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Abstract
This study developed an improved motion estimation algorithm for ultrasonic strain imaging that
employs a dynamic programming technique. In this paper, we model the motion estimation task as
an optimization problem. Since tissue motion under external mechanical stimuli often should be
reasonably continuous, a set of cost functions combining correlation and various levels of motion
continuity constraint were used to regularize the motion estimation. To solve the optimization
problem with a reasonable computational load, a dynamic programming technique that does not
require iterations was used to obtain displacement vectors in integer precision. Then, a sub-sample
estimation algorithm was used to calculate local displacements in fractional precision. Two
implementation schemes were investigated with in vivo ultrasound echo data sets.

We found that the proposed algorithm provides more accurate displacement estimates than our
previous algorithm for in vivo clinical data. In particular, the new algorithm is capable of tracking
motion in more complex anatomy and increases strain image consistency in a sequence of images.
Preliminary results also suggest that a significantly longer sequence of high contrast strain images
could be obtained with the new algorithm compared to the previous algorithm. The new algorithm
can also tolerate larger motion discontinuities (e.g. cavity in an anthropomorphic uterine phantom).
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Introduction
Elasticity imaging is a method for the assessment of stiffness changes in biological tissue that
correlate with pathological changes and can be an indicator of many diseases, such as cancer
and cardiovascular disease (Fung 1993). Different types of perturbation or mechanical stimuli,
such as quasi-static compression (Hall et al. 2003; O'Donnell et al. 1994; Ophir et al. 1991),
dynamic vibration (Parker et al. 1990) or acoustic radiation force (Fatemi et al. 2002;
Nightingale et al. 2001), have been used to assess local profiles of tissue deformation. The
quasi-static method employing unmodified clinical equipment and techniques similar to
standard clinical examinations is termed ultrasonic strain imaging. Development of real-time
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strain imaging systems (Hall et al. 2003; Pesavento et al. 2000; Shiina et al. 2002) offers instant
feedback to the operator (i.e., high frame rate, high quality strain images) thereby helping this
modality rapidly gain popularity as it moves out of the research environment and into the
clinical setting. Recent studies (Garra et al. 1997; Hall et al. 2003; Itoh et al. 2006; Regner et
al. 2006) show, in breast imaging, strain imaging under real-time guidance has the capacity to
demonstrate lesion size difference between the B-mode and the strain images, thereby helping
differentiate benign from malignant masses. The desmoplasia that surrounds most malignant
breast tumors (Tavassoli 1999) forms a layer of dense collagenous stroma (Walker 2001),
thereby stiffening the tissue surrounding malignant lesions and making them palpable.
Desmoplasia often exhibits different acoustical features (e.g. highly echogenic) compared to
its adjacent breast malignancies (Muradali and Kulkarni 2005, Stavros 2004). Consequently,
desmoplasia is the likely cause for some breast lesions to appear larger in the strain images as
compared to the sizes of the hypoechoic mass in the corresponding B-mode images.

Strain imaging is performed using phase-sensitive echo signals (either radio frequency (RF)
or quadrature data) as maps of anatomy and these signals are tracked as the anatomy is
deformed. Thus, displacement estimates from a speckle tracking algorithm are the fundamental
data available for most strain imaging systems. Due to the real-time image formation constraint,
only efficient correlation-based speckle tracking algorithms had been used in real-time strain
imaging systems (Hall et al. 2003; Pesavento et al. 2000; Shiina et al. 2002). In one system, to
reduce computational cost, Pesavento et al. (Pesavento et al. 2000) used an iterative phase-
seeking method without time shift compensation, limiting frame-to-frame deformation to be
fairly small (e.g 0.1%) strain and this resulted in relatively low signal-to-noise ratio in strain
images. Shiina et al. (Shiina et al. 2002) proposed a combined autocorrelation method where
time shift compensation can be performed in parallel to a phase-seeking technique. Therefore,
this approach has the advantages of producing strain images of relatively high quality with
real-time processing and being applicable to large displacements. In another real-time strain
imaging system, using a motion continuity assumption, Hall and his colleagues (Hall et al.
2003; Zhu and Hall 2002) modified the classic block-matching algorithm using a strategy of
predictive search to improve frame rate. In particular, the motion continuity assumption was
used to reduce the search region at a spatial location to a 3×3 grid once the displacement
estimate at its immediate neighbor is known. These two real-time strain imaging systems (Hall
et al. 2003; Shiina et al. 2002) have been successfully applied to breast lesion characterization
(Burnside et al. 2007; Hall et al. 2003; Itoh et al. 2006).

To date, consistently obtaining high quality in vivo strain images is still a challenge. Although
correlation-based estimators are simple and effective, they may suffer from echo signal
decorrelation induced by out-of-plane motion, non-rigid motion and non-uniform motion of
sub-resolution scatters, resulting in large errors in displacement estimates. Some echo signal
decorrelation errors are due to large lateral motion or axial deformation and can be reduced by
signal processing. For instance, companding (Chaturvedi et al. 1998) and stretching (Varghese
and Ophir 1996) have been successfully applied. However, each of those techniques increases
computation time by a significant factor, making real-time implementation on current
ultrasound scanners difficult. Since signal processing of echo data alone cannot resolve
ambiguities in motion tracking, approaches integrated with different forms of smoothness
constraints have also been reported (Pellot-Barakat et al. 2004; Revell et al. 2005; Yeung et
al. 1998; Zhu et al. 1999). Although these approaches provide higher quality strain images
without losing contrast or spatial resolution and are less sensitive to local echo signal
decorrelation, there are still two main problems. First, motion discontinuity in certain locations
(e.g. radial deformation near arteries) within the image plane may limit the use of smoothness
constraints (Shi and Varghese 2007). Second, the time constraint in a clinical setting (i.e. real-
time or near real-time display) limits our ability to use those more sophisticated motion
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estimation algorithms. This paper reports our effort to develop a more generalized fast block-
matching algorithm (BMA) to address the above mentioned problems.

