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Abstract

Injury causes a systemic inflammatory response syndrome (SIRS) clinically much like sepsis 1. 

Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through 

pattern recognition receptors 2. Similarly, cellular injury can release endogenous damage-

associated molecular patterns (DAMPs) that activate innate immunity 3. Mitochondria are 

evolutionary endosymbionts that were derived from bacteria 4 and so might bear bacterial 

molecular motifs. We show here that injury releases mitochondrial DAMPs (MTD) into the 

circulation with functionally important immune consequences. MTD include formyl peptides and 

mitochondrial DNA. These activate human neutrophils (PMN) through formyl peptide receptor-1 

and TLR9 respectively. MTD promote PMN Ca2+ flux and phosphorylation of MAP kinases, thus 

leading to PMN migration and degranulation in vitro and in vivo. Circulating MTD can elicit 

neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs 

with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These can then 

signal through identical innate immune pathways to create a sepsis-like state. The release of such 

mitochondrial ‘enemies within’ by cellular injury is a key link between trauma, inflammation and 

SIRS.

Trauma is a leading cause of premature death 5. Injury causes activation of neutrophils 

(PMN), organ failure, susceptibility to infection and the Systemic Inflammatory Response 

Syndrome (SIRS) 1,6. Bacterial translocation from ischemic gut to circulation was long 

thought to cause SIRS 7. This was disproven 8 although shock may cause gut inflammation 

9. Crushes and burns however, cause SIRS without shock. Thus the molecular signals 

linking injury to inflammation remain unclear.
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During infection, innate immunity is activated by pathogen-associated molecular patterns 

(PAMPs) expressed on invading microorganisms. Pattern recognition receptors (PRR) 

recognize PAMPs 2. Bacterial proteins are N-formylated 10, so formyl peptides (FP) 

activate chemoattractant FP-receptors (FPR). Toll-like receptors (TLR) respond to many 

PAMPs, like bacterial DNA that stimulates TLR9. Since mitochondria evolved from 

saprophytic bacteria to endosymbionts to organelles, the mitochondrial genome (mtDNA) 

contains CpG DNA repeats and also codes for formylated peptides 4,11. Mechanical trauma 

disrupts cells, so we hypothesized injury might release mitochondrial “damage” associated 

molecular patterns (DAMPs) 3 into the circulation, activating immunity and initiating SIRS.

To prove trauma releases mitochondrial DAMPs (MTD) into the circulation we measured 

plasma mtDNA in 15 major trauma patients (Injury Severity Score [ISS 12] >25). Sampling 

was prior to resuscitation. Patients had no open wounds or gastrointestinal injuries (Details: 

Supplementary Table 1). Trauma patient mtDNA was markedly elevated (Supplementary 

Figs. 1a–c) compared to volunteers (Supplementary Table 2). mtDNA in trauma plasma was 

2.7±0.94[SE] μg/ml where volunteer levels were thousands of fold lower (Supplementary 

Fig. 1d). mtDNA was further elevated 24hrs post-injury (Supplementary Fig. 1e). Ultra-

centrifugates of femur reaming specimens obtained during fracture repair contained even 

higher titers of mtDNA. Thus MTD are mobilized by external or operative injury and enter 

the circulation. Bacterial 16s-RNA was absent from all specimens (Supplementary Fig. 1f).

Mitochondrial formyl peptides (FP) can attract PMN 13 and activate related cell lines 14. 

The synthetic peptide fMLF simulates bacterial challenge. But the role of endogenous 

formyl peptides in trauma, PMN activation and SIRS is unstudied. FPs signal via the G-

protein coupled receptors (GPCR); FPR1 and FPRL-1, with high and low affinities 

respectively. PMN activation via GPCR causes increased intracellular calcium ([Ca2+]i) 15, 

heterologous and homologous GPCR desensitization 16 and activates MAP Kinases 17. 

MTD from human myocytes induced human PMN [Ca2+]i fluxes equal to 1nM fMLF (Fig. 

