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Abstract
Error propagation on the Euclidean motion group arises in a number of areas such as in dead reckoning
errors in mobile robot navigation and joint errors that accumulate from the base to the distal end of
kinematic chains such as manipulators and biological macromolecules. We address error propagation
in rigid-body poses in a coordinate-free way. In this paper we show how errors propagated by
convolution on the Euclidean motion group, SE(3), can be approximated to second order using the
theory of Lie algebras and Lie groups. We then show how errors that are small (but not so small that
linearization is valid) can be propagated by a recursive formula derived here. This formula takes into
account errors to second-order, whereas prior efforts only considered the first-order case. Our
formulation is nonparametric in the sense that it will work for probability density functions of any
form (not only Gaussians). Numerical tests demonstrate the accuracy of this second-order theory in
the context of a manipulator arm and a flexible needle with bevel tip.
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1 Introduction
Error propagation on the Euclidean motion group arises in a surprising number of different
areas. For example, consider a robotic manipulator for which each joint angle has some
backlash. If we describe this backlash as a distribution of possible angles around the nominal
one, how will these joint errors add up to produce pose errors at the end effector ? Similar
problems arise in the study of chainlike biological macromolecules that undergo thermal
fluctuations in solution. See, for example, [Zhou and Chirikjian 2006] and [Kim and Chirikjian
2005]. As another example, consider a nonholonomic mobile robot that executes an open loop
trajectory. Uncertainties in pose will add up along the path, and if many trials are performed,
what will the distribution of terminal poses be ? Many such problems in ‘probabilistic robotics’
can be imagined with the recent popularity of SLAM [Thrun, Burgard and Fox 2005].

If the errors are small, Jacobian-based methods or first-order error propagation theories can be
used. But what if the errors are very large ? Here we address the propagation of large errors in
rigid-body poses in a coordinate-free way. In this paper we show how errors propagated by
convolution on the Euclidean motion group, SE(3), can be approximated to second order using
the theory of Lie algebras and Lie groups. We then show how errors of moderate size (but not
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so small that linearization is valid) can be propagated by a recursive formula derived here. This
formula takes into account errors to second-order, whereas prior efforts only considered the
first-order case. Our formulation is nonparametric in the sense that it will work for probability
density functions of any form (not only Gaussians).

In the remainder of this section we review the literature on error propagation, and review the
terminology and notation used throughout the paper. In what follows, bold lower case letters
denote vectors. N and n are positive integers. G denotes either the groups SO(3) or SE(3). All
upper case letters (Roman or Greek) (except for N and G) denote matrices. Lower case letters
denote scalars and group elements. A lower case letter followed by parenthesis denotes a scalar-
valued function.

In Section 2, important definitions from the basic theory of Lie groups and probability and
statistics are reviewed. In Section 3, several new theorems are proved. This forms the core of
our paper. In Section 4, sampling is discussed and the theory is adapted for the case when a
whole pdf is not available. Then numerical tests demonstrate the accuracy of this recursive
second-order propagation formula relative to baseline truth generated by brute force. In Section
5 our conclusions are presented. Three appendices provide more detailed background material
that is important for understanding the definitions and proofs presented in the main body of
the paper. The remainder of the current section reviews the literature and basic definitions and
notation used throughout the paper.

1.1 Literature Review
The Lie-group-theoretic notation and terminology which has now become standard vocabulary
in the robotics community is presented in [Murray, Li and Sastry 1994], and Selig [Selig
1996]. In [Chirikjian 2001] many problems in robot kinematics and motion planning were
formulated as the convolution of functions on the Euclidean group. The representation and
estimation of spatial uncertainty has also received attention in the robotics and vision literature.
Two classic works in this area are [Smith and Cheeseman 1986] and [Su and Lee 1992]. Recent
work on error propagation describes the concatenation of Gaussian random variables on groups
and applies this formalism to mobile robot navigation [Smith, Drummond and Roussopoulos
2003]. In all three of these works, errors are assumed to be small enough that co-variances can
be propagated by the formula [Wang and Chirikjian 2006a, Wang and Chirikjian 2006b]

(1)

where Ad is the adjoint operator for SE(3) (See Appendix for a review of terminology). This
equation essentially says that given two ‘noisy’ frames of reference g1, g2 ∈ SE(3), each of
which is a Gaussian random variable with 6 × 6 covariance matrices3 Σ1 and Σ2, respectively,
the covariance of g1 ○ g2 will be Σ1*2. This approximation is very good when errors are very
small. We extend this linearized approximation to the quadratic terms in the expansion of the
matrix exponential parameterization of SE(3). The origin of (1) will become clear for the special
case of small errors in our more general nonparametric derivation.