In this work, motion tracking is also treated as an optimization problem where displacement
vectors in a neighborhood will be determined by a cost function (see Eqn. (2) below) to
maximize the correlation between the pre- and post-compression echo signals while
maintaining their local motion continuities (i.e. smoothness constraint). However, moderate
motion discontinuity among these displacement vectors can be tolerated by formulating a set
of cost functions based on a modified total variation functional (Vogel 2002). An integral part
of the formulation of this optimization problem is a solution technique that balances the tradeoff
between the reliability and the computational cost. In this paper, the optimization problem is
solved by a dynamic programming technique named the Viterbi algorithm (Viterbi 1967). To
test the effect of the regularization, we compare its performance with an un-regularized real-
time BMA (Zhu and Hall 2002).

The rest of the paper is structured as follows. A detailed description of the proposed regularized
BMA and it applications in real-time strain imaging is given in Method and Material Section.
This section focuses on the description of the specific regularization model and the associated
optimization strategy using the Viterbi algorithm (Viterbi 1967) to reconstruct displacement
fields between the pre- and post-deformation RF echo fields. Experiments with in vivo breast
and thyroid tissue data are also given in this section. Subsequent analyses of our in vivo data
are conducted in Results Section. In particular, the adjustment of the cost function (see Eqn.
(2) below) and the subsequent displacement and strain images from in vivo data are presented
in this section. Finally, discussions are given followed by some closing remarks.

Methods and Materials
A. A Regularized Block-Matching Algorithm

Formally, we estimate a dense (nominally 0.2-mm spacing in axial [parallel to the acoustic
beam] and lateral [perpendicular to the acoustic beam] directions) displacement field between
a reference RF echo field {RFref}and a target echo field {RFt arg et}. A block matching
algorithm (BMA) is designed to match patterns in {RFref} with patterns in {RFt arg et} using a
search kernel. Each search kernel consists of a short axial segment of echo data from several
beam lines that is used to determine displacements at the center of the search kernel. To reduce
computational cost, a small search kernel (0.2-mm (axial) × 0.9-mm (lateral)) is used. In the
framework of a BMA, the set Λ of possible displacements (i.e. search region) is defined as

(1)

where Da and Dl are maximum possible axial and lateral displacement estimates in a search
grid of M × K, respectively, as specified by the user. ⊗ in Eqn. (1) denotes an operation to
form a combined set whose elements (lk, am) represent displacement vectors. The motion
tracking for a small neighborhood Ω can be formulated as an optimization problem by
minimizing the following cost function in the framework of a typical BMA:

(2)

where the first item EC is a penalty term for speckle decorrelation, assuming echo signals can
be fully restored, and the second term Φ(Es) is a penalty term for losing motion continuity
where Es is the motion smoothness measure in a neighborhood. The normalized cross-
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correlation coefficient (NCC) is used to measure the local pattern similarity between the search
kernels on the reference and the target echo fields and Ec is set to be 1 - NCC to penalize the
loss of signal coherence. The NCC is chosen because it provides normalized values between
-1 and 1 for convenience. α is a positive regularization parameter and is set to unity in this
study for all chosen cost functions (Eqn. 3(a)-(c)) below.

The major difference between this approach and a classic BMA is that Eqn. (2) simultaneously
determines a sequence of estimated displacement vectors rather than a single displacement
vector based on local correlation values. For many applications such as breast elasticity
imaging, the tissue being imaged is assumed, as a first approximation, to be a continuum such
that the displacement field under mechanical stimuli is nearly a continuous function. But the
presence of complex anatomy (e.g. large blood vessels, tissue interfaces) within the image
plane will cause discontinuous motion. Typically, such motion discontinuities will present
falsely large deformation in a displacement field (e.g. one RF sample difference between two
adjacent axial displacement estimates separated 8 RF samples could result in more than 10%
axial strain in the deformation field where the average deformation is only 1%), because local
strains are typically calculated by relative displacement differences between two adjacent
locations. In this paper, we propose the use of a specially-designed penalty function Φ(ES)
(Eqns. 3(a)-(b)) to impose minimal, intermediate and maximum motion continuity constraints
for adaptively regularizing motion estimation under different circumstances (e.g., different
target organs as discussed in Results and Discussion Sections):

(3a)

(3b)

(3c)

(3d)

where β is a small positive number (e.g. 0.1) and  is the estimated multi-dimensional
displacement vector. In this paper, the derivatives of the displacement vector were estimated
using a simple forward finite difference scheme. It is worth noting that we regularize motion
estimation at the integer sample level for both axial and lateral directions. Plots shown in Fig.
1 demonstrate different penalties of motion discontinuity can be imposed.

B. Solution to This Optimization Problem
We model the block matching-based motion estimation as an optimization problem
maximizing (1) signal correlation and (2) motion continuity among displacement vectors in a
small neighborhood. Determining a sequence of displacement vectors corresponding to a
segment of closely-spaced physical points in the framework of a BMA is equivalent to
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determining a best possible motion sequence for this segment of points, each having S (S =
M × K) possible states (i.e. possible displacements from a search grid M × K) by the combination
of the correlation and the continuity constraint. Mathematically, this problem can be modeled
as a fully developed Hidden Markov Model (HMM) built on Bayes' theorem (Rabiner 1989).
Since real probability density functions are difficult to determine, we instead write this as an
optimization problem using a simple cost function (Eqn. (2)). This optimization problem was
solved by a dynamic programming technique named the Viterbi algorithm (Viterbi 1967) as
follows. As shown in a simplified example (Fig. 2), all costs will be estimated in a forward
fashion between two adjacent data points using Eqn. (2) and be stored in a three-dimensional
matrix Cijk to save computing time. The Viterbi algorithm (Viterbi 1967) can efficiently trace
the cost matrix for obtaining a global “optimal” solution for these five points (See the solid
line path in Fig. 2). This algorithm was selected because of its efficiency and simplicity. It is
important to note that this optimization process will only be used to determine the displacement
vector in integer precision due to the nature of the Viterbi algorithm. Then, a sub-sample
estimation algorithm (Cespedes et al. 1995) (e.g. quadratic interpolation) will be used to obtain
fractional displacement estimates.