1a). MTD from human liver, muscle and fracture hematoma (Supplementary Fig. 2a) or 

from rat muscle or liver produced similar PMN Ca2+ depletion. Whole and fragmented 

mitochondria had similar potency (Supplementary Fig. 2b). Thus release of MTD from 

many cell types activates immunity.

Blocking antibodies to FPR1 abolished Ca2+ depletion (Fig. 1a), and Ca2+ entry (Fig. 1b) 

responses to MTD. Cyclosporin H (CsH) inhibits FPR118 and abolishes Ca2+ flux to MTD 

(Supplementary Fig. 3a). Isotype control (FPRL-1, MMP-2) antibodies have no effects 

(Supplementary Fig. 3b). Apyrase-treated and untreated MTD act identical whereas apyrase 

abolishes [Ca2+]i response to ATP (Supplementary Fig. 3c). ATP was undetectable on 

random assays of MTD (n=3).

Activating FPR1 desensitizes chemokine receptors, predisposing to infection after trauma 

16. Human PMN treated with MTD became insensitive to GRO-α (CXCL1, Fig. 1c). PMN 

stimulated by GRO-α, MTD or buffer (Fig. 1d) show identical Ca2+ release by ionomycin. 

Since Ca2+ stores are equal, suppression by MTD reflects CXCR2 desensitization by FPR1. 

PMN also show homologous desensitization when re-challenged with MTD (Fig. 1e) or 

fMLF (Supplementary Fig. 4). Others have shown that PMN MAP kinases are 
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phosphorylated and activated by injury 17. Skeletal muscle MTD caused phosphorylation of 

PMN p38 and p44/42 MAP kinases (Fig. 2a and 2b) with p38 being activated at lower 

concentrations. Thus muscular injury can liberate mitochondrial DAMPs that activate 

multiple inflammatory signal pathways.

Mitochondrial DAMPs activate PMN signaling, so next we studied whether they elicit an 

inflammatory PMN phenotype. Matrix metalloproteinase (MMP)-8 is a neutrophil-specific 

collagenase 19 that aids in PMN tissue penetration and recruitment. Interleukin (IL)-8 

causes PMN chemotaxis and activation, and such PMN activation also induces secondary 

IL-8 release. MTD caused MMP-8 release from human PMN (Fig. 2c). Inhibition by CsH or 

anti-FPR1 demonstrates FPR1-dependence (Fig. 2d). Human PMN synthesized and released 

IL-8 in response to MTD (Fig. 2e/f) more rapidly than to LPS. This “bell-shaped” response 

curve (Fig. 2e) may reflect FPR1 suppression by high concentrations of MTD (see Fig. 1e). 

In longer incubation studies, LPS was more potent (Fig. 2f).

PMN use lytic enzymes like MMPs to migrate into bystander organs. We assessed the 

effects of MTD on PMN migration. Under video-microscopy PMN migrated toward MTD 

from clinical femur fractures (Figures 2g–j, supplementary videos 1–4). Speed and 

directionality of migration were inhibited by CsH 18 (Fig 2i, Video 3) or by antibodies to 

FPR1 (Fig 2j, Video 4). Last, we showed in vivo PMN infiltration in response to clinical 

concentrations of MTD by placing enough liver-derived MTD into mouse peritoneum to 

model traumatic necrosis of 10% of the mouse’s liver. Neutrophilic peritonitis developed 

quickly (Fig. 2k). MTD was more active than the FPR agonist W-peptide and CsH again 

reduced peritonitis (Fig. 2k).

Mitochondria contain their own genome, but mtDNA resembles bacterial DNA in being 

circular and having nonmethylated CpG motifs 20. mtDNA has been found in joint fluids in 

rheumatoid arthritis and induces inflammation in vivo 21. CpG DNA activates TLR9 but 

activation of PMN by mtDNA is unstudied. TLR9 is expressed by PMN 22 and activates 

p38 MAPK 23. So we questioned whether PMN p38 MAPK would be activated by mtDNA 

at clinical plasma concentrations (Supplementary Fig. 1d). We found 1μg/ml mtDNA caused 

p38 MAPK phosphorylation (Fig. 3a) but did not activate p44/42 MAPK. p38 MAPK 

activation was blocked by inhibitory oligodeoxynucleotides (ODN TTAGGG, Fig. 3b) that 

bind CpG motifs and block interactions with TLR9. Looking at downstream signaling, we 

incubated PMN with CpG DNA (10μg/ml) or mtDNA within the clinical range (1–10μg/ml). 

