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Mathematical models for assessing the
role of airflow on the risk of airborne
infection in hospital wards
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Understanding the risk of airborne transmission can provide important information for
designing safe healthcare environments with an appropriate level of environmental control
for mitigating risks. The most common approach for assessing risk is to use the Wells—
Riley equation to relate infectious cases to human and environmental parameters. While it
is a simple model that can yield valuable information, the model used as in its original pres-
entation has a number of limitations. This paper reviews recent developments addressing
some of the limitations including coupling with epidemic models to evaluate the wider
impact of control measures on disease progression, linking with zonal ventilation or compu-
tational fluid dynamics simulations to deal with imperfect mixing in real environments and
recent work on dose—response modelling to simulate the interaction between pathogens
and the host. A stochastic version of the Wells—Riley model is presented that allows consider-
ation of the effects of small populations relevant in healthcare settings and it is demonstrated
how this can be linked to a simple zonal ventilation model to simulate the influence of proxi-
mity to an infector. The results show how neglecting the stochastic effects present in a real
situation could underestimate the risk by 15 per cent or more and that the number and
rate of new infections between connected spaces is strongly dependent on the airflow. Results
also indicate the potential danger of using fully mixed models for future risk assessments,
with quanta values derived from such cases less than half the actual source value.

Keywords: airborne infection; ventilation; Wells—Riley; stochastic; hospital

1. INTRODUCTION

Airborne transmission of infectious diseases is a subject
of increasing interest driven by a wide range of factors
including: greater understanding of the role played by
indoor air and ventilation provision in the dispersal
and transport mechanisms of a wide range of patho-
gens; changing expectations of hospital patients,
particularly in developed countries; and the emergence
of new or drug-resistant disease strains with the poten-
tial to spread on a global scale. Tuberculosis (TB) is an
archetypal example of a disease that is transmitted by a
true airborne route; primary infection occurs when dro-
plet nuclei containing Mycobacterium tuberculosis
bacilli are inhaled. These tiny particles (typically
<5 pm in diameter) can remain suspended in the air
for long periods of time with local airflow pathways
inside a building determining their fate. TB is a particu-
lar concern as it is once again a worldwide health
problem, compounded by the increased susceptibility
to M. tuberculosis in HIV/AIDS patients, ease of world
travel and the increased prevalence of multidrug-resistant
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tuberculosis (MDR-TB). Specialist ventilation and
isolation facilities are recommended to control
nosocomial (hospital) spread (Siegel et al. 2007) and
those on the front line advocate secondary environ-
mental control measures such as ultraviolet germicidal
irradiation to further minimize risk (Nardell et al.
1991; Escombe et al. 2009). Although excluded from
the medical definition of airborne infection, the trans-
mission of disease by pathogen-contaminated droplets
also involves transport through the air. The emergence
of severe acute respiratory syndrome (SARS) in 2002
2003 caused a global health scare (Riley et al. 2003),
with the causative agent, a highly infectious corona-
virus (Lipsitch et al. 2003), thought to be primarily
spread through localized contact with contaminated
droplets. However, there is evidence that individuals
were apparently infected without sufficiently close con-
tact with a known case (Scales et al. 2003), and
retrospective studies of building airflow patterns
suggested that airborne dispersal may play a significant
role (Li et al. 2005). In recent months, the potential for
a global influenza pandemic has created similar
anxieties for those tasked with controlling wide-scale
disease spread. Again the infection is linked to droplet
transmission and the time scale for production of a vac-
cine and limitations of drug treatment mean that
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physical and procedural control strategies are the pri-
mary defence against widespread transmission (Morse
et al. 20006).