1.2 Review of Rigid-Body Motions
The Euclidean motion group, SE(3), is the semi-direct product of IR3 with the special
orthogonal group, SO(3). We represent elements of SE(3) using 4 × 4 homogeneous
transformation matrices

3Exactly what is meant by a covariance for a Lie group is quantified later in the paper.
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and identify the group law with matrix multiplication. The inverse of any group element is
written as

For small translational (rotational) displacements from the identity along (about) the ith
coordinate axis, the homogeneous transforms representing infinitesimal motions look like

where I4 is the 4 × 4 identity matrix and

These are related to the basis elements {Ei} for so(3) (the Lie algebra corresponding to the
rotation group, SO(3)) as

when i = 1,2,3. Each Ẽi has a corresponding natural unit basis vector ei ∈ IR6. For example,
e1 = [1, 0, 0, 0, 0, 0]T, e2 = [0, 1, 0, 0, 0, 0]T, etc.

Large motions are also obtained by exponentiating these matrices. For example,

More generally, it can be shown that every element in the neighborhood of the identity of a
matrix Lie group G can be described with the exponential parameterization
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(2)

where n is the dimension of the group. For SO(3) and SE(3), n = 3 and 6, respectively, and the
exponential parameterization extends over the whole group.

One defines the ‘vee’ operator, ∨, such that

The vector, x ∈ IRn, can be obtained from g ∈ G from the formula

(3)

For SO(3) and SE(3) this is defined except on a set of measure zero, which for all intents and
purposes in the probability and statics problems that we will consider means that the
exponential and logarithm maps are ‘effectively’ bijective. See the Appendix for details.

When integrating a function over SO(3) or SE(3), a weight w(x) is defined such that

The exact form of the weighting function is

(4)

This is derived for SO(3) and SE(3) in the Appendix. The weighting function is even in the
sense that w(x) = w(−x).

1.3 The Baker-Campbell-Hausdorff Formula
Given any two elements of a Lie algebra, X and Y, the Lie bracket is defined as [X,Y] = XY −
Y X. An important relationship called the Baker-Campbell-Hausdorff formula exists between
the Lie bracket and matrix exponential (see [Baker 1904, Campbell 1897, Hausdorff 1906]).
Namely, the logarithm of the product of two Lie group elements written as exponentials of Lie
algebra elements can be expressed as

where
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(5)

This expression is verified by expanding eX and eY in Taylor series of the form in (37), and
then substituting the result into (38) with g = eXeY. If the ∨ operation is applied (see Appendix
for a review), (5) can be written as

1.4 Probability and Statistics in IRn: Multivariate Analysis
In IRn, a probability density function (or pdf) is defined by the conditions

where dx = dx1dx2 … dxn is the usual Lebesgue integration measure. The mean of a pdf, f(x),
is defined as

(6)

Note that μ minimizes the cost function

(7)

where  is the 2-norm in IRn.

The covariance of the same pdf about the mean is defined as

(8)

It follows that

(9)

where C is the covariance about the origin and Σ is the covariance about the mean.

Pdfs are often used to describe distributions of errors. If these errors are concatenated, they
‘add’ by convolution:

(10)
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The mean and covariance of convolved distributions are found as

(11)

In other words, these quantities can be propagated without explicitly performing the
convolution computation, or even knowing the full pdfs. This is independent of the parametric
form of the pdf. Often one does not have access to the full pdf, but only samples from a process
with an underlying pdf. In this case, the unbiased sample mean and covariance are defined as
[Anderson 2005]:

The reason for division by N − 1 rather than N is explained in texts on multivariate analysis
such as [Anderson 2005]. As the sample size becomes large, the difference between N and N
− 1 becomes negligible and these sampled quantities converge to those corresponding to the
underlying pdf.

Our main purpose in this paper is to develop equations analogous to (11) to describe the
propagation of error on the motion group SE(3). In the process we will also do so for the rotation
group SO(3).

