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Abstract

Aims—Geography-based genetic differentials operating on entire biochemical pathways may reflect
different adaptive evolutionary processes that separated populations may have undergone. They may
also influence treatment outcome for a variety of drugs — an emerging and important area of study.
This research article leverages the International HapMap Consortium data to identify pathway

components that differ in genotype frequency for four populations: individuals of Northern European
descent from the USA (CEU), individuals from West Africa (YRI), Japan (JPT) and China (CHB).

Materials & methods—BY identifying loci with fixed or large frequency differences (5 = 1)
between paired population samples (CEU vs YRI, CEU vs CHB, CEU vs JPT, YRI vs CHB, YRI
vs JPT and CHB vs JPT), and reconstructing the physiological functions of genes at these loci, we
report a list of pathways affected by natural selection during human evolution.

Results—Of the 3.7 million HapMap SNPs, 463 loci (which mapped to 38 genes) were fixed (6 =
1) in at least one population pair. These private loci included four nonsynonymous coding SNPs:
rs4536103 (NEUROG3), rs1385699 (EDAZ2R), rs11946338 (ARHGAP24) and rs4422842
(CACNA1B). A total of four additional genes demonstrated evidence of recent positive selection:
three genes in European subjects (IER5L, NPNT and SESTD1) and a single gene in Asian subjects
(EXOC6B).

Discussion—Gene ontology and pathway analyses suggest that cellular differentiation, apoptosis
and activation of the NF-«kB transcription factor vary between populations in genomic regions of
fixed (private) SNPs identified in this study. Variability in these pathways may provide important
clues into the mechanisms of human adaptation to different environments. An improved
understanding of their variability may also help to explain race-specific differences in the treatment
outcomes observed for a variety of modern drugs.
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Genomic landscapes are not uniform across chromosomes and they demonstrate strong hetero
geneity in humans across the different ethnic groups [1]. These differences could contribute to
some of the observed variance in disease susceptibility, onset and treatment outcome. SNPs
cataloged within the HapMap resource [101] capture a significant representative fraction of
common human sequence variability across different genomic regions, and this resource can
be used to test for the presence of population structure related to geography and, presumably,
ancestry. Variability between genomic regions can reflect natural selection, gene conversion
and mutation [2]; conversely, genome-wide average variability reflects patterns of geographic
subdivision and the size of breeding populations, factors associated with gene-frequency
evolution [3]. Both provide tantalizing clues to possible selection pressures experienced by
ancestral populations [4,5].

HapMap data have provided critical evidence in support of recent positive selection, or
selection in favor of new alleles, for genes influencing the pathogenicity of infectious agents
(e.g., malaria), genes involved in nutrient metabolizing pathways (e.g., disaccharides and fatty
acids) and genes associated with pigmentation differences [6,7]. These genes confer advantages
at different geographic and climatic conditions, as well as at different latitudes. Analyses to
identify such population-specific effects rely on the fact that, under strong positive selection,
an allele may rise to high frequency so rapidly that associations extend for substantial distances
along chromosomes, primarily because there has not been sufficient time for significant
recombination [8,9].

On a worldwide scale, human populations show large phenotypic variability, particularly for
skin color, face and body shape, susceptibility to pathogens and prevalence of disease [10].
However, most of the genetic variation in humans is found within populations rather than
among populations or geographic regions [11-13]. Still, many studies have focused on traits
or loci showing geographically restricted distribution, or on loci showing drastic allele
frequency differences between two regions. These particular cases can indeed reveal important
information about local selective pressures or about the demographic histories of different
populations [14].

SNPs that are fixed in only one population sample but absent in others are considered “private
SNPs’ [15]. Populations whose genetic makeup was shaped through thousands of generations
in distinct, relatively fixed environments were suddenly exposed to an entirely new world and
unfamiliar environment. This introduction to a drastically different environment, composed of
distinct pathogens as well as diverse cultural and social influences, may have provided
opportunities for an individual’s private SNPs to exist and rapidly adapt and adjust.
Investigation of SNPs with major frequency differences among populations may yield valuable
insight into pathways governing responses to environmental pathogens, and other functional
effects of pathophysiologic or pharmacogenomic interest. With the growing emphasis on
genome-wide association studies using high-density genome-wide SNP arrays, and the recent
accumulation of large and publicly available datasets, there exists an increasing need for finer
resolution within and between population structure to identify significant genomic regions with
genetic influence on disease risk [16,17].