C. Implementation
Two methodologically different schemes were considered and implemented, as illustrated in
Fig. 3(a)-(b). Both implementations use the predictive search strategy analogous to that
developed by Zhu and Hall (Zhu and Hall 2002). The basic idea of predictive search is to use
an estimated displacement vector in one spatial location to guide speckle tracking in its
immediate neighborhood because of the local motion continuity. Limiting the search region
improves computational efficiency while simultaneously eliminating phase ambiguity (“peak
hopping”) errors in the displacement estimation. Use of this idea in elasticity imaging was first
proposed by Zhu and Hall (Zhu and Hall 2002) and successfully implemented into a real-time
breast strain imaging system (Hall et al. 2003).

In the first implementation (hereafter referred to as the “lateral-guidance” approach; see Fig.
3(a)), we combined the proposed method with a “lateral-guidance” block matching algorithm
(Jiang and Hall 2007). In the first step, searching with relatively large 2-D (approx. 0.5-mm
long by 1-mm wide) search kernels along the central column ROI is performed using the Viterbi
algorithm (Viterbi 1967) to obtain displacement estimates with integer precision. To further
reduce the computational cost, the initial column can be divided into small segments (e.g. 20
points spaced by 0.2-mm per segment). Then, the displacements estimated at the end of each
segment can be used to guide motion tracking for the subsequent segment. In this step, the
lateral (perpendicular to the acoustic beam) search region for each segment is fixed at three
beam lines and the axial search region is determined to allow 6% local axial strain. In the second
step, for each column, the search region can be reduced to a 3 by 3 sample grid (corresponding
to 6% allowable local axial strains) under the guidance of its adjacent column of displacement
estimates (i.e. displacement predictions), thereby drastically improving computational
efficiency. To avoid errors among displacement predictions, displacement estimates from an
adjacent column will be filtered by a moving linear regression method (Jiang and Hall 2007).
Smaller search kernels (0.2-mm long and 1-mm wide) are used in this step to improve
displacement estimate sensitivity and spatial resolution. The first implementation of this
approach was reported in (Jiang and Hall 2006).

In the second implementation (hereafter referred to as the “multi-grid” approach), the proposed
method is implemented in the framework of “multi-grid” motion tracking (Li and Lee 2002,
Shi and Varghese 2007). As shown by the schematic diagram in Fig. 3(b), in the first step, the
pre- and post-deformation RF echo frames will first be down-sampled by a pre-determined
factor that may be dataset dependent. For all datasets tested in this paper, we set the down-
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sample factor at two. Then, the BMA algorithm using the Viterbi algorithm described above
will be performed in a column-wise manner to obtain displacement estimates in a coarse grid.
In the second step, the displacement estimates in the coarse grid will be up-sampled to a fine
grid (typically 0.2-mm by 0.2-mm) using a fast B-spline algorithm (Thevenaz et al. 2000).
Then, using the predictive search, the up-sampled displacement vectors will allow us to limit
the motion tracking in a 3 by 3 sample grid. In this step, motion estimation was performed with
the pre- and post-deformation RF echo frames with original size.

Both approaches described above have been implemented in MATLAB (Mathworks Inc., MA)
for data processing using a standard gateway interface (MEX) in conjunction with ANSI C.
All tests were performed on a windows-based dual-CPU (1.8-GHz) workstation equipped with
2-Gbytes of memory. All strain imaging examples presented below in Results Section were
estimated off-line by the regularized BMA (both the multi-grid and lateral-guidance
approaches) described above and the un-regularized BMA axial-guidance algorithm (Zhu and
Hall 2002) with a small search kernel (0.9-mm (lateral) × 0.2-mm (axial)) and a 1.6-mm linear
regression window used to estimate displacements and strains, respectively. All algorithm
comparisons were also performed using exactly the same pairs of RF echo frames.

D. Displacement Quality Assessment
Comparing the performance of different strain imaging systems among in vivo data sets is a
difficult task due to lack of knowledge regarding the modulus distribution in and around the
pathology. An automatic method (Jiang et al. 2006) based on a displacement quality metric
(DQM) has demonstrated that estimated DQM values were consistent with the visual
assessment by experienced researchers actively involved in elasticity imaging. The DQM is
the product of the cross correlations among the pre-deformation and motion-compensated post-
deformation RF echo fields (a measure of motion tracking accuracy applied to the entire region
of interest) and the cross correlation between two consecutive motion-compensated strain
images (a measure of strain image consistency) (Jiang et al. 2006). In this paper, the DQM
method was used to compare the performance of both implementations of the proposed
algorithm and our original guided-search speckle tracking algorithm (henceforth referred to as
axial guidance algorithm) (Zhu and Hall 2002).

E. Phantom and In vivo Tissue Experiments
To demonstrate the usefulness of the proposed speckle tracking algorithm, two different kinds
of data were acquired. The first includes an in vivo breast with a fibroadenoma and an in
vivo thyroid with a follicular adenoma (roughly 200 frames of RF echo fields in total). The
human subjects provided informed consent with the procedure approved by the local
institutional review boards. During data acquisition, the real-time strain imaging system (Hall
et al. 2003; Zhu and Hall 2002) was used to maintain nearly uni-axial deformation with minimal
elevation motion under freehand scanning. The strain imaging system used for data acquisition
consisted of a Siemens Elegra scanner (Siemems Medical Solution USA, Inc., Mountain View,
CA) with a 10 MHz linear array transducer (VFX13-5) and a real-time strain imaging software
package. The details of data acquisition can be found in (Hall et al. 2003). All frame-average
axial strains reported below in the Results Section were estimated by the multi-grid approach
to provide the estimated deformation for each data set.