Although many nosocomial infections are primarily
associated with direct person-to-person contact, there
is considerable evidence that aerial dissemination
of pathogens may play an important role in many
hospital-acquired infections. In recent years airborne
transmission has been implicated in mnosocomial
outbreaks of Staphylococcus aureus (Farrington et al.
1990; Mertens 1996) and Acinetobacter spp. (Allen &
Green 1987; Kumari et al. 1998) as well as many viral
outbreaks. The high secondary attack rates seen in nor-
ovirus outbreaks have also been attributed to the
dispersion droplets, released when patients vomit, that
rapidly evaporate to form airborne droplet nuclei and
are distributed by air currents around hospitals. With
hospital design and operation in the developed world
now driven by infection control targets and increasingly
the energy use agenda, better understanding of the
relationships between the design of the physical environ-
ment and the risk of infection is becoming increasingly
essential in establishing robust guidance for those
charged with developing and managing healthcare
facilities. This paper reviews the application of the
Wells—Riley model for relating the risk of airborne infec-
tion to parameters in the indoor environment and the
developments applied to address some of the limitations
in the original model. A stochastic formulation is pre-
sented which is coupled with a simple zonal ventilation
model to demonstrate the role of airflow and population
size on the risk of infection and the implications for
design, risk assessment and future research.

2. MODELLING AIRBORNE INFECTION

Transmission of infection is a complex process at
the best of times with the risk of disease determined
by numerous factors that have considerable and uncer-
tain variability including: the characteristics of the
pathogen concerned, the infectiousness of the host,
the media in which it is passed from source to new
host and the immune response of the new host. Trans-
mission through airborne routes complicates this
further by adding the influence of building airflows to
the process. Despite this, researchers in epidemiology
have developed a range of approaches for modelling
disease dynamics from the classic models such as
Susceptible-Infector-Susceptible (SIS) and Susceptible-
Infector-Removed (SIR) models, which make use of
average rate coefficients to describe progression of a
disease in a population (Bailey 1957) to more recent
studies based on dose—response data (Jones et al.
2009) or that incorporate the pathogen—host biological
interaction (Chen et al. 2009). Much of the previous
research quantifying airborne infection rates in confined
spaces has stemmed from the work of Wells (1955) and
Riley et al. (1978), using the analytical expression
known as the Wells—Riley equation. This relates the
number of infective (I) and susceptible (S) people in a
space, the room ventilation rate (@, m*s™') and the
quantity of infectious material in the air to predict
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the number of new cases infected, N¢, over a period of
time ¢ (s):
Ne = 5(1 - e*fqpf/f?). (2.1)
Here p (m® s~ is the pulmonary ventilation rate of sus-
ceptible individuals, while ¢ represents a unit of
infection termed as ‘quantum’, introduced by Wells
(1955), to express the response of susceptible individ-
uals to inhaling infectious droplet nuclei. He
postulated that not all inhaled droplet nuclei will
result in infection and defined a quantum of infection
as the number of infectious droplet nuclei required to
infect 1 — 1/e susceptible people. The term quantum
or quanta of infection is widely used in evaluating
airborne infections and is usually interpreted as a
measure that effectively indicates both the quantity
and virulence of infectious material present in the air.
Numerous researchers have carried out risk-analysis
studies based on this model including the evaluation
of personal protective equipment (Gammaitoni &
Nucci 1997), tuberculosis risk in buildings (Nardell
et al. 1991) and the dispersion of Bacillus anthracis
from envelopes (Fennelly et al. 2004). The study con-
ducted by Gammaitoni & Nucci (1997) also showed a
fundamental formulation of the Wells—Riley equation
that enables transient ventilation effects to be included.
An earlier study reviewing Wells—Riley type models
(Beggs et al. 2003) highlighted that although the
models give useful indications of expected transmission
in a wide range of circumstances, their simple nature
results in several limitations described here.