Our overall goals were to characterize and determine the regional and chromosomal
distribution of HapMap private SNP loci and associated genes among four human populations,
to identify enriched biological functions/processes or pathways associated with these SNPs,
and to evaluate the ecological and adaptational implications of these loci and genes. Our
approach included the application of genomic information available within functional
annotation databases (e.g., gene ontology [GO] and pathways), and bioinformatics tools such
as Ingenuity Pathways Analysis (IPA), PupaSuite, function analysis and selection tool for SNPs
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(FastSNP), Integrated haplotype score (iHS), Haplotter and Onto-Express. By enhancing our
understanding of genomic regions of extreme frequency differences, this study may provide
more insight into genetic variation influencing human disease, and affect our adaptation of
‘personalized’, DNA-based treatment strategies [18].

Materials & methods

Data mining & processing

We downloaded the HapMap SNP data [101] for 210 unrelated samples in the four HapMap
populations (60 centre d’etude du polymorphisme humain [CEPH] North Americans with
European ancestry [CEU]; 60 Yorubans from Ibadan [YRI], Nigeria; 45 Japanese from Tokyo
[JPT]; and 45 Han Chinese from Beijing [CHB]). These data represent a complete HapMap
Phase |1 dataset available for each of the representative populations. Two criteria were used to
filter the SNPs included in the analysis. First, the SNP should be shared by at least two
populations. Second, all filtered SNPs were required to show polymorphism in one or more
HapMap population(s) for over 90% of the samples in each population. A computer program
using Python™ (Python Software Foundation, NH, USA) [102] was written to export and pre-
process SNP genotype information from the databases. There are approximately 3.7 million
SNPs in the HapMap data release [19]. Genotypes were summarized for each population. For
each dataset, the number of alleles per locus (SNP) was coded to a string of numbers to obtain
a full design matrix of alleles (the cells give the number of copies of each major allele for each
individual: 0, 1 or 2). Figure 1 depicts our approach to private SNP mining and analysis. The
numbers of SNP markers used are shown in Table 1.

Allele frequency difference estimation

Private loci and various levels of marker informativeness were quantified as a measure of
ancestry among populations, using the allele frequency difference termed ‘5 procedure’.
Marker informativeness for ancestry is defined as the absolute value of the difference of the
frequency of a particular allele observed for two ancestral populations. For example, if we let
p11 represent the frequency of areference allele in the first parental population and p»4 represent
the frequency of the same allele in the second parental population, then the 6 value is given by
0=1p11—p21l. A marker with 3 = 1 provides perfect information regarding its ancestry, whereas
a marker with & = 0 carries no information for ancestry [20].

Gene ontology analysis

Onto-Express [103] was used to identify any enriched GO [104] terms in the genes that mapped
to private SNPs using functional profiles of GO terms for biological function, biological
process and cellular components. A false discovery rate (FDR) of 20% (corrected p-value)
after Benjamini-Hochberg (BH) correction [21] was used for significance in these enrichment
analyses, allowing us to distinguish between significant biological processes/function and
random events.

Pathways & network analyses

A dataset containing gene identifiers was uploaded into the IPA 7.0 (Ingenuity Systems, CA,
USA) to map and generate putative networks based on the manually curated knowledge
database of pathway interactions extracted from the literature. The network was generated by
the input genes, called focus genes, using both direct and indirect relationships/connectivity.
These networks were ranked by scores that measured the probability that the genes were
included in the network by chance alone. Networks with scores of three or more represent
genes not being generated by random chance [22]. The overlapping networks were merged to
produce the largest possible network, such that the number of biological relationships to be
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examined was maximized. The significance threshold for Fisher’s exact test to determine the
probability that each biological function and/or disease assigned to that network is due to
chance alone was 0.05 or less. Canonical pathways associated with input genes were elucidated
with a statistical significance value.