The second kind of data was acquired from an anthropomorphic uterine phantom (Hobson et
al. 2008) manufactured at the University of Wisconsin (Madison, Wisconsin, USA).
Radiofrequency echo data was acquired using a Siemens SONOLINE Antares (Siemens
Medical Solution USA, Inc., Mountain View, CA) equipped with a 10 MHz linear array
transducer (VFX13-5) and the Axius Direct Ultrasound Research Interface (URI) software
package. During data acquisition, the ultrasound transducer was held steady and saline was
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injected into the simulated uterine cavity to push the simulated uterine wall apart, similar to
the saline-infused sonohysterography (SIS) method (Berridge and Winter 2004). The
expansion of the simulated uterus within the image plane resulted in a discontinuous motion
field. The data is used to demonstrate that this motion tracking algorithm does not require the
assumption of global motion continuity. The details of phantom production and data acquisition
can be found in (Hobson et al. 2008).

Results
A. Influence of Deformation

Figure 4(a) displays representative strain images from an in vivo breast fibroadenoma using
two implementations of the proposed algorithm (i.e. the multi-grid approach and the lateral-
guidance approach) and the axial-guidance algorithm (Zhu and Hall 2002), where the frame-
average axial strain is 0.8%. In both implementations, the intermediate cost function was
chosen for data analysis presented in this subsection. Strain images obtained by the three
methods for 1.5% frame-average strain for the same in vivo breast lesion are shown side by
side in Fig. 4(b). As shown in Figs. 4(a), all three methods perform equally well for a small
deformation (0.8%) for most data. However, both the multi-grid approach and the lateral-
guidance approach outperform the un-regularized axial-guidance algorithm for large and more
complex motion (see Movies 1 and 2, and Figs. 5(a)-(b)). The decorrelation noise (see arrows)
in the strain image (far right in Fig. 4(b)) is apparent. The decorrelation noise typically resulted
from large motion estimation errors and may hamper accurately tracing the lesion boundary
in the strain image. In Fig. 4(b), consistent with visual perception, the strain images with 1.5%
frame-average axial strain obtained by the multi-grid approach and the lateral guidance
approach achieve DQM values of 0.77 and 0.81, respectively, whereas the strain image
obtained using the axial guidance algorithm achieved a DQM value of only 0.27. In Movie 1
(0.8% strain) and Movie 2 (1.5% strain), two sequences of strain images (each 25 frames) as
well as the estimated corresponding DQM values (Figs. 5(a)-(b)) confirm these observations.
Note that for each comparison among algorithms the same pairs of the pre- and post-
deformation RF echo fields and the same strain processing parameters (kernel size, separation,
etc.) were used. Two different frame pairings (nominally 0.8% and 1.5% frame-average strains
(Hall et al. 2002; Lubinski et al. 1999) were used to compare algorithm performance at different
amounts of strain.

One measure of image quality (lesion detectability) is the contrast-to-noise ratio (CNR) (Song
et al. 2004):

(4)

where S and σ 2 denote means and variances of signals, and subscripts b and t represent the
background and target, respectively. To calculate the CNR using Eqn. (4) for each strain image,
we used the manually-segmented breast fibroadenoma lesion (see Figs. 5(c) and 5(d)) and the
rest of strain image as the target and the background, respectively. w is a weighting of the area
of the target and the background to the total area given by wx = areax / areatotal . The inclusion
of the weighted area is necessary because the target and the background contribute in different
amounts to the noise estimates (Song et al. 2004). The estimated CNR values for the breast
fibroademoa lesion using these three above-mentioned motion tracking approaches for Movies
1 and 2 are shown in Fig. 5(c) and (d). Similar to what demonstrated by the DQM values, the
estimated CNRs also clearly indicated that the multi-grid and lateral-guidance approaches
outperformed the axial-guidance approach in these two cases.
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B. Influence of Anatomy
Representative strain images from the in vivo thyroid follicular adenoma using the same three
motion tracking approaches are shown in Figs. 6(a)-(c) where the frame-average axial strain
is roughly 0.8%. In both the multi-grid approach and the lateral guidance approach, the
intermediate cost function was chosen for data analysis presented in this subsection. In Fig. 6
(a), the lateral-guidance approach failed to correctly predict tissue motion after the initial
estimation, resulting in large horizontal “banding” artifacts (see arrows in the middle right
strain images) due to fairly complex interfacial tissue motion near the thyroid lesion.

A sequence of strain images (19 frames) of the thyroid follicular adenoma are shown in Movie
3 where the frame-average strain is also 0.8% and the strain image noise is higher compared
with the in vivo breast lesions. We found that the DQM values in the thyroid data (Fig. 7(a))
were lower (i.e. 0.75 [mean] ± 0.07 [standard deviation]) than the DQM values obtained in the
breast data in Fig. 5a (0.87 ± 0.03) for the same frame-average strain (0.8%) both using the
multi-grid implementation. The reason is not clear. However, in our experience, the presence
of the carotid artery and trachea (not in the image plane shown in Figs. 6(a)-(c) and Movie 3)
adjacent to the thyroid gland often causes very complex (i.e. rotation, shear and discontinuous
motion patterns around the gland interface) and more out-of-plane motion. These sources of
signal decorrelation challenge our motion tracking algorithm. The high noise strain image may
make identifying the lesion boundary more difficult, as shown in Figs. 6(a)-(c). This example
shows that when the tissue motion is complex, as we expected, the multi-grid approach
considerably outperforms the other two methods (see Movie 3). As evident in Figs. 6(a)-(c),
there are instances where the lateral guidance implementation (See Figs. 6(a) and (b)) and the
axial guidance algorithm (See Fig. 6(c)) had difficulties in predicting tissue motion.
Consequently, the multi-grid implementation appears to be more reliable in some cases.

