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Abstract
Vascular inflammatory disorders are often associated with both decreased NO bioavailability and a
lack of responsiveness to NO, a consequence of impaired NO biosynthesis, dysregulated L-arginine
metabolism, endothelial nitric oxide synthase (eNOS) uncoupling and NO consumption induced by
redox reactions of NO. The latter is mediated via oxidative inflammatory conditions altering NO-
dependent endothelial function, including vascular tone and cell proliferation. The redox reactions
of NO and byproducts such as nitrite can react to yield electrophilic nitro-fatty acid derivatives
(NO2-FA) and exemplifies a biochemical convergence of reactions participating in NO and lipid
signaling. NO2-FAs represent a novel therapeutic strategy to treat vascular disorders by improving
endothelial dysfunction through enhancing NO signaling and blocking vascular smooth muscle
proliferation, inflammation, and maladaptive remodeling.

Introduction
Endothelial dysfunction is a hallmark of vascular inflammatory disorders and plays a central
role in mediating structural changes such as lipid accumulation or intimal hyperplasia in the
vasculature. Endothelial NO plays a critical role in the regulation of vascular homeostasis by
inhibiting inflammatory cell function and smooth muscle proliferation [1,2]. Oxidative
inflammatory conditions, through NO- and O2-derived species, results in oxidative stress,
decreased antioxidants, and lower NO bioavailability. This in turn incites a vicious cycle of
endothelial dysfunction, vascular cell proliferation and vascular remodeling (Figure 1)
increasing susceptibility to atherosclerosis, hypertension, thrombosis, and diabetes mellitus.
For example, drugs that make soluble guanylate cyclase (sGC) more responsive to NO and that
increase cellular cGMP levels can protect hypoxic mice from developing pulmonary artery
hypertension (PAH), but knockout mice lacking eNOS fail to respond as they are incapable of
endothelial NO generation [3]. Increasing NO signaling can partially reverse PAH and
pulmonary vessel remodeling once PAH has been established [4••,5••]. Moreover, statins have
anti-atherogenic effects mediated, in part, through scavenging superoxide, increasing eNOS
expression and NO production, and upregulation of heme oxygenase 1 (HO-1) expression [6,
7]. Since vascular inflammatory disorders are associated with endothelial dysfunction and
impaired NO function, the targeting of various aspects of the NO signaling pathway has been
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proposed as a therapeutic modality. We overview the potential impact of NO2-FA on
modulating endothelial gene expression and function as a therapeutic strategy, with these
species exhibiting anti-inflammatory cell signaling properties that upregulate HO-1, eNOS and
NO production in the vasculature, inhibit VSMC proliferation, and activate PPARγ through
Nrf2-dependent and independent processes. Moreover, we address that all of these signaling
actions are attributable to the electrophilic nature of NO2-FA.

Formation of NO2-FAs
Both NO- and nitrite (NO2

−)-derived species yield the nitrating products that mediate the
nitration of unsaturated fatty acids [8,9]. When it was observed that the reaction product of NO
and O2

.−, peroxynitrite (ONOO−), was a potent biological oxidizing and nitrating agent, the
tissue formation and actions of 3-nitro-tyrosine became of interest [10]. The same reactions
that nitrate tyrosine also yield NO2-FA, with the prevalence and redundancy of these
mechanisms supporting that nitration reactions in part act to transduce NO signaling and tissue
inflammatory responses. Both free radical and ionic mechanisms that share nitrogen dioxide
(.NO2) as the proximal nitrating species have the ability to generate NO2-FA [11]. NO also
rapidly intercepts free and enzyme-bound lipid alkoxyl and peroxyl radicals (k = 2 × 109

M−1s−1) [9,12] during both autocatalytic and enzymatic fatty acid oxygenation reactions, also
yielding nitrated products [9,13,14]. Moreover, metabolic, inflammatory and acidic conditions
promote fatty acid nitration [15,16]. For example, cardiac tissue and mitochondrial fatty acid
nitration is increased after ischemia-reperfusion (I/R) reactions in vivo [17••]. Importantly,
NO2-FA are reversibly-reactive electrophiles that covalently adduct nucleophilic amino acids
present in low molecular weight peptides and proteins and that rapidly undergo β-oxidation to
shorter chain nitroalkenes and further metabolism to hydroxyl and keto derivatives [17••–19].
Overall, biological fatty acid oxidation and nitration reactions yield an array of NO2-FA
regioisomers that display unique chemical reactivities and signaling actions.