PupaSuite & FastSNP functional analyses

We used PupaSuite [105] to search for and retrieve SNPs with potential phenotypic effects,
SNPs that could affect conserved regions identified by alignment with the mouse genome,
exonic splicing silencers (ESS) that often contribute to alternative splicing, predicted
transcription factor binding sites (TFBS) and changes in amino acids in the encoded proteins.
PupaSuite uses the complete set of SNPs cataloged in version 44 of Ensembl, which includes
SNP database (dbSNP) 126 genotype data and Sanger-caller Celera SNPs, collectively
accounting for over 11 million SNPs. To explore potential functions of the SNPs, we used the
FastSNP program [106] that analyzes SNP functions based on up-to-date information extracted
from 11 external bioinformatic databases at query time [23].

Recent positive selection analysis

The iHS, which measures the possibility that a gene has undergone recent positive selection,
was developed to detect evidence of recent positive selection at a locus. This approach is based
on the differential levels of linkage disequilibrium surrounding a positively selected allele
compared with the background allele at the same position [6]. We used the Haplotter-calculated
iHS [107] to measure if the 38 genes associated with differentially fixed SNPs had undergone
recent positive selection among CEU, CHB, JPT and YRI. Using an empirical significance
threshold of 0.05, the proportion of SNPs with an liHSI greater than 2 for each bin of 50
neighboring SNPs was generated by Haplotter [6]. Haplotter is a web application used to check
and display results if a particular gene has been a target of recent positive selection. Large
positive and negative values of iHS indicate unusually long haplotypes carrying the ancestral
and derived allele, respectively.

Bootstrap analysis

Results

To confirm that the distribution of private SNPs has not been influenced by stochastic effects,
bootstrap analysis was employed [24]. All SNPs (809,624) that initially went into the analysis
were randomly permuted for each population (CEU, YRI, CHB and JPT) to generate 1000
independent replicates (i.e., 1000 unique datasets). We then calculated the & value as measured
previously with: 6 = Ip11 — p21l. The SNPs with & values of 1 (private SNPs) of the randomly
permuted datasets between populations were then statistically compared with that of the private
SNPs generated from the original dataset. The & value between the private SNPs and the
bootstrapped data were statistically different (p < 0.01), indicating that none of these private
SNPs were identified by random chance or by stochastic variation that could affect the
robustness of our conclusions.

Allele frequency characterization & racial variation

Of the total HapMap SNPs where allele frequencies were available for YRI, CEU, CHB and
JPT, we used allele frequency difference (8) to extract monomorphic SNPs and SNPs with
various levels of polymorphism (including 100% informative SNPs between populations).
Figure 2 illustrates the distribution of allele frequencies between populations. Of the Phase 11
HapMap SNPs, 17% were 100% noninformative for ancestry between CEU and YRI, 40%
were between CHB and JPT, and 19% for CHB/JPT and YRI. Closely related populations such
as CHB and JPT are similar across the genome and only approximately 0.04% of SNPs display
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d values of 0.3-0.5, while 8-13% of the SNPs for the same & range exist between other
populations. Interpopulation differences across the 3.7 million Phase 11 HapMap SNPs
demonstrate that 30, 29, 34, 163 and 207 HapMap loci have fixed allele differences between
YRI and CEU, CEU and CHB, CEU and JPT, CHB and YRI, and JPT and YRI population
groups, respectively.

In general, the genome-wide SNP allele frequency data showed that most SNP markers do not
vary significantly among the major continental populations. Of note, despite allele frequency
differences between CHB and JPT populations, none of the 3.7 million sites showed a fixed
difference between these two populations (no private SNPSs); that is, there was no diallelic SNP
wherein one allele was fixed in the CHB population and the other allele was fixed in the JPT
population.

Chromosomes harboring private SNPs

The density and distribution of SNPs and genes vary among chromosomes. Across the genome,
a total of 463 private SNPs or fixed loci were identified in the HapMap population. Of the total
463 private SNPs, the highest proportion of private loci were observed on the X chromosome
(68%), followed by chromosome 2 (9%), chromosome 7 (5%), chromosome 4 (4%) and
chromosome 20 (3%). Several chromosomes, including chromosomes 1, 5, 6, 11, 13, 14, 15,
16, 17,19 and Y, did not have any fixed or private SNPs across these populations (Table 2).
The higher number of private SNPs in the X chromosome compared with autosomes might
indicate that demographic history of populations affects genetic variation on sex chromosomes
in a different way from the genetic variation of autosomes [25].