It is apparent that the estimated CNR values from the in vivo thyroid follicular adenoma in Fig.
7(b) from all strain images in Movie 3 are not consistent with our visual perception. In
particular, in Fig. 6(b) where the lateral guidance approach showed signs of "prediction errors",
the estimated CNR value was falsely high because of the presence of large decorrelation noise
(see arrows in Fig. 6(b)). The comparison between the estimated DQM and CNR values for
Figs. 4 and 6 is summarized in Table 1.

The B-mode image of the tissue-mimicking uterine phantom is shown in Fig. 8(a). Figs. 8 (b)-
(d) show the displacement fields estimated by the multi-grid approach, the lateral-guidance
approach and the axial-guidance method, respectively. In the image plane, there are two 3-mm
spherical inclusions (one above the cavity and one below the cavity; see arrows in Fig. 8(a)).
Both inclusions can be visually identified in strain image (Fig. 8(e)) obtained using the multi-
grid, but the lower inclusion cannot be seen in strain images (See Fig. 8(f)-(g)) obtained using
the lateral and axial guidance methods. Consistent with expectation, three methods performed
equally well among regions above the simulated cavity. However, the lateral-guidance
approach and the axial-guidance method failed to accurately track motion in the region below
the cavity because the assumption of global motion continuity is no longer valid as explained
in subsection E of the Materials and Methods Section. From Figs. 8(b)-(d), estimated
displacements below the simulated cavity were larger than those above the simulated cavity,
though the cavity was symmetric and pressure induced by the injection of safflower oil was
likely uniform. The difference noted in Fig. 8 is likely due to gravity, i.e. the upward pressure
induced by the injection may be offset by the gravity acting on the upper portion the simulated
uterine body whereas the lower portion is supported by the container. The "high" negative
displacement region below and around the large cavity (see Fig. 8c) shows results of the wrong
predictions by the lateral guidance approach. The normalized cross correlation (NCC)
coefficients between pairs of the pre- and motion-compensated post-deformation RF echo
fields using the estimated displacement vector fields provide an objective measure of motion
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tracking accuracy (Jiang et al. 2006). The NCC values for displacement fields displayed in Fig.
8(b)-(d) are 0.989, 0.759 and 0.867, respectively, while the estimated DQM values for the strain
images displayed in Figs. 8(e)-(g) are 0.87, 0.67, 0.80, respectively. Furthermore, the estimated
NCC values (mean ± standard deviation) among these 10 realizations (i.e. 10 displacement
fields under similar deformations) for these three methods are 0.975 ± 0.0001, 0.763 ± 0.002
and 0.889 ± 0.06, respectively. For these same 10 realizations, the estimated DQM values
(mean ± standard deviation) among resulting strain images for these three methods (i.e. multi-
grid, lateral-guidance and axial-guidance) are 0.898 ± 0.019, 0.656 ± 0.008 and 0.885 ± 0.074,
respectively.

C. Influence of Cost Functions
Representative strain images from the in vivo breast fibroadenoma using the multi-grid
approach with three different cost functions are displayed in Fig. 9(a)-(b) where the frame-
average axial strains are 0.8% and 1.5%, respectively. From the strain images in Fig. 9(a)-(b),
we found the intermediate and the maximal constraint cost functions perform equally well, but
the minimal constraint function occasionally makes mistakes (see arrows in Figs. 9(a)-(b)).
From the displacement images corresponding to the strain images displayed in Fig. 9(a), there
are regions on the estimated displacement field (see arrows in Fig. 9(c)) where the minimal
constraint cost function doesn't provide sufficient constraint, as compared with the other two
cost functions (see Fig. 9(d)-(e)). Such motion discontinuities appeared to be unreasonable
given relatively continuous motion presented in this breast data (see the B-mode images in
Movie 4). By comparing the DQM values (Fig. 10(a)-(b)) and visual analysis of Movies 4
(0.8%; 21 frames) and Movie 5 (1.5%; 19 frames) there is higher noise in the strain images
obtained by using the minimal constraint cost function for this data set.

Fig. 11(a) shows representative strain images of the in vivo thyroid follicular adenoma obtained
using the multi-grid approach with three different cost functions. The strain image obtained
with a minimal constraint cost function appears to have artifacts (see arrows) due to errors in
motion tracking similar to those shown in Fig. 9(c). The entire sequence of the strain images
(Movie 6) and the corresponding DQM values are plotted out in Fig. 11(b). The pairing of the
pre- and post-deformation RF echo frames was targeted to obtain 0.8% frame-average strains.
Both the DQM values and the visualization confirm that the intermediate constraint cost
function gives the best overall performance for this thyroid data. In this data set, certain motion
discontinuities and large shearing/rotation due to complexity in anatomy are evident (see B-
mode images in Movie 6). Therefore, both under-constraint (i.e. minimal constraint cost
function) and over-constraint (i.e. maximal constraint cost function) may be prone to errors in
the displacement estimation, as expected.