Mechanisms of Electrophilic Fatty Acid Reaction
Unsaturated fatty acids can be converted to electrophilic products via enzymatic and non-
enzymatic oxidation and nitration reactions [20]. Electrophiles (“electron-lover”) undergo
chemical reactions by attacking nucleophiles, accepting an electron pair and forming a
chemical bond. Electrophilic species can also be ingested from the diet and are endogenously
produced as metabolic byproducts of redox reactions. Some electrophiles permanently and
irreversibly modify a target protein and others induce more short-lived and reversible adduction
of the target protein [21]. NO2-FAs are Michael acceptors that react with nucleophiles such as
the cysteine thiolate, the imidazole moiety of histidine and the ε-amino group of lysine residues.
These reactions facilitate the reversible adduction and post-translational modification of
proteins to alter structure, trafficking and catalytic activity [20]. Reversibly-reactive
electrophiles typically display low or no cytotoxic effects at low concentrations, with these
reactions potentially functioning as signaling events that are sensitive to cellular metabolic and
redox status. The reversible adduction of cysteine by electrophiles can include inter- or
intramolecular exchange reactions between different thiols, with ultimate transfer of the
electrophile to GSH and export of the electrophile-GSH adduct from cells through specific
multi-drug resistance protein transport mechanisms [22] (Figure 2). This electrophile adduction
of GSH can lead to a depletion of GSH pools, thereby altering the redox status of the cell and
either directly or indirectly activating compensatory responses (Nrf2 activation) and inducing
tissue-protective gene expression. Pharmacologic interventions directed towards activating an
integrated system that senses, responds to and controls levels of electrophiles may lead to new
strategies for drug discovery and treatment of inflammatory disorders.
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Electrophile-induced Nrf2 activation
Electrophilic fatty acid derivatives mediate cytoprotective cell signaling reactions via phase 2
gene expression. Biological electrophilic fatty acids, which include NO2-FA, cyclooxygenase-
derived 15-deoxy-Δ12,14-PGJ2, a variety of isoprostane derivatives and lipoxygenase-derived
α,β-unsaturated ketones [23,24], are emerging as mediators protectiing against xenobiotic and
oxidant injury. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2)/Keap1
(Kelch-like ECH-associating protein) pathway mediates phase 2 gene activation. Under normal
conditions, Nrf2 localizes to the cytoplasmic supressor protein Keap1 which has several critical
cysteine residues that serve as sensors to environmental stresses such as ROS and electrophiles.
Keap1 cysteines are oxidized or alkylated, causing a conformational change and liberating
Nrf2 to translocate to the nucleus, bind to the cis-acting DNA regulatory antioxidant response
element [ARE, also referred to as the electrophile response element (EpRE)], and thereby
transactivating Nrf2-dependent gene transcription. This includes enzymes of GSH synthesis
and transfer, quinone reductase (NQO1), epoxide hydrolase, thioredoxin, transferrin, catalase,
superoxide dismutase, and HO-1 [25]. This widespread mechanism, conserved in both plants
and animals, protects against metabolic and inflammatory stress.

NO2-FAs upregulate adaptive protective mediators
NO2-FAs reversibly react with susceptible protein thiols of Keap1 and modulate phase 2 gene
expression responses that attenuate vascular anti-inflammatory activity. NO2-FAs induce
HO-1, NQO1, and GSH biosynthetic enzyme (GCLM) expression by Nrf2-dependent
processes. This induction of HO-1, GCLM and NQO1 mRNA and protein expression was
significantly attenuated in cultured human endothelial cells transfected with Nrf2-siRNA
[26]. This demonstrates that NO2-FAs mediated induction of tissue-protective responses in
endothelial cells is partially regulated by the Nrf2/Keap1 pathway.