It is often convenient to use the Gaussian (or normal) distribution: to model errors in IRn. This
parametric distribution is completely defined by its mean and covariance. We will have no
need to assume that densities are Gaussian. Our results are nonparametric, and therefore more
general.

2 Definitions and Properties of Mean and Covariance on SE(3)
In this section we provide definitions of the mean and covariance of Lie-group-valued functions
and illustrate some of their properties. We note in passing that a pdf that is a symmetric function,
ρ(g) = ρ(g−1), always satisfies the condition

(12)

for G = SO(3) or G = SE(3). This is easy to see if we let ρ0(x) = ρ(eX). Then ρ0(x) = ρ0(−x).
This is an even function in the exponential coordinates, and so the odd function xρ0(x)
integrates to zero over a symmetric domain of integration in the space of exponential parameters
that maps to G. See appendix for discussion of integration measures. In our case this domain
is the ball of radius π (for SO(3)), or the Cartesian product of this ball with IR3. Both of which
are symmetric. Hence the integral in (12) vanishes. More generally, if ρ(g) is a symmetric
function on G = SO(3) or G = SE(3) then for ,

(13)

This is because the integrand is an odd function of the components of x. For example,
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DEFINITION 1: If a unique value μ ∈ G exists for which

(14)

μ will be called the mean of a pdf f(g) on G, which is a straightforward extension of (6).
Furthermore, the covariance about the mean will be computed as

(15)

Note that while in the case of Euclidean space (6) and minimization of (7) both give the same
value of the mean, the minimization of a functional of the form

does not generally return a value hmin that is equal to μ. However, in the special case when f
(g) is unimodal and very concentrated, hmin ≈ μ.

The equality (12) can be thought of as a statement of when the mean is at the identity. If ρ(g)
has mean at the identity, then f(g) = ρ(a−1 ○ g) has mean at a. We will use ρ(g) to denote pdfs
with mean at the identity, and f(g) to denote pdfs that can have the mean at some other group
element.

THEOREM 1: If f(g) has mean μ and covariance Σ, then to second order

(16)

where the following shorthand is used:

(17)

and the matrix-valued function F1(Σ) is defined as

(18)

and

(19)
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Here C is the covariance about the identity, which is defined in an analogy with the concept
of covariance about the origin in the context of probability and statistics in IRn.

Proof: Let f(g) = ρ(μ−1 ○ g) where ρ(g) has mean at the identity. Then

Expanding using the BCH formula (5) with μ = exp X and g = exp Y, and using the linearity
of the Lie bracket, we find that since ρ(g) is a pdf with mean at the identity,

The first expression in the statement of the theorem results from the definition of the adjoint.
Likewise,

Expanding out the product and eliminating terms linear in y results in the second statement of
the theorem.

3 Propagation of the Mean and Covariance of PDFs on SE(3)
Let μ1, μ2 ∈ SE(3) be two precise reference frames. Then μ10○μ2 is the frame resulting from
stacking one relative to the other. Now suppose that each has some uncertainty. Let {hi} and
{kj} be two sets of frames of reference that are distributed around the identity. Let the first
have N1 elements, and the second have N2. What will the covariance of the set of N1 · N2 frames
{(μ1○μ2)−1○μ1○hi○μ2○kj} (which are also distributed around the identity) look like ?

Let ρi(g) be a unimodal pdf with mean at the identity and which has a preponderance of its
mass concentrated in a unit ball around the identity (where distance from the identity is

measured as ∥(log g)∨∥). Then  will be a distribution with the same shape centered
at μi. In general, the convolution of two pdfs is defined as

and in particular if we make the change of variables , then

Making the change of variables g = μ1 ○ μ2 ○ q, where q is a relatively small displacement
measured from the identity, the above can be written as
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(20)

The essence of this paper is the efficient approximation of covariances about the mean of
ρ1*2 in (20) when the covariances about the means of ρ1 and ρ2 are known. In cases when
μ1*2 = μ1 ○ μ2, the problem reduces to the efficient approximation of

(21)

LEMMA 1: The convolution of pdfs with mean at the identity results (to second order) in a
pdf with mean at the identity. Furthermore, if ρ1 * ρ2 = ρ2 * ρ1 and ρi(g) = ρi(g−1), then this
result becomes exact.

Proof:

To second order, all terms in the BCH expansion of log(h ○ k) are linear in either log h or log
k (or both), and therefore at least one of the above integrals integrates to zero.