2.1. Disease dynamics

The original Wells—Riley formulation is confined to only
predicting new cases of a disease, an assumption that is
valid where the incubation period (or time for a new
case to become infective) is longer than the time scale
of the model. With the model most commonly used to
evaluate TB transmission, this is generally justified as
the incubation is typically weeks or even years, and
(with the exception of long-term confinement such as
prisons), occupants are generally not in contact longer
than the incubation period. The assumption is also
valid for short incubation period diseases if the model
is applied over very short time scales, such as trans-
mission of influenza on an aircraft as considered by
Rudnick & Milton (2003). However, in the case of trans-
mission of diseases such as influenza, SARS or norovirus
in hospitals, which may have an airborne component to
the transmission, the time scale of contact is comparable
to the incubation period and therefore the dynamics of
the disease must be considered. It is straightforward to
extend the model to include the long-term dynamics of
an infection by coupling with classic epidemic models
as described in Noakes et al. (2006a). Such an approach
enables both the disease and environmental parameters
to be explored, allowing the combined role of nursing
behaviour with controls such as ventilation, personal
protective equipment or vaccination (Chen & Liao
2008) to be assessed through a single model. Interestingly,
the original paper first describing the Wells—Riley
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equation (Riley et al. 1978) applied it to a measles out-
break in a school, a disease and setting that do not
meet the above criteria. To accommodate this the
authors applied the model over discrete time periods,
using the cases and susceptibles at the end of each
period as the initial conditions for the next period
rather than coupling with an epidemic model.

2.2. Population size

One of the key limitations with the Wells—Riley model
concerns the small size of populations in hospital
environments and the role that chance effects play in
determining infection risk. Equation (2.1) is based on
the Poisson law of small chances, which assumes
that in a small enough time period only one new infec-
tion is likely. This is suitable for most airborne
infections where it is easy to define a time period that
approximates to this criterion. However, although the
Wells—Riley model is derived from this probabilistic
approach, it is more commonly used in deterministic
simulations, with equation (2.1) used to predict average
infection risk in different scenarios. In particular,
the model has been used successfully in studies to exam-
ine both the impact of interventions on the progression
of an infection, as well as retrospectively to find the
average quanta production rate from outbreak data,
particularly relating to TB transmission. Treating the
model as one describing a deterministic process is only
strictly suitable for large populations, and to under-
stand the variability in risk for small numbers, such
as hospital patients, it is necessary to apply the model
in a stochastic simulation.

2.3. Proximity

The Wells—Riley model assumes that the air is well
mixed leading to a uniform concentration of bioaerosols
throughout the space. This is rarely true even in spaces
with the best designed ventilation systems and therefore
does not account for the influence of proximity between
infective and susceptible people. In particular this is
an issue when analysing the risk of infection in a
space consisting of connected rooms, such as hospital
wards. This can be partially addressed by using zonal
ventilation or computational fluid dynamics (CFD)
modelling techniques to simulate the airflow and dis-
persion of contaminants, revealing regions of good
and poor mixing and areas of high contaminant con-
centrations that would constitute a higher risk to
occupants. Zonal or network ventilation models are
well used in evaluating ventilation flows in large
multi-connected spaces such as whole buildings. While
they are limited in that they are not capable of resolving
local details of airflows and are less well suited to large
spaces such as atria (Mora et al. 2003), they have been
shown to give good prediction of bulk air movement and
contaminant transport in a range of applications
including natural ventilation (Asfour & Gadi 2007)
and particle dispersion (Hu et al. 2007). Two of the
most widely used models, COMIS and CONTAM,
were developed by national laboratories in the USA
and are used in both research and design applications
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(Chen 2009). Zonal modelling has previously been
applied to airborne infection risk, including simulation
of ultraviolet disinfection (Noakes et al. 2004a) showing
good comparison to CFD models and studies by Ko
et al. (2004) and Jones et al. (2009) considering TB
transmission on an airliner. Ko et al’s study used
both a fully mixed model as well as approximating the
spatial variation by dividing the airliner cabin into
four zones with incomplete mixing between zones.
Combining this with the Wells—Riley model and spatial
distribution data from a real outbreak enabled them to
show that compartmentalization of airflow in cabins
acts to limit transmission of any infection throughout
the entire aircraft. Jones et al. (2009) also adopted a
zonal approach, dividing the aircraft into 34 zones
with the ventilation and interzonal flows based on
measured data with results indicating spatial trans-
mission patterns dependent on the turbulent mixing
between zones. CFD offers a strategy for modelling
the detailed spatial distribution of pathogens in
indoor environments. A number of recent studies have
considered hospital applications (Chow & Yang 2004;
Noakes et al. 2006b) or bioaerosol dispersal (Noakes
et al. 2004b), and the 2003 SARS outbreak generated
a lot of interest using CFD to model the spread of con-
tagion within and between buildings (Yu et al. 2004; Li
et al. 2005). A recent paper (Qian et al. 2009) has linked
CFD simulations and the Wells—Riley model with
results showing correlation between predicted and
observed spatial infection risk. Despite the details
available from CFD modelling, using the technique to
simulate airflow in large multi-connected buildings
requires significant computational resources that are
unavailable or inappropriate in many cases. A recent
review by Chen (2009) highlights a move towards the
use of ‘coarse grid’ CFD and coupling CFD models to
zonal ventilation models to provide higher levels of
accuracy without excessive computational effort.