Neither released IL-8 effectively alone, but each promoted IL-8 release with low-dose fMLF 

(1nM) (Fig. 3c). This is similar to GM-CSF priming of IL-8 release by CpG DNA. 22 These 

data suggest clinically significant activation of PMN secretion by mtDNA/TLR9. In 

distinction, TLR ligands have no direct effect on PMN chemotaxis (Supplementary Fig. 5).

To determine whether circulating mitochondrial DAMPs could cause neutrophil-mediated 

organ injury, we injected MTD equivalent to 5% of the rat’s liver intravenously and 

examined whether that recreated organ injury in vivo. Animals demonstrated marked 

inflammatory lung injury as early as 3h post-injection (Fig. 4a vs 4b). Oxidant lung injury 

was documented by staining for 4-hydroxy-2-nonenal (4-HNE) 24 (Fig. 4c vs 4d). MTD 

injection increased lung albumin (Fig. 4e) and wet/dry weight (Fig. 4f), IL-6 (Fig. 4g) as 
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well as elastase accumulation in lung (Supplementary Fig. 6). Bronchoalveolar lavage 

showed PMN influx into the airways (Fig. 4h), early appearance of TNF-α (Fig. 4i) and later 

appearance of IL-6 (Fig. 4j). PMN infiltration was confirmed as increased lung MMP-8 

(Fig. 4k). Systemic inflammation was demonstrated as priming of circulating PMN (Fig. 1f) 

and their infiltration into liver (Fig. 4l). Control rats showed no evidence of pulmonary or 

hepatic inflammation.

In conclusion, inflammation occurs after both major trauma and infection16. Recognizing 

sterile SIRS is critical since empiric antimicrobial use will be ineffective whereas other 

therapies might be effective. After tissue trauma MTD circulates and stimulates PMN, 

causing systemic inflammation. The molecular similarity of mitochondria to their bacterial 

ancestors helps explain why traumatic and infective SIRS appear similar 3,25. 

Mitochondrial DAMPs express at least two molecular signatures (formyl peptides, mtDNA) 

that act on PRRs recognizing bacterial PAMPs. These activate PMN in the circulation (Figs. 

1f, 2, 3) rather than at specific targets, inciting non-specific organ attack (Fig. 4) while 

suppressing chemotactic responsess to infective stimuli (Fig. 1c, 1e, and Supplementary Fig. 

4).

Formyl peptides and mtDNA are likely only a subset of the DAMPs released by trauma, but 

they appear important at clinical concentrations. Other intracellular ‘alarmins’ may similarly 

be important after injury and other immune cells probably respond to mitochondrial 

DAMPs. Injury-derived mitochondrial DAMPs however, are clearly recognized by innate 

immunity using PRR that alternatively sense bacteria. This novel paradigm may explain why 

responses to ancient ‘enemies within’ released by injury can mimic sepsis.

Methods Summary

All studies were approved by the IRB of Beth Israel Deaconess Medical Center and Queen 

Mary University Hospital of London, England. Animal care was IACUC-approved per NIH 

guidelines.

Preparation of mitochondria, mitochondrial DAMPs (MTD) and mitochondrial DNA (mtDNA)

Mitochondria were isolated from resources per standard protocols.

PMN studies - general

PMN isolation 26, 27, calcium studies 15,16,26, Western blots 28, transwell chemotaxis 16, 

and video-microscopy chemotaxis assays 29 were performed as previously described.