Across each population and genome, CEU and YRI have 119 and 212 private SNPs,
respectively, whereas CHB and JPT share all of the SNPs. Using private SNPs as a descriptor,
CEU and CHB populations were best discriminated from the CEU and JPT populations by
chromosome 7. The YRI population was best separated from CEU and CHB/JPT by private
SNPs that are on the X chromosome. Few SNPs that are private in two populations were
demonstrated to be private in other populations as well. For example, SNP rs2132498 is fixed
in CHB (5 = 1) but not in CEU and YRI (6 = 0). SNPs rs2132498 and rs6979384 are fixed in
JPT butnotin CEU and YRI (5 = 0). SNP rs7772008 is fixed in CEU, CHB and JPT population
but not in YRI.

Chromosome regions with fixed SNPs might indicate regions of strong selection or drift. Using
the recent human genome assembly (NCBI build 36, March 2008) and gene-structure
annotation from the Ensembl database (version 49, March 2008) [26], we mapped private SNPs
using BIOMART [108] options of the Ensembl genome browser. There were 38 genes that
mapped to private SNPs across the genome. The chromosomal distribution of these 38 genes
is shown in Table 2. Similar to the chromosomal distribution of private SNPs, most genes are
on the X chromosome.

Relevant gene networks & pathways

The GO annotation does not cover every aspect of biology. Furthermore, many GO classes are
overlapping or redundant, owing to the hierarchical nature of the annotation terms. The use of
network analyses for gene data, as an alternative to hierarchical cluster analysis, is particularly
helpful for the prioritization of genes within pathways. Therefore, all 38 genes associated with
the 463 private SNPs were also characterized using a network-based approach. Through
application of IPA, five molecular and cellular functions were identified among these 38 genes
(Table 3). The cell—cell signaling interaction had the highest p-value (p = 1.87 x 1074-1.16 x
1072) and included ten genes. The functions of these genes were found to be related to lipid
metabolism and molecular transport.
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The 38 genes of interest were also overlaid onto a global molecular network developed from
literature-reported connectivity that is recorded in the Ingenuity Pathways Knowledge Base
(Figure 3A & Box 1). Unfilled nodes are genes that are identified by IPA as being part of the
networks, but are not our focus genes. The biological relationship between two nodes is
represented in Figure 3A as an ‘edge’. Solid lines indicate a direct interaction whereas dashed
lines indicate an indirect interaction. We used IPA to characterize the enrichment of specific
pathway components into functionally differentiated gene groups [27]. IPA canonical
pathways enriched in the 38 genes associated with private SNPs (p < 0.05) were cell junction
signaling and the protein ubiquitination pathway (Figure 3B & Box 1). These most enriched
IPA pathways were known to play essential roles in development. The ubiquitination pathway
[28] was also found by to be enriched in the differential genes between CEU and YRI.

Analysis of nonsynonymous SNPs

Since nonsynonymous SNPs (nsSNPS) are more likely to have phenotypic effects in
populations that show interpopulation frequency differences [29,30], we searched the private
SNP dataset for nsSNPs. Of the 463 SNPs, four SNPs (rs4536103, rs1385699, rs11946338 and
rs4422842) were nonsynonymous. These four SNPs mapped to NEUROG3, EDAZ2R,
ARHGAP24 and CACNA1B, respectively (Table 4). The nsSNPs positioned in three of these
genes were found to have 0% variability within the YRI population (EDA2R, ARHGAP24 and
CACNA1B). This is particularly noteworthy, since the YRI population is evolutionarily older
and, in general, more genetically diverse. The reason that these three nonsynonymous coding
SNPs across the three genes are highly conserved within the YRI population remains unclear,
but it may be that these SNPs in these gene regions serve critical roles in development, and it
is conceivable that their selection may be related to an undefined geographic or environmental
advantage.

EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that are encoded by the anhidrotic
ectodermal dysplasia (EDA) gene. Genetic variability in the EDA ligand has been associated
with loss of hair, sweat glands and teeth [31]. The nsSNP rs1385699, identified within the
EDAZ2 receptor gene, EDAZ2R, is fixed in both Asian populations, where an R57K substitution
in EDAZR has derived allele (T) frequencies of 100% (Table 4) [9]. The EDA2R gene product
is involved in the positive regulation of NF-kB transcription factor activity, specifically within
the hair follicle, tumor necrosis factor receptor activity, embryonic development and apoptosis
[32]. ARHGAP24, on the other hand, is located in the cytoplasm and at cell junctions, where
it functions as an important modulator of angiogenesis [33]. ARHGAP24 is a negative regulator
of Rho family GTPases, and genetic variation in this gene may therefore also influence actin
remodeling, cell polarity, cell migration, differentiation and development [104]. The
ARHGAP24 gene also has derived allele (G) frequencies of 100% in CHB and JPT populations.
No information exists for ARHGAP24 within the CEU population.

Box 1
Summary note for Figures 3, 4 and 6

The purpose of the Ingenuity Pathways Analysis (IPA) network generation algorithm is to
find networks of highly connected focus genes. Genes of interest, that are uploaded by users
and directly interact with other genes in the Ingenuity Pathways Knowledge Base (IPKB),
are identified as focus genes. Focus genes serve as the ‘seeds’, or focal points, for generating
networks. Networks are preferentially enriched for focus genes with the most extensive

interactions, and for which the interactions are specific among the other genes in the network
and exist in the IPKB. Additional nonfocus genes from the IPKB are then recruited and

added to the growing networks. Networks are scored for the likelihood of finding the focus
gene(s) in that given network. The higher the score, the lower the probability that you would

Per Med. Author manuscript; available in PMC 2010 September 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Baye et al.

Page 7

find the focus gene(s) you see in a given network by random chance. Highly-interconnected
subnetworks are likely to represent those that are significantly enriched with genes with
specific functional annotations [55]. Genes with no known molecular interactions with other
genes will appear as a single node on a network, without connections to other genes or
proteins. Canonical pathways associated with input genes of interest were elucidated with
a statistical significance value.

Conversely, the CACNA1B gene has derived allele (C) frequencies of 100% in the CEU, and
no information exists for this gene within CHB and JPT populations. CACNA1B is located in
the plasma membrane, within a multimeric voltage-gated calcium channel complex [34].
CACNA1B has been proposed as a candidate gene involved in the pathogenetic mechanism
underlying several of the neurodevelopmental abnormalities seen within the context of Down
Syndrome [35].

The fourth nonsynonymous private SNP is located within Neurogenin 3 (NEUROGS3). This
gene encodes a member of the subfamily of basic helix-loop-helix (bHLH) transcription factors
involved in the differentiation of endocrine progenitor cells in the adult pancreas where it may
contribute to the development of diabetes mellitus in some races [36]. NEUROG3 has derived
allele (A) frequencies of 100% in JPT, 98% in CHB and YRI, and 0% in the CEU population.
The NEUROGS variant is notable because it is highly differentiated between the CEU and the
rest of the populations (YRI, CHB and JPT).

We looked further at the gene network among the four genes mapped to the four nsSNPs
(NEUROGS3, EDA2R, ARHGAP24 and CACNALB) using IPA network analysis, and found an
independent (nonoverlapping) and disconnected subgene networks for each gene, indicating
that these genes are involved in independent biological activities and have no functional
commonalities (Figure 4 & Box 1). An IPA summary of associated networks, molecular and
cellular functions, diseases and disorders, and canonical pathways for the four genes mapped
to nsSNPs are presented in Table 5. The four genes associated with the nsSNPs were further
characterized using GO analysis [104]. Data were categorized based on three independent GO
terms: biological process, molecular function and cellular component. Similar to the gene
network analysis, these genes do not share GO annotation function, process and component
terms (data not shown). The reason could be that these genes are involved in diverse and
unrelated biological activities that are specific to each geographic region.

