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Abstract
This Letter describes the synthesis and SAR, developed through an iterative analog library approach,
of a novel series of selective M1 mAChR antagonists, based on an N-(4-(4-alkylpiperazin-1-yl)
phenyl)benzamide scaffold for the potential treatment of Parkinson's disease, dystonia and other
movement disorders. Compounds in this series possess M1 antagonist IC50s in the 350 nM to >10
μM range with varying degrees of functional selectivity versus M2-M5.

There are five subtypes of muscarinic acetylcholine receptors (mAChR1-5 or M1-M5),
members of the G Protein-Coupled Receptor (GPCR) family A, that mediate the metabotropic
actions of the neurotransmitter acetylcholine.1,2 M1, M3 and M5 activate phospholipase C and
calcium mobilization through Gq whereas M2 and M4 block the action of adenylyl cyclase
through Gi/o.1,2 The cholinergic system, mediated by mAChRs, plays a critical role in a wide
variety of CNS and peripheral functions including memory and attention mechanisms, motor
control, nociception, regulation of sleep wake cycles, cardiovascular function, renal and
gastrointestinal function to mention only a few.1-4 As a result, agents that can selectively
modulate the activity of mAChRs have the potential for therapeutic use in multiple peripheral
and central pathological states. Due to high sequence conservation within the orthosteric
binding site of the five mAChR subtypes, it has been historically difficult to develop mAChR
subtype-selective ligands.1-5 Based on brain expression and cellular localization, data from
mAChR knock-out mice and clinical trials with muscarinic agents, the M1 subtype is an
attractive molecular target for the treatment of CNS disorders. M1 has been implicated in the
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pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and dystonia due to its role
in cognition and motor control.6

The majority of reported muscarinic antagonists are unselective, such as a scopolamine, 1.7
Recently, pirenzapine, 2 has emerged as a relatively selective M1 receptor antagonist (20- to
50-fold versus M2-M5) and there are numerous reports of moderately selective M3 antagonists
(20- to 50-fold versus M2) such as 3.8 Interestingly, the most selective M1 antagonist, MT7,
4, the 65 amino acid peptide, (>1,000-fold versus M2-M5) was derived from venom extracts
of the green mamba snake (Fig. 1).9 From an M1 functional screen within the MLSCN, we
identified M1 antagonists such as 5 (M1 IC50 of 441 nM and with >340-fold selectivity versus
M4, but modest selectivity versus M2, M3 and M5 (7.9-fold, 7-fold, and 2.4-fold, respectively))
and 6 (M1 IC50 of 5.0 μM and with >30-fold selective versus M2-M5).10-12 Based on the M1
selectivity of 6, attractive physiochemical properties (MW < 350, clogP 3.6) and the fact that
it was the only benzamide-containing analog in the series, we initiated a library synthesis
effort13 to develop SAR around 6.

As shown in Scheme 1, the first round of library synthesis focused on benzamide analogs of
6. Commercially available 3-chloro-(4-(4-ethylpierazin-1yl)aniline 7 was acylated under
standard conditions employing polymer-supported reagents and scavengers13 to afford a 24-
member library of analogs 8, along with resynthesized 6. All analogs were then purified by
mass-guided HPLC to analytical purity.14 To effectively screen small libraries of potential
mAChR ligands, we have adopted a strategy to triage compounds in single-point screens (at
10 μM) at M1, M3 and M5 – the Gq-coupled mAChRs – to identify active and selective
compounds prior to running full concentration-response curves (CRCs).15 Figure 2 shows the
10 μM single-point screens for the first 25-member library of benzamide analogs 8.