2.4. Infectious dose

Perhaps the biggest limitation with the Wells—Riley
model is the representation of the infectious
dose through the expression ‘quantum’ of infection.
While this is a simple approach that is easily analogous
to the concentration of a pathogen in the air, the single
parameter cannot fully capture the complex interaction
between infectors, pathogens and potential hosts that
occurs in reality. As highlighted in Pujol et al. (2009),
the Wells—Riley model is only appropriate for infections
that can be modelled with an exponential dose—
response where a single large dose can be considered
to be the same as the equivalent in smaller doses over
a longer time period. As such the model cannot incor-
porate the immune system response that may act to
control pathogens arriving at low doses over a long
time period and is likely to be inappropriate for estimat-
ing risk at low doses (Haas 1983). Nicas & Hubbard
(2002) also recognize this limitation and go on to
suggest that the Wells—Riley model is only strictly
valid where infection is initiated by a single micro-
organism and the quanta represents the risk of this
being inhaled and initiating infection. The model has
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been most widely applied to TB, which is believed to
satisfy these criteria (Escombe et al. 2007); however,
it may be less appropriate for many other infections,
especially where the infectious dose is low (Nicas &
Hubbard 2002). Recent research is starting to develop
strategies to address these weaknesses through the
application of disease-specific characteristics and
dose—response data, much of which has developed
through risk assessment of pathogens in water and
wastewater (Haas 1983; Mara et al. 2007). Studies
focusing on airborne transmission include Armstrong &
Haas (2007a,b) who outline a framework for using
quantitative microbial risk assessment (QMRA) in
modelling the risk of legionnaire’s disease, using dose—
response data from animal studies. Bartrand et al.
(2008) consider a similar approach in the transmission
of B. anthracis, again through fitting distribution
models to published non-human dose—response data,
while Jones et al’s (2009) study also uses a QMRA
approach in evaluating M. tuberculosis transmission.
Chen et al. (2009) adopt a slightly different approach,
using a Wells—Riley framework to describe global
parameters, but linking both viral kinetics and the
characteristics of exhaled bioaerosols to incorporate
the disease characteristics in the transmission of influ-
enza. The most recent studies in this area (Huang &
Haas 2009; Pujol et al. 2009) are building on these
dose—response model developments to consider the
risk over time from single or multiple doses, enabling
the immune response seen in reality to be incorporated
into analyses. Although the primary interest in this
paper is on the environmental parameters rather than
the disease characteristics, these recent developments
clearly offer a valuable strategy for understanding the
role of pathogen—human interaction in disease trans-
mission and are likely to play a key role in future
model developments.

3. STOCHASTIC ZONAL MODEL

By considering equation (2.1) an infection rate A can be
written as

_ 1w
Q

A stochastic formulation of the Wells—Riley equation
is based on the probability that there are S uninfected
susceptibles at time ¢, ps(t) = Pr(S susceptibles at
time ¢). In a small time interval, d¢, such that the
probability of more than one infection is negligible,
two outcomes are possible: one new infection with
probability A dtS or no new infection with probability
1 — A dtS. Therefore, the process can be expressed as

ps(t+dt) = ps(t)(1 — AdLS)
+ ps1(H)AdE(S +1).
As dt tends to =zero, this yields the differential

equation

dpg(t)
dt

A (3.1)