Influence of selection

Using the recent selection model [6] of the web application Haplotter, three genes in the
European sample showed strong evidence for recent selection (empirical p < 0.05) and
association with cell development and differentiation in the European sample (Table 6). The
first gene, NPNT (also named POEM), is on chromosome 4 and has an important role in cell
morphology and tissue development [37]. The NPTN gene is implicated to be involved in
embryonic development and development and function of various tissues, such as kidney, bone,
muscles and endocrine organs [38]. An enhanced expression of NPNT is known to regenerate
tubular epithelium and could be a useful tissue and urine biomarker for both the development
and evolution of nephrotoxic acute renal injury [39]. The second gene, SESTD1 (on
chromosome 2), is enriched in membrane-containing cell fractions and has been implicated in
vesicle trafficking. The third gene, IER5L (on chromosome 9), is related to cellular
development and embryonic development (Figure 5).

In the Asian samples ([ASN] made up of the CHB and JPT populations), we found evidence
of selection for the EXOC6B gene (on chromosome 2), which is involved in protein transport
and vesicle docking during exocytosis (Figure 5). Two other genes (MYRIP and PRDM5)
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showed suggestive evidence of recent selection. MYRIP is involved in Rab GTPase binding,
apoptosis, retinal melanosomes, carcinogenesis and intracellular protein transport [40],
whereas PRDM?5 is a zinc finger protein belonging to the tumor suppressor protein family
[41]. Both genes also showed suggestive recent selection in the African sample.

The presence of recent selection in the ASN and CEU populations is not surprising given that
these two populations may have migrated from Africa and adapted to new environments
approximately 50,000-100,000 years ago [42]. The small number of genes (three out of 38)
with recent selection in this study suggests that divergence among populations appears to be
affected primarily by genetic drift and is, to a lesser degree, due to positive selection.

Lastly, we ran the IPA to identify major pathways and networks for genes under recent selection
(Figure 6 & Box 1). IPA analysis revealed that these four genes are involved in embryonic,
organ and tissue development, and cell-to-cell signaling and interaction (Table 7). Genes from
the ASN population (EXOC6B) have independent pathways, whereas the two genes (IER5L
and NPNT) that show evidence for recent selection in the CEU population were indirectly
linked in their network systems. These genes were also not enriched by shared GO terms (data
not shown). The reason could be that these genes that are fixed in the different populations
might have been evolved in separate pathways that involve completely different biological
activities specific to each geographic region.

Discussion

The goal of this study was to characterize the regional and chromosomal distribution of private
SNPs among human populations using 3.7 million HapMap SNPs genotyped in four racial
populations: CEU, CHB, JPT and YRI. We report 463 genomic regions containing SNPs with
maximal allele frequency differences (100%) between populations. These SNPs may be
appropriate to identify the chromosomal regions showing significant local differences in
ancestry that are associated with co-descendent phenotypic traits. These SNPs may also help
elucidate the genetic basis of interethnic differences in rates of complex diseases through
approaches such as genomic ancestry mapping [43].

The recent approval by the US FDA of a combination of isosorbide dinitrate and hydralazine
for the treatment of congestive heart failure primarily in self-identified black patients suggests
that race can (and sometimes should) be included in treatment decisions, particularly if the
inclusion of such information leads to the optimization of a patient’s care [109]. Hence, a
detailed examination of population SNP allele-frequency difference may be important in our
effort to develop implementation strategies for personalized medicine across populations of
different and potentially mixed ethnic origin. Our data revealing very few non-random private
SNPs across the human genome within racial populations indicate that knowing one’s ancestry
with a high level of accuracy may be extremely challenging [44,45]. We observed 0.001% of
the entire HapMap data that were fixed in only one population sample (private SNPs). The vast
majority of the SNPs were present in all four populations, which suggests that they have been
present since before humans emerged from Africa. Most private SNPs (77%) were found in
the African sample. This was anticipated since it had been previously reported that African
populations harbor more unique polymorphic alleles than non-African populations [46].