NO2-FAs Increase eNOS and HO-1 expression
NO2-FA, as NO and NO2

−-derived species, can induce “feedback” regulation of eNOS
expression and activity. Administration of OA-NO2 (3 mg/kg/d for 3 d) to mice via a
subcutaneously-implanted osmotic mini-pump resulted in an 8-fold increase in plasma OA-
NO2 levels compared to oleic acid (OA) controls. OA-NO2 increased aortic eNOS and HO-1
mRNA expression 3-fold, as determined by multiplex real time PCR analysis. Cultured
endothelial cells responded similarly to NO2-FAs added to the culture medium, displaying
increased eNOS and HO-1 mRNA and protein expression [27,28]. Additionally, OA-NO2
increased the release of NO in endothelial cells [27]. Thus NO2-FAs induce signaling reactions
that increase eNOS–dependent NO production and HO-1 expression, both in vitro and in
vivo.

NO2-FAs inhibit VSMC proliferation
NO2-FA inhibited serum-induced VSMC proliferation in a dose-dependent manner with native
fatty acids having no effect. Analysis of cell-cycle protein expression revealed upregulation of
the cyclin-dependent kinase inhibitor p27kip1 without affecting expression levels of cyclin D1
and E or cyclin-dependent kinase 4. Knock-down of Nrf2 using a si-RNA approach abolished
NO2-FA-mediated growth inhibition in VSMCs and the upregulation of p27kip1 protein
expression. Conversely, Ad.Nrf2 increased p27kip1 and ectopic expression of Keap1 attenuated
the upregulation of p27kip1 by Ad.Nrf2 in a dose-dependent manner [29••]. These data support
that NO2-FAs inhibit VSMC proliferation and that this action is, in part, dependent on Nrf2
activation.
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NO2-FAs are partial PPAR agonists
Peroxisome proliferator-activating receptor (PPAR) agonists have been plagued by adverse
side effects. Partial PPAR agonists that retain their efficacy without adverse side effects appear
to be the next generation of signaling activators [30]. One such mechanism of partial PPAR
activation focuses on differential recruitment of coactivators and/or corepressors to the
receptor, resulting in a tissue-and promoter-selective expression of specific target genes.
NO2-FAs and keto-fatty acid derivatives have high binding affinities for all three PPAR
isotypes, with PPARγ the most robustly-activated receptor (followed by α and then δ) [31,
32•]. Reporter cell transactivation studies revealed that different regioisomers of NO2-FA
behave as partial agonists [33•]. Receptor-ligand-binding analysis indicates that NO2-FA
covalently react with the ligand binding domain Cys285 residue of PPARγ in both biochemical
reaction systems and cells. While saturation kinetics does not apply to this mode of receptor
interaction, comparative studies support a greater EC50 for receptor activation than that of the
synthetic PPARγ agonist Rosiglitazone (Rosi) [34•]. NO2-FA transactivation of PPARγ is not
induced by similar concentrations of non-electrophilic NO2-FA metabolites, NO donors, native
oleic or linoleic acid or oxidized derivatives of these fatty acids in the presence and absence
of NO [31]. NO2-FAs act as partial PPARγ agonists in nM ranges, unlike native fatty acid,
prostaglandin metabolite and oxidized fatty acid derivatives that only activate PPAR α, γ and
δ at non-physiological concentrations of >50 μM [35–37].