(3.2)

= —ASps(t) + A(S + Dpsa (D). (33)
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This can be solved using a numerical approach in
which the process is considered to consist of a series of
infection events where the susceptible population
decreases by one in each case. As shown by Renshaw
(1991), for a population of S susceptibles and a disease
that can be approximated by an exponential dose—
response, the time 7'to the next event is an exponentially
distributed random variable with

Pr(T > t) = exp(—ASt). (3.4)
This can be used to simulate the time to the next event, ,
using a random number 0 < Y < 1 by the equation

J—

n(Y)

t=— ()\S)‘

(3.5)

With A defined by equation (3.1), the result in equation
(3.5) can be easily applied to derive a series of inter-
event times corresponding to the new cases of infection
among the susceptible population in a ventilated
indoor environment.

To account for the proximity of an infector to suscep-
tibles and the incomplete mixing in interconnected
ward spaces, the above model is applied within a
zonal ventilation model. Here the air within each zone
is treated as uniformly mixed; however, the mixing
between the zones is limited. The infectious quanta
is treated as a deterministic variable leading to a con-
centration distribution throughout the ward space.
A simplified approach is applied which represents a
realistic spatial arrangement of a ward but uses fixed
interzonal ventilation rates to model transfer into and
out of zones rather than environment-specific pressure
coefficients. It must be highlighted that this approach
is used only to demonstrate the behaviour of the
stochastic risk model in a multi-zone space and
the results are a considerable simplification of reality.
However, it is straightforward to apply the approach
described here using any ventilation network model or
CFD simulation to assess the spatial distribution of
infectious material in a real situation.

For the general case shown schematically in figure 1,
the concentration of infectious material in the ith zone
C; can be approximated by considering the generation,
ventilation removal and interzonal transfers for each
case to give

dq;

Vid_tl = qil; — QoiC; — %:Bika; + Z};B;ﬂ'ck. (3.6)

Here, the term ¢,[; represents the generation rate in the
zone, @,; is the extract ventilation rate in zone i and B,
and By, represent the volume flow rate of air to and from
adjacent zones k, respectively. These interzonal flow
rate terms consist of two components: a global mixing
rate B, which is a constant value in both directions
across all zonal boundaries in the model plus an
additional component B¢ which expresses the net
flow across a boundary owing to a ventilation imbalance
between the two zones (Brouns & Waters 1991). This
component is specific to the ventilation system and is
defined for each boundary in the model to give the
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Figure 1. Schematic representation of simple zonal model for three adjacent zones. Solid black arrows indicate ventilation extract,
solid grey arrows indicate interzonal flows, dashed black arrows indicate infection source within the zone.

total interzonal flow rate as
Bir = B, + Bgik-

Under steady-state conditions, equation (3.6) is equal
to zero for each zone and yields a set of equations that
can be represented in matrix form and solved through
a Gaussian elimination technique. This is shown
partially below for the simple schematic case in figure 1:

(3.7)

—(Qo1 + Bi2) B
Bi2 —(Qo2 + Ba1 + Bag3)
0 Bas
0 =] [Cy qh
B3> | C2 @b
- . (38)

—(Qu+Bs2+Bsi) | |Cs| | esl3

The infection risk model is made zone dependent by
replacing the term ¢I/ @ with the zone concentration C;
from the solution of equation (3.8), giving

)\i = Cz'p. (39)

As the new infection may now occur in any one of the
occupied zones within the model, it is necessary to
examine the relative probability of infection in each
to determine in which zone each infection event
occurs. At each time step, the probability that the
next infection event will be in zone i is given by

AiSi
R(k)’

Pr(infection in zone i) =

where

R(k) = ZQ:/\kSk, (3.10)
k=1

with the inter-event time now given by

In(Y)
Rk

(3.11)

The numerical simulation of this process again
follows the methodology described by Renshaw (1991)

(i) Calculation of A;S;/R(k) for each zone at the
current time step.
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Figure 2. Hypothetical ward layout used in the study show-
ing possible ventilation supply/extract (black arrows) and
interzonal mixing (grey arrows).