MTD Administration

Male Sprague-Dawley rats were given intravenous MTD based on weight 30. qPCR of 

plasma showed mtDNA levels of 122±22 ng/ml 1h after injection (nl≪1ng/ml). Leukocytes 

in bronchoalveolar lavages were counted visually. Lungs were inflated gently and formalin 

fixed prior to stain with H&E or for 4-HNE.
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Methods

Reagents and Chemicals

fMLF, ethyleneglycol-bis(β-aminoethylether)-N,N′-tetraacetic acid (EGTA), protease 

inhibitor cocktail and DMSO were purchased from Sigma (St Louis, MO). Fura-2 AM, 

Calcein AM and digitonin were purchased from Molecular Probes (Eugene, OR). Anti-

human FPR1, anti-human FPRL-1, anti-human MMP-2, anti-human MMP-8, and anti-rat 

MMP-8 antibodies were purchased from R&D (Minneapolis, MN). Antibodies to phospho-

p38 MAPK (Thr180/Tyr182), p38 MAPK, phospho-p44/42 MAPK (Thr202/Tyr204) and 

p44/42 MAPK were from Cell Signaling (Danvers, MA). Donkey anti-goat IgG-HRP was 

obtained from Santa Cruz (Santa Cruz, CA). ImmunoPure Goat Anti-Rabbit IgG (peroxidase 

conjugated) was purchased from Pierce Biotechnology (Rockford, IL). Cyclosporin H (CsH) 

was obtained from LKT Laboratories (St Paul, MN). ATP bioluminescence assay kits were 

purchased from Roche (Palo Alto, CA). W-peptide was from Phoenix pharmaceuticals 

(Burlingame, CA). CpG DNA was obtained from Cell Sciences (Canton, MA). ODN 

TTAGGG was purchased from InvivoGen (San Diego, CA).

Mitochondrial Isolation from Clinical Material

Clinical liver injury, muscle crush injury and femur fracture fixation by reamed nailing are 

all common, important events closely linked to inflammation and acute lung injury after 

injury. The Mitochondria Isolation Kit for Tissue (PIERCE, Rockford, IL) was used to 

isolate mitochondria from rat liver or rat muscle, human skeletal muscle (pathologic 

specimens amputated due to vascular disease); human femur medullary reamings from 

patients undergoing repair of femur fractures; and human liver from the margins of hepatic 

tumor resections. The Mitochondrial Isolation Kit for Cultured Cells (PIERCE, Rockford, 

IL) was used to isolate mitochondria from human rhabdomyosarcoma cells (ATCC, 

Manassas, VA). Clinical samples used to prepare mitochondria were harvested from patients 

receiving antibiotics. Mitochondria were isolated under sterile conditions at 4°C.

Preparation of Mitochondrial DAMPs (MTD) and mtDNA

Isolated mitochondrial pellets from tissue specimens (200mg) or rhabdomyosarcoma cells (6 

× 107 cells) were suspended in 1ml of HBSS. Protease inhibitor cocktail (1:100) was added 

to the suspension. Since we found significant amounts of circulating mtDNA in trauma 

patients we surmised that mechanical tissue injury and/or tissue necrosis was disrupting 

mitochondria to some extent in vivo. So we standardized our experimental preparations with 

routine sonication on ice (VCX130-Vibra Cell, Sonics and Materials, Newtown, CT) at 

100% amplitude (10X, 30s each time with 30s intervals). The disrupted mitochondrial 

suspensions were then centrifuged at 12,000 rpm for 10 min at 4°C followed by 100,000g at 

4°C for 30min. Residual supernatants were used for experiments. Protein concentrations of 

the MTD solutions were determined by BCA assay (Pierce, Rockford, IL). mtDNA was 

extracted from the isolated mitochondria of various tissues using DNeasy Blood & Tissue 

kit (Qiagen, Valencia, CA). MTD and mtDNA were prepared under sterile conditions. 