If ρ1 * ρ2 = ρ2 * ρ1 and ρi(g) = ρi(g−1) then it is easy to show that (ρ1 * ρ2)(g) = (ρ1 * ρ2)
(g−1), which automatically means that the function (ρ1 * ρ2)(g) has mean at the identity.

THEOREM 2: If fi(g) has mean μi and covariance Σi for i = 1,2, then to second order, the mean
and covariance of (f1 * f2)(g) are respectively

(22)

and

(23)

where

, B = Σ2, and C(A,B) and A″ are computed as follows:
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B″ is defined in the same way with B replacing A everywhere in the expression. The blocks of
C are computed as

where Dij,kl = D(Aij, Bkl), and the matrix-valued function D(A′,B′) is defined relative to the
entries in the 3 × 3 blocks A′ and B′ as

Proof: The approximation in (22) follows directly from Lemma 1. Next, let

 where k = exp K, and let Y = log q′. Using the Baker-Campbell-Hausdorff
formula (5) to evaluate the log terms in the definition of covariance, and retaining all even
terms to second order (since first order terms will integrate to zero), we get

(24) (25)

Each of these terms can be expanded using the adjoint concept. For example,

(26)

In our formulation,  (where k = eK and so ). Defining

the vector , then

and since q′ = eY,

Wang and Chirikjian Page 10

Int J Rob Res. Author manuscript; available in PMC 2010 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



.

The following complicated looking integral (which is nothing more than (21) written in
exponential coordinates)

can be simplified. This is because

and

and since all terms in {(Z(X, Y))∨[(Z(X, Y))∨]T}even can be expressed as weighted sums of such
products, it follows that after integration we get

(27)

For the SE(3) case

where T∨ = t, V∨ = v and Ω∨ = ω. Then (26) becomes:

and

Wang and Chirikjian Page 11

Int J Rob Res. Author manuscript; available in PMC 2010 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



If we divide the 6 × 6 symmetric matrices  and B = Σ2 into 3 × 3 blocks
as

then using the specific form of ad(X) and integrating over q′ we get

and

Then integrating over k ∈ G gives

The BCH formula yields several such terms, each of which can be obtained by either
transposing those given above or switching the roles of B and A.

4 Sampled Distributions and Numerical Examples
Evaluating the robustness of the first-order (1) and the second-order (23) covariance
propagation formula over a wide range of kinematic errors is essential to understand
effectiveness of these formulas. In this section, we test these two covariance propagation
formulas with concrete numerical examples.

In many practical situations, discrete data are sampled from ρ1 and ρ2 rather than having
complete knowledge of the distributions themselves. Therefore, sampled covariances can be
computed by making the following substitutions:

(28)

and

(29)

where
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Here Δ(g) is the Dirac delta function for the group G, which has the properties

Using these properties, if we substitute (28) and (29) into (21), the result is

(30)

While this equation is exact, it has the drawback of requiring O(N1 · N2) arithmetic operations.
In the first-order theory of error propagation, we made the approximation

or equivalently

where k = exp Y and q = exp X are elements of the Lie group SE(3). This decouples the
summations and makes the computation O(N1 + N2). However, the first-order theory breaks
down for large errors. Therefore, we explore here the numerical accuracy of the second-order
theory developed in the previous section.

4.1 Error Propagation in a PUMA Manipulator
Consider a spatial serial manipulator, PUMA 560. The link-frame assignments of PUMA 560
for D-H parameters is the same as those given in [Craig 2005]. Table 1 lists the D-H parameters
of PUMA 560, where a2 = 431.8 mm, a3 = 20.32 mm, d3 = 124.46 mm, and d4 = 431.8 mm.
The solution of forward kinematics is the homogeneous transformations of the relative
displacements from one D-H frame to another multiplied sequentially.

In order to test these covariance propagation formulas, we first need to create some kinematic
errors. Since joint angles are the only variables of the PUMA 560, we assume that errors exist
only in these joint angles. We generated errors by deviating each joint angle from its ideal value
with uniform random absolute errors of ±∊. Therefore, each joint angle was sampled at three

values: θi − ∊, θi, θi + ∊. This generates N = 36 different frames of references  that are
clustered around desired gee. Here gee denotes the position and orientation of the distal end of
the manipulator relative to the base in the form of homogeneous transformation matrix.