(ii) Generation of a first random number 0 < V< 1
to find the inter-event time.

(iii) Generation of a second random number 0 < X < 1
to establish which zone is infected based on
infection in zone 1 if 0 < X < A5/ R(k), zone 2 if
MS1/R(k) < X<Ay8,/R(k), ete.

(iv) Change S; to S,—; in infected zone i.

The model was implemented using Excer and VBA
(Microsoft) incorporating a Monte Carlo approach to
enable each model to run up to 100 times to calculate
mean behaviour and the s.d. As the equations are
defined in terms of inter-event times, which are differ-
ent in every simulation owing to the random number
in the event time definition, it was necessary to map
each result onto a regular time scale in order to be
able to find average data across more than one simu-
lation. The simulations were mapped onto a 170 h
time period divided into hourly steps, then plotted
every 3 h to enable the data to be seen clearly.

4. RESULTS

The models described above were used to investigate
the influence of population and airflows on the risk
of infection through a parametric study approach.
The model was based on a hypothetical hospital
ward layout as shown in figure 2 comprising three iden-
tical six-bedded bays that open out onto a common
corridor. To investigate a range of possible ventilation
scenarios, each bay is divided into two equal zones
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Table 1. Volume flow rate in and out of each zone for the six ventilation regimes.

zones la, 2a, 3a

zones 1b, 2b, 3b

zones cl, ¢2, c3
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(m‘} min~ 1)
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3

supply
regime  (m® min~?)

(m3 minfl)

extract
(m® min 1)

extract

supply
(m® min~1)

(rn3 minfl)

THgoQ®e>
cCooo ww
oo Vo w
coococow

OHI OO O W
WWwoow
WWwwo ow

(each containing three occupants) and the corridor
split into three equal zones corresponding to the adja-
cent ward. The model assumes that ventilation air
can be supplied and/or extracted from each zone and
there is some degree of mixing between adjacent
zones that is influenced by the ventilation regime as
described above. All cases simulated a ward occupancy
of 18 patients (six per bay) of which one located in
zone la was assumed to be infectious. All patients
were equally susceptible and breathed the ward air
at a constant rate of 0.01 m*min~" (10 1min~"). Six
different ventilation regimes were investigated as
detailed in table 1 to explore the effect of directional
airflow. Although these specified different supply and
extract volumes to the various zones, the total venti-
lation rate over the whole ward was 27 m® min~' in
all cases, equivalent to an average air change rate of
3ACHh™.

The interzone mixing parameter 3, was constant
across all zone boundaries with a value between 9
and 27 m® min~' depending on the simulation. The
ventilation-dependent component of the interzone
mixing B was defined to simulate directional airflow
induced by a ventilation regime.

The final parameter is the value of quanta gener-
ation, which is particularly difficult to define for most
infections. Previous researchers have estimated the
values from outbreak data using equation (2.1) and
the actual number of new cases. Most of the values
given in the literature relate to TB outbreaks and the
data collated in Beggs et al. (2003) indicate that for
most pulmonary TB cases, a generation rate of between
1.25 and 60 quanta h™ ' can be assumed. Higher values
of hundreds or even thousands of quanta per hour are
associated with medical procedures, such as broncho-
scopy or abscess irrigation where the generation rate
of infectious aerosols is increased. Riley et al. (1978)
calculated a value of 570 quantah™ for a school
measles outbreak, while Rudnick & Milton (2003)
estimated quanta production rates for rhinovirus as
1-10 quantah ™' and influenza as 15—128 quanta h™".
For the purposes of this study, a quanta production
rate of 0.5 quanta min~' (30 quantah™") is used. As
the aim of this study is to examine the relative impact
of the occupant and airflow parameters on the risk of
infection, the actual quanta production rate is not criti-
cal. However, we will return to the definition and
calculation of quanta in §5, as the model results raise
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some important questions about estimating quanta,
and hence risk, from equation (2.1).