Endotoxin levels were measured by limulus amebocyte lysate assay and did not achieve 

significant levels. mtDNA concentration was determined by spectrophotometer. No protein 

contamination was found and nuclear DNA was less than 0.01% by qPCR.
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Real Time PCR protocols

Plasma DNA was prepared by QIAamp DNA Mini and Blood Mini kit (Qiagen, Valencia, 

CA). Primers for human cytochrome B (forward 5′-atgaccccaatacgcaaaat-3′ and reverse 5′-

cgaagtttcatcatgcggag-3′), human cytochrome C oxidase subunit III (forward 5′-

atgacccaccaatcacatgc -3′ and reverse 5′-atcacatggctaggccggag-3′), human NADH 

dehydrogenase (forward 5′-atacccatggccaacctcct-3′ and reverse 5′-gggcctttgcgtagttgtat-3′), 

rat cytochrome B (forward 5′-tccacttcatcctcccattc-3′ and reverse 5′-ctgcgtcggagtttaatcct-3′), 

rat cytochrome C oxidase subunit III (forward 5′-acataccaaggccaccaac-3′ and reverse 5′-

cagaaaaatccggcaaagaa-3′), rat NADH dehydrogenase (forward 5′-caataccccacccccttatc-3′ 

and reverse 5′-gaggctcatcccgatcatag-3′), and bacterial 16S ribosomal RNA (forward 5′-

cgtcagctcgtgttgtgaaa-3′ and reverse 5′-ggcagtctccttgagttcc-3′) were synthesized by 

Invitrogen. Primer sequences have no significant homology with DNA found in any 

bacterial species published on BLAST. Real Time PCR standard curves were created to 

quantify mtDNA concentration by using purified mtDNA and Cytochrome B as targets. 

Samples that produced no PCR products after 40 cycles were considered “undetectable” and 

Ct set to 40 for statistical purposes.

PMN isolation

Detailed protocols are published elsewhere 26,27. Hypotonic lysis was performed on ice to 

remove contaminating RBC. This method results in preparations containing ≥98% 

neutrophils as confirmed by flow cytometry and confirmed visually on HEMA-3 stain with 

monocytes ~0.02% (Supplementary Fig. 7). Viability was ≥98% as assessed by Trypan 

Blue.

Chemotaxis assays by fluorescence videomicroscopy

Time-lapse video-microscopic chemotaxis was assayed as described previously 29. Cells 

were exposed to a chemoattractant gradient field by slowly releasing MTD (~100μg/ml) or 

fMLF (10nM) from a micropipette tip placed in proximity to the cells. The migration paths 

of individual cells were plotted using Adobe Illustrator. Cells were pretreated with or 

without 1μM CsH for 5min or 12.5μg/ml anti-human-FPR1 for 10min. Experiments were 

repeated with multiple PMN and MTD isolates. Specificity of CsH for FPR1 was examined 

in transwell chemotaxis assays. CsH significantly inhibited fMLF and MTD chemotaxis 

with no effects on IL-8.

In vivo chemotaxis

Male mice (8–10 wk, Charles River, Wilmington, MA) were used in this study. Mice were 

lightly anesthetized by isoflurane inhalation. CsH (10μM) or DMSO was injected 

intraperitoneally (i.p.). After 30min, 1ml of saline or W-peptide (10nM) or MTD (100μg/ml, 

equal to the mitochondria released by a 10% liver injury) was injected i.p.. Two hours later a 

peritoneal lavage was performed and collected for total and differential cell counts. Cell 

counts were performed on cytospin preparations stained with HEMA 3 (Fisher Scientific, 

Kalamazoo, MI).
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PMN degranulation assays

PMN degranulation was assessed by measuring MMP-8 release. Human PMN were 

suspended in HBSS with 1.8mM Ca2+ at 37°C for 10min while exposed to MTD, mtDNA or 

fMLF at indicated concentrations. For inhibitor studies, PMN were pre-treated with CsH 

(10μM, 5min at 37°C), anti-FPR1 antibody (12.5μg/ml, 10min at 37°C or control antibodies 

as noted) or Inhibitory ODN TTAGGG (10/1 inhibitor to stimulus). After stimulation, PMN 

were placed on ice and centrifuged. Supernatants were then assayed for MMP-8 by Western 

blot. Residual PMN were lysed to assay for MAPKs.

ELISA

PMN were treated with various agonists for 4 hrs or 24 hrs. IL-8 was measured by human 

CXCL8/IL-8 ELISA (R&D, Minneapolis, MN). Experiments were performed in triplicate. 