In the phantom data studied in subsection (b) of Results Section, the presence of the simulated
uterine cavity and the wall expansion due to saline injection in the image plane results in a
large motion discontinuity but a fairly simple motion field elsewhere. The minimal and
intermediate constraint cost functions perform equally well based on the displacement images
shown in Fig. 12(a)-(c). Again, the normalized cross correlation (NCC) values estimated
between pairs of the pre- and motion-compensated post-deformation RF echo fields using the
estimated displacement vector fields is employed to quantitatively assess motion tracking
accuracy (Jiang et al. 2006). The NCC values for displacement fields displayed in Fig. 12(a)-
(c) are 0.985, 0.973 and 0.796, respectively. The estimated NCC values (mean ± standard
deviation) among these 10 realizations (similar deformations) for these three cost functions
(minimal, intermediate and maximum) are 0.986 ± 0.0001, 0.975 ± 0.0001 and 0.793 ± 0.06,
respectively.
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Discussion
In this work, we demonstrate that a regularized block-matching algorithm with different levels
of motion continuity constraints can be effectively used to compute local displacements and
strains in media with complex motion. One contribution of this work is the methodological
change in providing “prediction” seeds for the later predictive search stage. When the
regularized speckle tracking is performed in a coarse grid (5-mm spacing for the multi-grid
approach presented above), there are high probabilities for planting several good prediction
seeds in each region with disjoint motion patterns. On the other hand, the lateral-guidance and
the axial-guidance approaches only provide prediction seeds in much smaller regions, thereby
having less chances of success for more complex motion patterns. That is the fundamental
reason why both the axial and lateral guidance algorithms failed to predict the tissue motion
in regions below the simulated cavity in the uterine phantom (roughly a 2-cm [long axis] by
1.5-cm [short axis] ellipse), resulting in large errors in the displacement estimates. We found
that the multi-grid approach accurately calculates local displacements around the simulated
cavity, while making large errors within the cavity because of weak scattering signals from the
safflower oil (Hobson et al. 2008).

However, the robustness of the multi-grid approach comes with penalties in computational
speed, as summarized in Table 2. Our previous work (Hall et al. 2003;Jiang and Hall 2007),
demonstrated that both the axial guidance algorithm and the lateral guidance algorithm could
achieve real-time frame rates (roughly 15 frames/second) with common computing platforms
and employing surrogates for NCC (sum-absolute difference or sum-squared difference cost
functions). For a typical 3-cm by 3-cm region of interest, the multi-grid approach requires
approximately 9 times the computing time compared to the other two approaches. Of note, all
testing was performed with un-optimized code in Matlab (MathWorks Inc. MA) as described
in Methods and Materials Section. For example, if the original echo fields were down-sampled
by a factor of 4 (instead of the factor of 2 used in current implementation), the computational
efficiency could be significantly enhanced. Furthermore, the search on a coarse grid in the
multi-grid approach is independent among individual columns in the grid and therefore can be
fully parallelized without inter-process communication to avoid problems such as large
overhead and deadlock (Tanenbaum and Steen 2002). Therefore, if the code of the multi-grid
approach is optimized and runs as a standalone program in a state-of-the-art system, its
computational efficiency can be significantly improved toward real time operation.

Overall, we found that the multi-grid approach also gave consistent results for the all data
tested, though the improvement of the multi-grid approach compared to the lateral-guidance
approach is minimal for some example data (i.e., uni-axial compression used with freehand
breast examination; see Figs. 5(a)). With sufficient complexity in the anatomy (i.e. the thyroid
follicular adenoma example), the motion prediction based on a column of displacement
estimates at the center of ROI is no longer very reliable without a sophisticated error detection
and correction algorithm. That is why the axial guidance algorithm, which employs a
computationally intensive method for error detection and correction, occasionally performs
better than the lateral-guidance approach (see Fig. 7 and Movie 3). In this sense, a more
sophisticated error detection and correction scheme without the real-time constraint that we
imposed on the axial and lateral-guidance approaches could improve their performance.
Nevertheless, obtaining regularized and highly reliable displacement estimation in a coarse
grid (i.e. multi-grid approach) covering multiple relatively disjoint motion regions and using
that information for motion prediction eliminates the great need for a sophisticated error
detection and correction method. That is the reason why the multi-grid approach performs
better for the thyroid data.
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Another contribution is that we applied the motion regularization (Eqn. (2)) to eliminate large
“inter-wavelength” errors (e.g. 10 samples) in motion tracking. When correlation-based
methods are used to track tissue motion, if the underlying echo signals were moderately or
significantly decorrelated, secondary correlation peaks (typically random) between the pre-
and post-compression echo signals could actually be higher than the primary peaks, resulting
in large errors in the motion tracking. Appropriate constraints will help to eliminate the large
tracking errors resulting from these random secondary correlation peaks. That is why both the
lateral guidance and the multi-grid approaches outperform the axial guidance algorithm where
the motion regularization (i.e. Eqn.(2)) is not applied. The ideas of using multi-resolution/scale
estimation and smoothness constraints to regularize speckle tracking are not new. Several
groups (Chaturvedi et al. 1998;Pellot-Barakat et al. 2004;Shi and Varghese 2007;Yeung et al.
1998;Yeung et al. 1998;Zhu et al. 1999) have applied smoothness constraints (with or without
multiscale) to speckle tracking. Work presented in this paper focuses on two new directions.
First, we modeled the motion estimation problem as an optimization problem that can be solved
by a dynamic programming technique, potentially in real-time. To our knowledge, optimization
with dynamic programming technique has not been reported in ultrasound-based elasticity
imaging, although it has been used in stereo matching problem (Ohta and Kanade 1985).
Second, we attempted to use cost functions with different levels of continuity constraints,
leading toward an “organ-specific” algorithm design. For instance, for breast elasticity imaging
(Pellot-Barakat et al. 2004;Zhu et al. 1999), motion continuity through tight smoothness
constraints (i.e. maximal cost function) has been assumed and successfully applied. However,
for organs like thyroid, there are tissue interfaces and complex anatomical structures (i.e.
trachea, cervical spine, and musculature) in the image plane resulting in more complex motion.
Our work shows that a different cost function (i.e. the intermediate cost function) can be
designed to improve the speckle tracking. We thought the minimal cost function could help in
situations where there is little need to constrain tissue motion estimates. These situations
include the presence of large vessels, the existence of inter-organ gap (e.g. liver, kidney and
prostate) and intra-organ cavity (e.g. uterine cavity and common carotid artery). Although only
limited success has been found in the current minimal constraint cost function, the results
reported in this paper certainly warrant further investigations. More importantly, our ongoing
research is working toward a heuristic speckle tracking algorithm that is intelligent enough to
determine spatially-variant continuity constraints.