It is important to note that while the cloud of frames  is clustered around gee, it may not
be the case that gee is actually the mean of this cloud. In the first-order theory, the cloud is
assumed to be so tightly focused around gee that the approximation μee ≈ gee can be made
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without causing significant errors. However, in the second order theory, one needs to be more
precise. We can update our estimate of the mean as:

(31)

In practice, for errors of moderate magnitude, only one such update is required to obtain the
exact mean. For very large errors this formula can be iterated with the output, μee, from one
iteration serving as the input, gee, for the next iteration. A similar update to obtain μ1 and μ2
from the frame clouds around the frames g1 and g2 (the relative frames from base to mid point
and mid point to distal end of the manipulator such that g1 ○ g2 = gee) should also be performed.

Three different methods for computing the same error covariances for the whole manipulator
are computed. The first is to apply brute force enumeration, which gives the actual covariance
of the whole manipulator:

(32)

where , and (32) is used for all of the 36 different frames of references

. The second method is to apply the first-order propagation formula (1). The third is to
apply the second-order propagation formula (23). For the covariance propagation methods, we
only need to find the mean and covariance of each individual link. Then the covariance of the
whole manipulator can be recursively calculated using the corresponding propagation formula.

In order to quantify the robustness of the two covariance approximation methods, we define a
measure of deviation of results between the first/second order formula and the actual covariance
using the Hilbert-Schmidt (Frobenius) norm as

(33)

where Σprop is the covariance of the whole manipulator calculated using either the first-order
(1) or the second-order (23) propagation formula, Σactual is the actual covariance of the whole
manipulator calculated using (32), and ∥ · ∥ denotes the Hilbert-Schmidt (Frobenius) norm.

With all the above information, we now can conduct the specific computation and analysis.
The results of two different configurations of the manipulator are illustrated here. The ideal
joint angles of one configuration from θ1 to θ6 were taken as [0, π/2, −π/2, 0, 0, π/2]. The ideal
joint angles of the other configuration were taken as [π/4, π/5, −π/4, π/10, π/8, π]. As an initial
test, the joint angle errors ∊ were taken from 0.1 rad to 0.6 rad, and the static DH parameters
of the links were assumed to be error free. The covariances of the whole manipulator
corresponding to these kinematic errors were then calculated through the three aforementioned
methods. The resulting deviations between the covariance matrices computed directly using
(32) and the first-order and second-order propagation formulas are plotted in Figures 1 and 2
with (33) on the y-axis for different amounts of noise on the x-axis.

Since physical manipulators cannot be manufactured with exact design parameters, and their
real linkage parameters such as the static DH parameters (αi, ai, di) may have errors, the
propagation theory is applied now to the case with both joint angle errors and linkage errors.
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The same sets of calculations that were conducted for the case with only joint angles are now
conducted for this case with the additional linkage errors. Our numerical simulations have
shown that if the only static DH parameters that have errors are the translational parameters
ai and di, then they have essentially no effect the value of the deviation. In other words, both
the first and second order propagation formulas capture the covariances resulting from these
translational errors. However, the linkage errors in the angular DH parameters such as αi create
observable effects on the accuracy of the propagation formulas. In the given example, we
assume that DH parameters α0, α1, and α5 deviate from their ideal values with uniform random
absolute errors of ±0.2 rad. Therefore, they are sampled at three values: αi − 0.2, αi, αi + 0.2.
Together with the six joint angle errors, this generates N = 39 different frames of references

 that are clustered around the baseline gee. The results of the first-order and second-order
propagation formula of these cases were also graphed in Figures 1 and 2.

The numerical simulation results demonstrate that the propagation formula can efficiently deal
with all kinematic errors including errors in joint angles and linkage parameters. It is also clear
that the second-order propagation formula makes significant improvements in terms of
accuracy when compared to the first-order formula. The second-order propagation theory is
much more robust than the first-order formula over a wide range of kinematic errors. These
two methods both work well for small errors, and deviate from the actual value more and more
as the errors become large. However, the deviation of the first-order formula grows rapidly
and breaks down while the second-order propagation method still retains a reasonable value.

To give the readers a sense of what these covariances look like, we listed the values of the
covariance of the whole manipulator for the joint angle error ∊ = 0.3 rad below.

