggest how both the geometry
of the metabolic network and the environmental
conditions can generate significant changes in metabolic
rates, a situation that has significant implications, for
example, in developmental biology or adaptation of
living organisms to environmental conditions.

The bioenergetics of metabolism depends on three
factors: (i) the composition of the bio-membrane,
which determines the proportionality constants; (ii) the
dynamics of resource constraints, which determines
whether the energy transduction mechanism follows
quantum or classical rules; and (iii) the geometry of
the molecular oscillator network for systems in the quan-
tum regime, which determines the actual value assumed
by the scaling exponent.

The model put forth in this paper and developed for
higher organisms accommodates both single cell and
multi-cellular organisms because the only difference
will be in the geometrical arrangement of the cells
and their mitochondrial proteins as well as their inter-
actions. In the ordinary state, the Debye methodology
of quantum metabolism in three-dimensional space is
appropriate and leads to the 3/4 scaling law. In the
take-over state, the classical metabolism in two-
dimensional space applies, leading to isometry. Note
that in the classical methodology, spatial dimensionality
changes the pre-factor in the BMR from 3 to 2 (lowering
the rate) and the lack of (quantum) interactions results
in the scaling exponent b changing from 3/4 to 1. We
point to the distributed arrangement of membrane pro-
teins in mitochondria (two dimensional or quasi-three
dimensional) and elliptical arrangement in bacteria.
These cases can be expected to lead to fractional expo-
nents between 2/3 and 3/4. In the case of plants, thyla-
koid membrane proteins appear to be arranged almost
linearly, but the resultant scaling exponent is an isome-
try rather than the expected 1/2 from the quantum
regime of the allometric law. Note, however, that a tran-
sition from fractional exponents to isometry may also
signal a change from the quantum to the classical
regime, i.e. a relative elongation of the mean cycle
time as would be expected from much more slowly
metabolizing plant cells.

Our analysis shows that the variability in propor-
tionality constants and scaling exponents can be
explained in terms of proton and electron dynamics,
which regulates energy transduction across membranes.
Consequently, under certain classes of ecological
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constraints, the scaling exponent b is completely
determined by the relation between t and t* and inde-
pendent of the geometry. It is worth mentioning in this
connection that cycle time can be experimentally
manipulated, for instance, using uncoupling agents
and inhibitors of electron transport. There are six dis-
tinct types of poisons that may affect mitochondrial
function (Roskoski 1996): (i) respiratory chain inhibi-
tors (e.g. cyanide, antimycin, rotenone, TTFA,
malonate), which block respiration in the presence of
either ADP or uncoupling agents; (ii) phosphorylation
inhibitors (e.g. oligomycin), which abolish the burst of
oxygen consumption; (iii) uncoupling agents (e.g.
DNP, CCCP, FCCP, oligomycin), which disrupt the
linkage between the respiratory chain and the
phosphorylation system; (iv) transport inhibitors (e.g.
atractyloside, bongkrekic acid, NEM), which prevent
either the export of ATP or the import of raw materials
across the mitochondrial inner membrane; (v) iono-
phores (e.g. valinomycin, nigericin), which make the
inner membrane permeable to compounds that are
ordinarily unable to cross it; and (vi) Krebs cycle inhibi-
tors (e.g. arsenite, aminooxyacetate), which block one
or more of the TCA cycle enzymes, or an ancillary reac-
tion. Experiments involving such chemical compounds
and measurements of metabolic rates could provide
new insights into malleability of scaling laws owing to
changes in the prevailing molecular parameters.
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