As Shown in Table 1, re-synthesized 6 displayed comparable potency and mAChR selectivity
to the original sample (M1 IC50 = 3.2 μM, IC50 ≫10 μM for M2-M5). Functionalized benzamide
analogs 8 possessed a wide range of M1 potency and mAChR selectivity, and we initially
evaluated anlaogs 8 against M1, M3 and M5. Substitution in the 2-position, 8a (2-Cl) and 8b
(2-OMe) possessed submicromolar M1 IC50s (960 nM and 820 nM, respectively), but also
showed low micromolar activity at M3 and M5. A pentafluorophenyl congener 8e (Fig. 3A)
proved to be a submicromolar antagonist of both M1 and M5 (IC50s of 350 nM and 830 nM,
respectively). Substitution at the 4-position, as with the 4-OMe derivative 8f, was comparable
to the original 6. Interestingly, a 2,5-bisCF3 analog 8h had an M1 IC50 of 490 nM, with ∼ 9-
fold functional selectivity versus M3 and M5 (Fig. 3B). Intrigued by this potent and selective
M1 antagonist, we screend against M2 and M4 as well, but found that 8h possessed only 3- to
4-fold selectivity versus the Gi/o-coupled mAChRs (Table 1). 8i, a 3,5-bisCF3 analog possessed
a unique profile as a dual M1/M4 antagonist (IC50s of 2.6 μM and 3.7 μM, respectively), with
little effect on an ACh EC80 at 10 μM on M2, M3 or M5. Finally, a 3,4-difluoro 8j derivative
was also comparable to the original 6. While this library afforded interesting results, further
optimization was required.

Having surveyed the amide moiety while maintaining the N-ethyl piperazine, we next
generated two-dimensional libraries wherein the nature of the alkyl group was varied (9-12)
while also surveying diverse benzamides to generate analogs 9a-f, 10 a-f, 11a-f and 12a-f
(Scheme 2).

Application of the same strategy to triage compounds in single-point screens (at 10 μM) at
M1, M3 and M5 to identify active and selective compounds prior to running full (CRCs) was
employed, but >75% of these new analogs possessed no M1 antagonist activity. The SAR for
this series was incredibly shallow, with only an N-propyl congener with the 3,5-
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dicholrobenzamide moiety 11i displaying reasonable activity (M1 IC50 = 3.7 μM, IC50 >10
μM for M3 and M5), and all other analogs possessing M1 IC50s in the 6-9 μM range.

In summary, a two-dimensional parallel synthesis library campaign was performed around 6,
an M1 antagonist identified in a functional HTS screen. SAR for this series was shallow, but
we were able to improve the M1 antagonist activity of 6 into the 350 to 500 nM range with
analogs 8, while maintaining good mAChR selectivity. Interestingly, 8i is the first reported
dual M1/M4-preferring antagonist, which compliments the prototypical M1/M4-preferring
agonist xanomeline. Other chemical series from our M1 functional screen are currently under
chemical optimization, and further refinements will be reported in due course.
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of 2μM Fluo-4 AM diluted in assay buffer [HBSS (Invitrogen) supplemented with 20mM HEPES
and 2.5mM probenecid, pH 7.4] for 45min at 37°C. Dye was then removed and replaced with assay
buffer. Cells were pre-incubated with 10μM or a concentration-response curve of novel compound,
followed by a sub-maximal concentration of Acetylcholine or Carbachol. The signal amplitude was
first normalized to baseline and then expressed as a percentage of the maximal response to
acetylcholine.
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Figure 1.
Structures of representative mAChR antagonists.
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Figure 2.
Single-point EC80 plus 10 μM compound triage screen at M1, M3 and M5 to select compounds
for full CRCs.
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Figure 3.
CRCs for M1, M3 and M5 for (A) compound 8e (M1 IC50 = 350 nM) and (B) compound 8h
(M1 IC50 = 490 nM), showing ∼9-fold functional selectivity versus M3 and M5.
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Scheme 1.
Library synthesis of first generation analogs 8. All library compounds were purified by mass-
guided HPLC to >98% purity.14
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Scheme 2.
Library synthesis of second generation analogs 9a-f, 10a-f, 11a-f and 12a-f. All library
compounds were purified by mass-guided HPLC to >98% purity.14
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