TNF-α and IL-6 in rat BALF or lung were measured using BD OptEIA™ rat TNF and IL-6 

ELISA sets (BD, San Diego, CA). Airway albumin was measured by rat albumin ELISA 

Quantitation kit (BETHYL, Montgomery, TX).

Statistical analysis

Study data was assessed for statistical significance using Student’s (unpaired) t-test or 

Analysis of Variance (ANOVA) where appropriate using a SigmaStat program with post-

hoc tests chosen by the computer. [Ca2+]i transients are reported as the mean change from 

basal [Ca2+]i in nanomoles per liter (nM). Prolonged [Ca2+]i fluxes are reported as the area 

under the curve (AUC) of measured change from basal [Ca2+]i over the observation period 

(nM·sec). All data are reported as mean ± s.e.m. with significance accepted at p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. PMN [Ca2+]i responses to MTD
Rhabdomyosarcoma-derived125125 MTD (1.2μg/ml protein) induces Ca2+ store depletion 

(a) and Ca2+ influx (a, b) in human PMN. (*p=0.01, t-test). c, PMN serially exposed to 

MTD and GRO-α (CXCL1) exhibit heterologous desensitization. d, PMN stimulated with 

GRO-α or MTD show equal store release by ionomycin. e, PMN show homologous 

desensitization of [Ca2+]i responses to MTD. f, Systemic injection of MTD increases rat 

PMN responses to PAF. Traces with error bars are from ≥3 experiments, other traces are 

exemplary. Traces may be displaced temporally for clarity.
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FIGURE 2. MTD activate PMN
Human PMN exposed to human MTD (muscle) were immunoblotted for phosphorylated and 

total (control) p38 (a) or p44/42 MAPK (b). MMP-8 was immunoblotted in supernatants 

(c,d are from same gel). αFPR1 denotes anti-FPR1. e–f, MTD elicits PMN IL-8 synthesis: 

*/** denote p<0.05 versus control. *** denotes p<0.05 (ANOVA/Tukey) versus control or 

MTD (n=3). PMN chemotaxis to fMLF and MTD was analyzed by video-microscopy (g,h, 

Videos 1,2). CsH or anti-FPR1 drastically inhibit chemotaxis (i,j, Videos 3,4). MTD 

injection into the mouse peritoneum (k) causes rapid, CsH-inhibitable neutrophil influx 

(n=6, *p<0.05, ANOVA/Dunn) compared with saline or 10nM W-peptide controls.
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FIGURE 3. mtDNA activates PMN via CpG/TLR9 interactions
a, Incubation of PMN (106) with 1μg/ml mtDNA activates p38 MAPK (n=3, *p<0.05 vs 

unstimulated cells). b, mtDNA-induced activation of p38 MAPK was inhibited by pre-

treatment with the inhibitory ODN TTAGGG. Inhibition was overcome at higher mtDNA 

concentration. c, PMN were co-incubated in 1nM fMLF plus mtDNA at clinical 

concentrations (1–10μg/ml, see Supplementary Fig. 1d). Neither CpG-DNA nor mtDNA 

caused IL-8 release alone, but each caused significant release along with low dose fMLF. 

(n=3, *p< 0.05 compared with unstimulated control) (all tests ANOVA/Dunn).
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FIGURE 4. MTD cause systemic inflammation and organ injury in vivo
Rats given intravenous MTD equivalent to mitochondria from a 5% liver injury show 

marked evidence of lung injury by H&E histology (a–b) and 4-HNE stain for oxidant injury 

(c–d). MTD increased pulmonary albumin permeability (e), lung wet/dry weight (f), 
accumulation of IL-6 in lung (g) and PMN infiltration into the airways (h). Early (3h) 

appearance of TNF-α (i) and late (6h) appearance of IL-6 (j) were noted in lung lavage 

fluid. Whole lung (k) and liver (l) MMP-8 confirmed increased PMN infiltration. (all studies 

n≥3, *p<0.05, ANOVA/post-hoc).
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