The ideal pose of the end effector can be found easily via forward kinematics to be

The actual covariance of the whole manipulator calculated using equations (32) is

the covariance using the first-order propagation formula (1) is
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and the covariance using the second-order propagation formula (23) is

4.2 Continuous-Time Covariance Propagation: The Stochastic Flexible Needle with Bevel Tip
The previous example in this paper illustrated how to obtain the mean and covariance of error
pdfs resulting from convolutions of densities centered around discrete joints in a manipulator
arm. In contrast, applications such as SLAM can be better described with a model in which the
error accumulates continuously over time. This section addresses that problem. In particular,
estimates of the mean and covariance of a process described by a stochastic differential equation
can be obtained for small time intervals by numerical integration. The second-order
propagation formulas derived earlier in the paper are then used to propagate these estimates
for larger values of time. The example that is used to illustrate this technique is flexible needle
steering.

Recently, a number of works have been concerned with the steering of flexible needles with
bevel tips through soft tissue for minimally invasive medical treatments. See, for example,
[Webster et al. 2006], [Park et al. 2005], [Alterovitz, Simeon and Goldberg 2007]. In this
problem, a flexible needle is rotated with the angular speed ω(t) around its tangent while it is
inserted with translational speed v(t) in the tangential direction. Due to the bevel tip, the needle
will not follow a straight line when ω(t) = 0 and v(t) is constant. Rather, in this case the tip of
the needle will approximately follow a circular arc with curvature κ when the medium is very
firm and the needle is very flexible. The specific value of the constant κ depends on parameters
such as the angle of the bevel, how sharp the needle is, and properties of the tissue. In practice
κ is fit to experimental observations of the needle bending in a particular medium during
insertions with ω(t) = 0 and v(t) is constant. Using this as a baseline, and building in arbitrary
ω(t) and v(t), a nonholonomic kinematic model then predicts the time evolution of the position
and orientation of the needle tip [Webster et al. 2006, Park et al. 2005].

In a reference frame attached to the needle tip with the local x3 axis denoting the tangent to the
“backbone curve” of the needle, and x1 denoting the axis orthogonal to the direction of
infinitesimal motion induced by the bevel (i.e., the needle bends in the x2 − x3 plane), the
nonholonomic kinematic model for the evolution of the frame at the needle tip was developed
in [Webster et al. 2006, Park et al. 2005] as:

(34)

If everything were certain, and if this model were exact, then g(t) could be obtained by simply
integrating the ordinary differential equation in (34). However, in practice a needle that is
repeatedly inserted into a medium such as gelatin (which is used to simulate soft tissue) will
demonstrate an ensemble of slightly different trajectories.

A simple stochastic model for the needle is obtained by letting [Park et al. 2005, Park et al.
2008]:
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and

Here ω0(t) and v0(t) are what the inputs would be in the ideal case, w1(t) and w2(t) are
uncorrelated unit Gaussian white noises, and λi are constants.

Thus, a nonholonomic needle model with noise is

(35)

where dWi = Wi(t + dt) − Wi(t) = wi(t)dt are the non-differentiable increments of a Wiener
process Wi(t). This noise model is a stochastic differential equation (SDE) on SE(3). As
shorthand, we write this as

In this subsection, the second-order covariance propagation formula is demonstrated by
“pasting together” two ensembles of needle trajectories from t = 0 to t = 1/2 and t = 1/2 to t =
1 to get the mean and covariance of needle trajectories from t = 0 to t = 1. These needle
trajectories are generated by integrating the SDE in (35) for these three time periods with Δt
= 0.01 using a modified version of the Euler-Maruyama method for generating sample paths
of SDEs [Higham 2001]. The mean and covariance resulted from the second-order propagation
formula are then compared with those obtained by integrating the SDE from t = 0 to t = 1 as
detailed below.