Inasmuch as endothelial dysfunction plays a vital role in both systemic and pulmonary vascular
diseases [38–40], it is notable that PPARγ agonists increase NO production in EC by post-
translational eNOS modifications and not by increased eNOS expression [41–43]. Moreover,
endothelial PPARγ−/− mice were hypertensive (significantly higher mean arterial pressure),
released less NO, and displayed increased NFkB-DNA binding compared to littermate controls
[44]. PPARγ activation is proposed to retard the initiation and development of hypertension
[45] and PAH [46] by mechanisms centered on increased NO bioavailability including 1)
inhibition of pro-inflammatory NO-consuming signaling reactions, 2) decreased SMC and EC
migration and proliferation, and 3) decreased production of reactive species. The therapeutic
potential of PPARγ agonists also reveals promise in animal models of PAH and other vascular
disorders. For example, Rosi attenuates chronic hypoxia (CH)-induced right ventricular
systolic pressure increases (RVSP), right ventricular hypertrophy, vascular remodeling, and
Nox4 expression in mice exposed to 10% oxygen for 3–5 weeks. CH-induced Nox4 expression
increased superoxide and H2O2 in lung tissue and was blunted by Rosi treatment [47••]. These
findings suggest that PPARγ and/or activation by Rosi mediates vascular protective effects by
improving endothelial function in part through ROS- and anti-inflammatory-dependent
pathways.

NO2-FA suppress pro-inflammatory reactions
Reactive oxygen species induce gene and protein expression by activating transcription factors
such as NFkB [48], which in turn play a role in vascular inflammation associated with vascular
disorders. Electrophilic NO2-FAs adducted the NFkB p65 subunit, resulting in inhibition of
DNA binding and repression of NFkB-dependent target gene expression [49]. Consequently,
NO2-FAs attenuate LPS-induced macrophage expression and secretion of pro-inflammatory
cytokines, inhibited TNFα-stimulated vascular cell adhesion molecule 1 expression and
blocked TNFα-induced adhesion of monocytes to endothelium. Moreover, administration of
NO2-FA during or immediately following an ischemic episode induced profound myocardial
protection following coronary artery ligation and reperfusion. This protective effect was
mediated in part through the inhibition of the p65 subunit of NFkB and the limitation of
downstream pro-inflammatory signaling [17••].
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Conclusions
NO2-FAs are byproducts of NO and NO2

−-dependent oxidative reactions. When exogenously
administered at concentrations giving plasma levels 5–10 times greater than found
endogenously, these species reduce oxidant stress, inflammation and maladaptive vascular
remodeling in a variety of pre-clinical inflammatory injury models. In vitro, NO2-FAs inhibit
neutrophil and platelet function, VSMC proliferation, endothelial adhesion molecule
expression. LPS-induced macrophage activation and macrophage transmigration [50]. In
rodent models the administration of NO2-FAs either by intraperitoneal injection or
subcutaneously-implanted osmotic mini-pumps resulted in inhibition of neointimal
proliferation following wire-injured vessels [51] and I/R injury to heart and kidney [17••].
Further evaluation of electrophilic nitro- and keto-FAs may reveal a new strategy for limiting
the inflammatory reactions and impaired vascular function characteristic of vascular disorders.
A broad range of signaling events would be responsible for these effects, since electrophilic
lipids act through a multitude of signaling pathways (Figure 2), including increasing eNOS
and Nrf2-dependent gene expression, attenuating VSMC proliferation, inhibiting NFkB-
induced inflammatory effects and activating PPARγ-dependent gene expression.
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Figure 1.
Mechanisms for oxidative inflammatory-induced endothelial dysfunction, proliferative
effects, and vascular remodeling (vicious cycle) in vascular disorders.
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Figure 2.
NO2-FA-mediated anti-inflammatory and cytoprotective effects. Electrophilic NO2-FA bind
critical nucleophilic residues on p65 and Keap1 thus resulting in inhibition of NFkB-dependent
downstream inflammatory signaling and Nrf2-dependent activation of cytoprotective effects,
respectively. The disruption of the Keap1/Nrf2 complex by electrophiles leads to Nrf2
translocation to the nucleus forming heterodimeric complexes with small Mafs on the ARE.
NO2-FAs bind to PPARγ and partially transactive PPARγ-dependent gene activation.
Electrophile-GSH adducts form in the cytoplasm and can be transported out through specific
multi-drug resistance proteins (MRP-1).
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