Our analyses demonstrated that the SNP databases in their current status might have some
limitations for studies of complex disorders, especially in different ethnic groups, as a result
of an incomplete or uneven representation of SNPs along the genome [47]. In critically
evaluating our results, it is important to note that our analyses, and hence interpretations, are
subject to several limitations. First, many of our analyses relied on data derived from available
databases with contents that are, and will continue to be for some time, in a state of change.
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Therefore, our results represent a snapshot based on currently available data, and ultimately,
when the human genome annotation becomes more stable, it will be important to verify these
results. Second, the SNP allele frequencies were determined using relatively small sample sizes
(see Methods & materials) and preclude any definite conclusion regarding the complete
absence of a particular allele in any given population. Moreover, the fundamental theorem
under pinning HapMap is the common disease/common variance (CD/CV) hypothesis [48].
How much information we can capture from rare variants is not clear [49]. Several studies have
discussed the similarities between human populations in terms of genetic constituents, and
hence, a large sample size may enable the detection of small differences in rare outcomes. The
analytical caveats associated with each database, such as how surrogates are YRI or CEU to
each ancestral population, and how much of the data (e.g., in HapMap) is transferable to the
diverse populations in Africa where there is extreme adaptive variation along the various
countries is also debatable.

While the synonymous SNPs (neutrally evolving variants) reflect evolutionary time more
accurately than the other SNP types [50], the nsSNPs could affected selection through altering
protein structure and function. In the present study, of the total 463 private SNPs, only four
SNPs were nonsynonymous: rs4536103 (NEUROG3), rs1385699 (EDAZ2R), rs11946338
(ARHGAP24) and rs4422842 (CACNALB). Ontology and pathway-based analyses revealed
that the expression of these genes impacts cellu lar differentiation, apoptosis, and activation of
the NF-kB transcription factor.

The differences in SNP allele frequencies or complete replacement of one allele by others could
reflect population-specific selective pressures including diet or other environmental signals.
Three genes in European subjects (IER5L, NPNT and SESTD1) and a single gene in Asian
subjects (EXOC6B) have been under recent positive selection. Therefore, based on the current
data, the majority of the genes do not show evidence for recent positive selection suggesting
that other mechanisms (e.g., genetic drift) could be responsible for their variation. Zhang and
Li reported that human SNPs showed no frequent positive selection across the genome [51].
Studies in other organisms have also suggested that divergence among populations is primarily
affected by drift and, to a lesser degree, by directional selection [52]. A recent study using the
HapMap genotypic data demonstrated that negative selection has globally reduced human
population differentiation at amino acid-altering mutations, particularly in disease-related
genes, while positive selection has ensured the regional adaptation of human populations by
increasing population differentiation in gene regions [53].

Since the HapMap genotypic data may not be able to capture all genetic variations among these
populations [54], we cannot rule out the possibility that we could have missed some signals of
selection because of the untyped and undiscovered SNPs. The results from the deep
resequencing projects, such as the SeattleSNPs Project [110] and the National Institute of
Environmental Health Sciences (NIEHS) Environmental Genome Project [111], will therefore
likely improve our power to identify more differentially fixed genes.

In conclusion, we report the presence of SNPs with extreme allele frequency differences among
human populations that could potentially indicate the existence of variants or loci that could
potentially be linked to phenotypic variation. Genes neighboring the private SNPs implicate
specific biological processes, molecular functions, cellular components and signaling
pathways. Although the relevant phenotypes in human studies are generally not known, such
loci should be of particular interest in mapping studies of complex traits. Our results can thus
provide unique insights into the evolutionary history of variation in gene—environment-race
interaction. Follow-up studies and an improved understanding of these genes may help to
explain race-specific treatment outcome, as ancient genes are exposed to modern drugs.
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Executive summary

e Of 3.7 million HapMap SNPs, 463 loci (which mapped to 38 genes) were fixed
©6=1).

e Atotal of four of these genes contained private nonsynonymous SNPs: NEUROG3,
EDA2R, ARHGAP24 and CACNA1B.

e Atotal of four additional genes showed evidence of recent positive selection:
IER5L, NPNT and SESTD1 in European subjects, and EXOC6B in Asian subjects.