One limitation of this study is that the underlying modulus distributions of two in vivo benign
lesions were unknown. Without knowing the anticipated strain images, we mainly used the
DQM (Jiang et al. 2006) for comparing algorithm performance. We believe it is a judicious
choice because the DQM combines the motion tracking accuracy and the consistency among
consecutive strain images to assess the fidelity of strain image formation, thereby being relevant
for the purpose of this study. As discussed in our previous work (Jiang et al. 2006), the
elastographic SNRe (Varghese 1998) is only valid for uniform phantoms and is not applicable
for heterogeneous in vivo tissues. As shown in our previous work (Jiang et al. 2006), the DQM
values are expected to correlate well with single targets embedded in relatively uniform
background in tissue-mimicking phantoms. Our in vivo results (e.g. Figs. 5(c) and 5(d) and
Table 1) showed that CNR values are consistent with the DQM values estimated from the breast
fibroadenoma lesion where the background is relatively uniform. We are not surprised that the
DQM and CNR values are not consistent in the case of the thyroid follicular adenoma (see
Table 1 and Fig. 7(b)), because the DQM and CNR are different performance metrics
representing the fidelity of strain image formation and target detectability, respectively. We
think, in this case, the use of CNR metric for the in vivo thyroid follicular adenoma is
problematic because speckle tracking errors often result in very bright spots (i.e. decorrelation
noise) in the strain images and significantly affect our ability of interpreting these CNR values.
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It is worth noting that the two in vivo lesions provide low contrast strain images (Figs. 4a and
9a) under the 0.8% frame-average strain. The contrast in some strain images will be enhanced
under high compressions (e.g. Fig. 9(a) vs. Fig. 9(b)). In this case, more sophisticated motion
estimation algorithms are needed because signal decorrelation will likely become more
significant under higher compressions. For instance, the un-regularized BMA (i.e. axial-
guidance approach) or inappropriately regularized (overconstrained vs. under-constrained)
algorithms failed to provide meaningful strain images under the high compression. The contrast
of the strain image shown in Figs. 6b-c, where the pathology is a benign thyroid follicular
adenoma, is also low (the estimated mean strain ratio between the target and the background
is only 0.9) for two possible reasons. First, according to limited mechanical testing results by
Lyshchik et al. (2005), the mean elastic modulus ratio between the benign thyroid nodule and
the normal thyroid tissue was 2.3 ± 1.7 ( ± standard deviation). When the lesion is only slightly
stiffer than its surrounding tissues, strain image contrast will be low. Second, after reviewing
Movie 3, contrast change (incremental frame-average strains are both 0.8%) may be related to
a nonlinear stress strain relationship. In particular, the relative elastic contrast between the
target and background can change as tissue is compressed. Similar contrast changes were
observed by our group (Hall et al. 2003) in many benign breast lesions. Unfortunately there is
very limited stress-strain data available for thyroid pathologies in the literature to really
understand this problem.

In our formulations, Eqn. 3(a) is a total variation function (Vogel 2002) where β will change
the shape of the minimal and the intermediate (only the first portion; see Eqn. 3(b)) penalty
functions. Since we only regularize motion tracking at the integer sample level (Eqn. (1)), we
found results were not sensitive to the selection of β . Therefore, we selected β to be 0.1 for all
cases reported above. Referring to the overall cost function, Eqn. (2), different choices of α are
equivalent to adjusting the contribution of Φ(Es) to the overall cost. In this study, we selected
α to be unity so that both items (i.e. correlation and smoothness constraint) of the cost function
were of the same order and effectively used for regularizing tissue motion.

In the future, we plan to extend elasticity imaging to abdominal organs (e.g. liver and kidney)
and prostate. These applications require accurate motion estimation in RF echo data sampled
in a sector field using curve-linear and phase array transducers. Therefore, the search kernel
will be highly distorted if the speckle tracking is performed on RF echo data prior to the scan
conversion. Typical block-matching algorithm assumes rigid body motion of the search kernel.
However, this assumption is no long valid if a highly distorted search kernel is used to track
motion over a large search region. To date, the proposed algorithm and many other speckle
tracking algorithms (Pellot-Barakat et al. 2004; Shi and Varghese 2007; Yeung et al. 1998;
Zhu and Hall 2002) have only been tested with linear array ultrasound transducers. Further
development is underway to extend the proposed algorithm to abdominal elasticity imaging
(Fisher et al. 2007) in an application-specific fashion. To deal with non-uniform spacing
between adjacent samples in a sector-shaped image plane, we could adaptively choose
appropriate tracking parameters (e.g. kernel size and requirements for motion continuity) based
on certain local criteria (e.g. depth, center frequency and the nature of the applicable organ).
For instance, kernel size can be adaptively adjusted to account for the beam hardening effect.