The reference frame g(t) is generated from ξ(t) = (g−ldg)∨ by the product of exponentials
formula at multiples of the small time step Δt as:

A cloud of frames {g(i)(nΔt)} for the trials i = 1, …, 10,000 are created with κ = 0.05 and a
certain value of λ1 and λ2. The actual SE(3) means and covariances of the cloud of frames
{g(i)(nΔt)} are then computed using brute force enumeration for the three time periods: t1 =
[0, 1/2], t2 = [1/2, 1], and t3 = [0, 1] by applying (31) and (32) respectively. With the actual
means and covariances of needle trajectories for t1 = [0, 1/2] and t2 = [1/2, 1], the estimated
means and covariances of needle trajectories for t3 = [0,1] are derived using the second-order
propagation formula (22) and (23). These estimated means and covariances for period t3 = [0,
1] are compared with their corresponding actual values. The comparison results are quantitively
expressed through a definition on deviation. The measure of deviation on the covariance is
defined as (33). Similarly, the measure of deviation on the mean is defined as
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(36)

where μprop is the mean calculated using second-order propagation formula (22), μactual is the
actual mean calculated using (31), and ∥ · ∥ denotes the Hilbert-Schmidt (Frobenius) norm.

A range of values of λ1 and λ2 are tested to verify the effectiveness of the second order
propagation formula. These values are . These comparison
results are illustrated through the graphs of deviation versus Gaussian white noise constant
λ2 as shown in Figures 3 and 4. It can be observed that the deviation of the mean is less than
0.3% and the deviation of the covariance is less than 1% for λ < 1, where λ = 1 is a fairly large
noise constant. These comparisons have shown that the mean and covariance computed from
the second-order propagtion formula are very good approximations to those obtained by
integrating the SDE from t = 0 to t = 1.

5 Conclusions
In this paper, first-order kinematic error propagation formulas are modified to include second-
order effects. This extends the usefulness of these formulas to errors that are not necessarily
small. In fact, in the example to which the methodology is applied, errors in orientation can be
as large as a radian or more and the second-order formula appears to capture the error well.
The second-order propagation formula makes significant improvements in terms of accuracy
than that of the first-order formula. The second-order propagation theory is much more robust
than the first-order formula over a wide range of kinematic errors. This is demonstrated with
the example of a PUMA manipulator arm with substantial errors in the joints, as well as
stochastic trajectories of a nonholonomic kinematic model of a flexible needle.
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Appendix

A Matrix Lie Groups in General
A matrix Lie group is a Lie group where G is a set of square matrices and the group operation
is matrix multiplication. In this work, only the groups SO(3) and SE(3) will be considered.

A.1 The Exponential and Logarithm Maps
Given a general matrix Lie group, elements sufficiently close to the identity are written as g
(t) = etX for some X ∈  (the Lie algebra of G) and t near 0. Explicitly,

(37)

The matrix logarithm is defined by the Taylor series about the identity matrix:
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(38)

For matrix Lie groups, operations such as g − I and division of g by a scalar are well defined.
The exponential map takes an element of the Lie algebra and produces an element of the Lie
group. This is written as:

The logarithm map does just the opposite:

In other words, log(exp X) = X, and exp(log(g)) = g.

Given any smooth curve g(t) ∈ G, we can compute  and . These will be elements
of .

A.2 The Lie Bracket and the Adjoint Matrices Ad(g) and ad(X)
The adjoint operator is defined as

(39)

This gives a homomorphism Ad : G → GL( ) from the group into the set of all invertible linear
transformations of  onto itself. It is a homomorphism because

It is linear because

In the special case of a 1-parameter subgroup when g = g(t) is an element close to the identity.
4, we can approximate g(t) ≈ I + tX for small t. Then we get Ad(I + tX)Y = Y + t(XY − YX). The
quantity

(40)

is called the Lie bracket of the elements X, Y ∈ .

4In the context of matrix Lie groups, one natural way to measure distance is as a matrix norm of the difference of two group elements.
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It is clear from the definition in (40) that the Lie bracket is linear in each entry:

and

Furthermore, the Lie bracket is anti-symmetric:

(41)

and hence [X, X] = 0. Given a basis {E1, .…, En} for the Lie algebra , any arbitrary element
can be written as

The Lie bracket of any two elements will result in a linear combination of all basis elements.
This is written as

The constants  are called the structure constants of the Lie algebra . Note that the structure

constants are antisymmetric: .

It can be checked that for any three elements of the Lie algebra, the Jacobi identity is satisfied:

(42)

It is often convenient to write the independent entries of any X ∈  as a column vector using
the notation x = X∨ where the rule  is used. The particular details of the ∨ operator for
the cases of SO(3) and SE(3) are given in the following appendices.