¢ Gene ontology and network analyses helped to reconstruct potential and enriched
biological functions and processes or pathways associated with these private loci.
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Figure 1. Schematic presentation of private SNP mining and analysis strategy

There are approximately 3.7 million SNPs in the HapMap data release. Genotypes were
summarized for each population. For each dataset, the number of alleles per locus (SNP) was
coded to a string of numbers to obtain a full design matrix of alleles (the cells give the number
of copies of each major allele for each individual: 0, 1 or 2). Two criteria were used to filter
the SNPs included in the analysis: first, the SNP should be shared by at least two populations;
second, all filtered SNPs were required to show polymorphism in one or more HapMap
population(s) for over 90% of the samples in each population. From the total of approximately
3.7 million SNPs in the HapMap data release, only 809,624 SNPs were polymorphic across
the population and were eligible for analysis.

CEU: North Americans with European ancestry; CHB: Han Chinese from Beijing; JPT:
Japanese from Tokyo; nsSNP: Nonsynonymous SNP; YRI: Yorubans from Ibadan, Nigeria.
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Figure 2. HapMap SNP allele frequency differences (8) between HapMap populations

The populations studied were 60 CEPH North Americans with European ancestry, 60 Yorubans
from Ibadan, Nigeria, 45 Japanese from Tokyo and 45 Han Chinese from Beijing. Private loci
and various levels of marker informativeness were studied as a measure of ancestry among
populations using the allele frequency difference termed ‘5 procedure’. Marker
informativeness for ancestry is defined as the absolute value of the difference of the frequency
of aparticular allele observed for two ancestral populations. For example, if we let p11 represent
the frequency of a reference allele in the first parental population and p»; represent the
frequency of the same allele in the second parental population, then the & value is given by:

o=|p11 — pa1l-

CEPH: Centre d’etude du polymorphisme humain; CEU: North Americans with European
ancestry; CHB: Han Chinese from Beijing; JPT: Japanese from Tokyo; YRI: Yorubans from
Ibadan, Nigeria.
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Figure 3. IPA network and pathway analyses for 38 genes mapped to 463 private SNPs (see right)
(A) IPA network for 38 genes mapped to 463 private SNPs. Genes with shaded nodes are
focused genes in our analysis, the others are generated through the network analysis from the
Pathways Knowledge Base [112]. Edges are displayed with labels that describe the nature of
the relationship between the nodes. The lines between genes represent known interactions, with
solid lines representing direct interactions and dashed lines representing indirect interactions.
Nodes are displayed using various shapes that represent the functional class of the gene product.
(B) The 38 genes linked to 463 private SNPs canonical pathways from IPA. The significance
threshold, shown in yellow, represents a p-value of greater than 0.05. The first two sets of
functions shown below represent a p-value of less than 0.01. Bars that are above the line indicate
significant enrichment of a pathway.

IPA: Ingenuity Pathways Analysis.
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Figure 4. Four networks merged and centered around the four genes (NEUROG3, EDAZR,

CACNA1B and ARHGAP24) mapped to private nsSSNPs

The light blue line connection indicates focus genes of interest. No overlapping networks exist
between ARHGAP24 and the other three focused genes. Edges are displayed with labels that
describe the nature of the relationship between the nodes. The lines between genes represent

known interactions, with solid lines representing direct interactions and dashed lines

representing indirect interactions. Nodes are displayed using various shapes that represent the

functional class of the gene product.
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"""A V.

Genomic position (Mb)

132 133 134

(A) EXOC6B chromosome 2 (72314768:72964925) in ASN (red). (B) SESTD1 chromosome
2 (179799037:179882102). (C) NPNT chromosome 4 (107174209:107250432). (D) IER5L
Chr 9 [129018502:129020080] in CEU population (blue).
X-axis is genomic position (Hapmap release 22, doSNP b126). Y-axis is [iHSI score. The
[iHSI cut-off for selection is 2. The target gene is marked by a vertical dashed black bar. The
100-kb flanking regions are also shown. The horizontal bars displayed under each panel of the
graphic display represent genes present in the region.
ASN: Asian sample made up of the Han Chinese and Japanese populations; CEU: North
Americans with European ancestry; liHSI: Integrated haplotype score; YRI: Yorubans from

Ibadan, Nigeria.
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Nonoverlapping networks were generated among the four genes except between NPNT and
IERS5L.

The light blue line connection indicates focus genes of interest. The lines between genes
represent known interactions, with solid lines representing direct interactions and dashed lines
representing indirect interactions.
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