Conclusions
A modified block-matching algorithm integrated with the Viterbi algorithm for motion
regularization is presented. Two implementation schemes were investigated. The multi-grid
approach has potential to be a real-time algorithm, while the lateral-guidance approach operates
in real-time. The experimental results investigated show that the proposed algorithm
outperforms Zhu and Hall's algorithm (Zhu and Hall 2002) for in vivo breast and thyroid data
acquired. Our results also demonstrated that the proposed algorithm is capable of tracking in
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the presence of a large motion discontinuity, thereby enhancing its potential usability in
abdominal organs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Three proposed penalty functions Φ(ES ) which impose different amount of penalties for losing
motion continuity.
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Figure 2.
An illustration of the Viterbi algorithm. On this illustration, “N” represents different locations
where the displacement vectors need to be simultaneously estimated and “Sm”represents m
possible selections of the displacement vector for each location. Therefore, in the framework
of block-matching, each circle represents one possible choice in the search window for each
location. The cost of choosing a target circle (where the arrow is pointing toward) at the next
location is determined by Eqn. (2), given the current choice (i.e. the circle which the arrow is
originating from). The resultant cost function value is one element of the three dimensional
cost matrix Cijk and this process is repeated until all elements of Cijk are determined. If all
possible combinations are considered, there will be a large solution pool. The Viterbi algorithm
can be utilized to find the “best” set of displacement vectors (the solid blue line) in a cost-
effective manner. Of note, small numbers for m and N are used to reduce the size of this
illustration.
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Figure 3.
Flow charts summarizing two implementations of the proposed speckle tracking method for
strain imaging: (a) the lateral guidance approach and (b) the multi-grid approach.
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Figure 4.
B-mode (far left) and strain images using three different speckle tracking methods (middle left:
the multi-grid approach; middle right: the lateral-guidance approach; and far right: the axial-
guidance approach) of an in vivo breast fibroadenoma with (a) 0.8% and (b) 1.5% frame-
average axial strain. The white box in the B-mode image defines the ROI for strain images.
The order of images is the same for Movies 1 and 2. The arrows in the far-right image point
to decorrelation noise in the strain images resulted from large speckle tracking errors.
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Figure 5.
Plots of the DQM (a and b) and CNR (c and d) values versus the frame number for the in
vivo fibroadenoma shown in Fig. 4 obtained with the “multi-grid” approach (solid line), the
“lateral-guidance” approach (dashed line) and the “axial-guidance” algorithm (dash-dotted
line) for frame-average strains of (a and c) 0.8%, corresponding to Movie 1 and (b and d) 1.5%
corresponding to Movie 2.
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Figure 6.
B-mode (far left) and strain images of an in vivo thyroid follicular adenoma using three different
speckle tracking methods (middle left: the multi-grid approach; middle right: the lateral-
guidance approach; and far right: the axial-guidance approach) with 0.8% frame-average axial
strain. There are instances where (a,b) the lateral guidance implementation and (c) the axial
guidance had difficulties in predicting tissue motion (arrows in the strain images point to
decorrelation noise). The white box in the B-mode image defines the ROI for strain images.
The order of images is the same for Movie 3.
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Figure 7.
Plots of the (a) DQM and (b) CNR values versus the frame number for the in vivo thyroid
follicular adenoma lesion shown in Figs. 6(a)-(c) with 0.8% frame-average strain.

Jiang and Hall Page 26

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 27

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 28

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 29

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 30

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 31

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 32

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 33

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 34

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 35

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 36

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 37

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 38

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 39

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 40

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 41

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 42

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 43

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 44

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 45

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 46

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 47

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 48

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 49

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 50

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 51

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 52

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 53

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 54

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 55

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 56

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 57

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 58

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 59

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 60

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 61

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 62

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 63

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 64

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 65

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 66

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 67

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 68

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 69

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 70

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 71

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 72

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jiang and Hall Page 73

Ultrasound Med Biol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
B-mode (a), axial displacement in mm (b-d) and strain (e-g) images obtained from an
anthropomorphic uterine phantom using three different speckle tracking methods: (b and e)
the multi-grid approach; (c and f) the lateral-guidance approach and (d and g) the axial-guidance
approach. The white box on the B-mode image defines the ROI from which the displacements
and strains were estimated. The saline with the simulated cavity provides no internal echo
signals resulting in signal decorrelation, motion tracking errors and high noise on the strain
images. Arrows point to spherical inclusions. The simulateduterine cavity was masked out in
all strain images [(e)-(g)] to avoid visual distraction.
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Figure 9.
B-mode (far left in (a)-(b)) and strain images obtained from in vivo breast fibroadenoma
displayed in Fig. 4 using the multi-grid approach with three different cost functions. The strain
images in (a) and (b) were obtained by the minimal constraint cost function (middle left), the
intermediate constraint cost function (middle right) and the maximal cost function (far right),
respectively. The corresponding displacement images (c)-(e) from which the strain images in
(a) are also shown. Arrows point to decorrelation noise on strain images resulted from tracking
errors on displacement images.
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Figure 10.
Plots of the DQM values versus the frame number for the in vivo breast fibroadenoma shown
in Fig. 4 obtained using the multi-grid approach with three different cost functions for two
frame-average strains: (a) 0.8% and (b) 1.5%.
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Figure 11.
B-mode (far left) and strain images (a) of an in vivo thyroid follicular adenoma lesion estimated
by the multi-grid approach with (middle left image) the “minimal constraint” cost function,
(middle right image) the “intermediate constraint” cost function and (far right image) the
“maximal constraint” cost function. (b) DQM values versus the frame number. Strain images
were obtained by pairing RF frames of data to reach 0.8% of frame-average strain. Arrows in
(a) point to the decorrelation noise on strain images.
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Figure 12.
Displacement images obtained from the TM uterine phantom using the multi-grid approach
with: (a) the “minimal constraint” cost function, (b) the “intermediate constraint” cost function
and (c) the “maximal constraint” cost function. The corresponding B-mode image of the uterine
phantom is shown in Fig. 8(a). Displacement unit is mm.
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Table 2

Comparison of frame rates among three speckle tracking approaches for a typical 3-cm × 3-cm region of interest

Frame Rate (Frames/Second)

Multi-grid (not being optimized) 2

Lateral-guidance 15-20

Axial-guidance 10-15
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