4.1. Stochastic effects

Prior to considering the effect of ventilation par-
ameters, figures 3 and 4 compare the zonal and
stochastic behaviour with a fully mixed deterministic
simulation using equation (2.1) for a single infector
generating 30 quantah™'. Figure 3 compares both
approaches for the fully mixed case, presented in terms
of a mean value with error bars indicating 1 s.d.
In the stochastic model this is based on the data from
100 simulations, while in the deterministic solution,
mean and s.d. are based on the Poisson assumption
used in the derivation of equation (2.1). As such, the
number of cases is taken as the Poisson mean and s.d.
as the square root of the mean. As expected, the mean
values from both the models are almost identical and
both show considerable variability in the mean result.
However, the expected variance differs between
approaches, with a similar range predicted after short
time duration, but a greater deviation from the mean
indicated by the deterministic solution over a longer
time period. This difference is probably apparent
because basing the variability on the mean value from
the deterministic solution inherently assumes variabil-
ity in all parameters of the model, while the variation
in the stochastic solution is due solely to the small
population.

In figure 4, the deterministic fully mixed mean is
compared with the zonal model results for ventilation
regime A and the infector located in zone la. In this
case all zones have an equal supply and extract
volume flow rate; therefore, the interzonal mixing is
solely due to the value of B,, with no additional transfer
through ventilation imbalance (Bgu = 0). Results pre-
sented show the effect of air mixing on the total
number of new cases across the whole ward. With a
value of B,=9m’*s !, the overall infection rate is
much slower than the fully mixed model, with less
than two-thirds of the predicted total number of cases
after the 170 h time period. Increasing the mixing to
B, = 27m"s ! increases the rate at which the infection
spreads with now around 85 per cent of the fully mixed
model. The figure again shows the considerable variabil-
ity in a small population with considerable overlap
between the range of results for the two mixing
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Figure 3. Comparison of variability from mean results in
stochastic and deterministic fully mixed models. Error bars
show 1 s.d. from the mean, with grey capped error bars for
the stochastic model and black uncapped error bars for the
deterministic model.
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Figure 4. Effect of air mixing on the total rate of infection.
Error bars show 1 s.d. from the mean value. Solid line denotes
B,=27m’min"'; open triangle denotes B, =9 m®min"

filled diamond denotes fully mixed.

parameters and a deviation of approximately =+ 15
per cent from the mean value in either stochastic
simulation.

4.2. Effect of airflow paths

Although the results in figure 4 provide some initial
insight into the potential influence of ventilation, the
air mixing between the rooms is not influenced by
the ventilation regime in this case. To understand the
potential impact of this, simulations are run for all six
ventilation regimes in table 1 using a fixed value of
B,=9 m®s . In all cases, Monte Carlo simulations
are performed with 100 simulation runs to yield mean
infection rates for each of the three ward bays.
The results from these simulations are presented in
figure 5 in terms of infection risk, where a risk of one
is equivalent to all six patients in a bay being infected.

The results in figure 5 demonstrate both the influ-
ence of proximity and ventilation flows on the risk
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Figure 5. Effect of ventilation regime on the risk of infection
over a 170 h period. Mean data obtained from 100 simulation
runs. (a) Infections in bay 1. (b) Infections in bay 2. (¢) Infec-
tions in bay 3. Filled diamonds, case A; open squares, case B;
filled triangles, case C; crosses, case D; open triangles, case E;
open diamonds, case F.

of infection for patients on the ward over time. As
expected, the risk of infection in bay 1 (figure 5a),
where the infector is located, is much higher than the
other two bays, with the ventilation regime having
little impact on the risk. Although ventilation
regime C suggests a slightly lower infection rate
compared with the other five regimes, the risk is still
over 90 per cent over the 170 h period. The results for
the other two bays (figure 5b,c), however, clearly
demonstrate the potential impact of the ventilation
system on the risk of airborne pathogen transfer
throughout the space. In both cases, even with the sto-
chastic variability in the data, the risk of infection is
highest with ventilation regime D and lowest with
regime C, with the risk around 50 per cent lower in
bay 2 and 60 per cent lower in bay 3.