A matrix denoted as ad(X) can then be defined such that for any X, Y ∈ 

From (41), it follows that

B The Rotation Group, SO(3)
The Lie algebra so(3) consists of skew-symmetric matrices of the form

Wang and Chirikjian Page 20

Int J Rob Res. Author manuscript; available in PMC 2010 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(43)

The skew-symmetric matrices {Ei} form a basis for the set of all such 3 × 3 skew-symmetric
matrices, and the coefficients {xi} are all real. The ∨ operation is defined to extract these
coefficients from a skew symmetric matrix to form a column vector [x1, x2, x3]T ∈ IR3 such
that Xy = x × y for any y ∈ IR3, where × is the usual vector cross product.

In this case, the adjoint matrices are

Furthermore,

It is well known (see [Chirikjian 2001] for derivation and references) that

(44)

where . Clearly, since the instantaneous rotation axis is preserved under a
rotation, R(x)x = x.

An interesting and useful fact is that except for a set of measure zero, all elements of SO(3)
can be captured with the parameters within the open ball defined by ∥x∥ < π, and the matrix
logarithm of any group element parameterized in this range is also well defined. It is convenient
to know that the angle of the rotation, θ(R), is related to the exponential parameters as |θ(R)| =
∥x∥. Furthermore,

where

Invariant definitions of directional (Lie) derivatives and integration measure for SO(3) can be
defined. When computing these invariant quantities in coordinates (including exponential
coordinates), a Jacobian matrix comes into play. There are two such Jacobian matrices:
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and

The subscripts r and l denote the side where the partial derivative appears (right or left).

These two Jacobian matrices are related as

(45)

Relatively simple analytical expressions have been derived by Park [?] for the Jacobian Jl and
its inverse when rotations are parameterized as in (44). These expressions are

(46)

and

The corresponding Jacobian Jr and its inverse are then calculated using (45) as [Chirikjian
2001]

and

Note that

The determinants are

Given a square-integrable function of rotation, f(R) ∈ L2(SO(3)), the proper (invariant) way to
integrate using exponential coordinates is
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where dx = dx1dx2dx3 and J can denote either Jr or Jl. The normalization by 8π2 ensures that
∫SO(3) 1dR = 1.

C The Special Euclidean Group, SE(3)
The Lie algebra se(3) consists of “screw” matrices of the form

(47)

The matrices {Ẽi} form a basis for the set of all such 4×4 screw matrices, and the coefficients
{xi} are all real. The tilde is used to distinguish between these basis elements and those for SO
(3). The ∨ operation is defined to extract these coefficients from a screw matrix to form a
column vector X∨ = [x1, x2, x3, x4, x5, x6]T ∈ IR6. The double use of ∨ in the so(3) and se(3)
cases will not cause confusion, since the object to which it is applied defines the sense in which
it is used.

It will be convenient to define ω= [x1, x2, x3]T, and v = [x4, x5, x6]T, so that

It can be shown that [Chirikjian 2009]

(48)

This follows from the expression for the matrix exponential given in [Murray, Li and Sastry
1994] and the definition of the SO(3) Jacobian in (46). From the form of (48), it is clear that if
g has rotational part R, and translational part t, then the matrix logarithm can be written in
closed form as

and

(49)

The adjoint matrices for SE(3) are
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where T∨ = t and

where V∨ = v and Ω∨ = ω.

The Jacobians for SE(3) using exponential parameters are then

and

The right Jacobian for SE(3) in exponential coordinates can be computed from (48) as

(50)

where 03 is the 3 × 3 zero matrix. It becomes immediately clear that

Given a square-integrable function of motion, f(g) ∈ L2(SE(3)), the proper (invariant) way to
integrate using exponential coordinates is

The normalization by 8π2 is an artifact of the SO(3) case, which is retained since SE(3) is not
compact.
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Figure 1.
The Deviation of the First and Second-order Propagation Methods for Configuration I
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Figure 2.
The Deviation of the First and Second-order Propagation Methods for Configuration II
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Figure 3.
The Deviation of the Mean
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Figure 4.
The Deviation of the Covariance
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Table 1

DH Parameters of the PUMA 560

i αi−1 ai−1 di θ i

1 0 0 0 θ  1

2 −90° 0 0 θ  2

3 0 a 2 d 3 θ  3

4 −90° a 3 d 4 θ  4

5 90° 0 0 θ  5

6 −90° 0 0 θ  6
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