5. DISCUSSION

The results presented above give some initial insight
into both the variability of infection risk likely to be



S798  Models to assess airborne infection risk C. J. Noakes and P. A. Sleigh

l T H l T l T JV' v l
L cl ; c2 ; c3 J L lcl ; c2 ; i3 J
1b 2b 3b 1b 2b 3b
la 2a 3a la 2a 3a
wy | 4 | 4| * | | |
[ v [ v v v
case D case C

Figure 6. Schematic of ventilation flows in regimes D and C. Location of infector indicated by star. Black arrows indicate
ventilation flow; grey arrows indicate interzonal mixing flows.

present in real situations as well as the role that venti-
lation flows may play in the transmission of infection.

The results in figures 3 and 4 clearly show that
considering the stochastic variation produces a con-
siderably wider range of predicted cases than the
mean result typically derived from deterministic simu-
lations. The model presented here indicates that the
actual number of new infections could deviate from
the mean by up to two cases owing to chance effects
in a small population alone. As the results in figure 3
indicate, if there is uncertainty in other parameters,
this could result in an even wider deviation. While the
Wells—Riley model is a very straightforward approach
for carrying out assessments as part of outbreak plan-
ning, the deterministic mean has the potential to
significantly underestimate the bed numbers, staffing
and resources needed to respond to an outbreak. As
such some level of stochastic variability should be
taken into account when using Wells—Riley type
models in this way.

Hospital ventilation is typically designed on a
mixing ventilation approach with little consideration
beyond provision of adequate comfort except in certain
applications such as isolation rooms, units for immuno-
suppressed patients or operating theatres. Although
the zonal model presented here is a very simple rep-
resentation of ventilation flows and is limited as a
model of a real situation, the results do give some quali-
tative indication of the importance of airflow paths
between zones in the transmission of infection. Many
of the results are intuitive as can be seen by presenting
the worst (D) and best (C) cases schematically in
figure 6. In case C the air pathways are from the corri-
dor to the ward, reducing the risk of airborne pathogens
generated within a particular bay being transferred to
other bays by extracting from the source location. How-
ever, in case D (and also cases A and E), the ventilation
provides little or no additional movement of potential
pathogens within the space. Although this does not
actively promote the transfer between spaces, at the
same time it does nothing to restrict it with little direc-
tional flow to limit transfer into other areas. These
findings suggest that some approaches could be inadver-
tently contributing to the spread of infection and that
careful design of a system could potentially provide
greater protection for patients within a hospital ward.

The results presented in figure 5a suggest that case C
also has some advantage in reducing within-bay
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transmission; however, this result should be treated
with a good deal of caution. The results presented are
the mean results from 100 stochastic simulations. The
variability in the data plus the uncertainty over
the exact location of the infector in the ward implies
that, in reality, it is difficult to say from this model
how the ventilation system impacts on the risk within
a single bay. To understand the level of risk in this
case more detailed simulations of the airflow, such as
CFD analysis, are essential to show how the location
of ventilation supply and extract vents influences the
risk of cross-infection between patients (Noakes et al.
20060).

Apart from giving some insight into the role of the
ventilation system, the model applied above raises
some important issues relating to the assessment of
risk in indoor environments and use of quanta values
in such activities. Regardless of the ventilation regime
and layout, these results show a clear dependence of
risk on the proximity to the infector. As shown by
figure 5, with the values used in this hypothetical
study patients in the same space as the infector have
over a 90 per cent risk of infection over the 170 h
period, while those two bays away (bay 3) have less
than a 35 per cent risk over the same period. However,
most quanta values quoted in the literature are calcu-
lated from outbreak data and do not consider the
influence of proximity. The assumed value of
30 quanta h~ ' with ventilation case A in the zonal sto-
chastic model resulted in a mean number of infections
across the whole ward of 10.2 in the 170 h period.

Quanta values presented in the literature take the
total number of infections over a period of time,
assume complete mixing and manipulate equation
(2.1) to find the value for quanta production. In
this case, using 10.2 new cases, 17 susceptibles in a
fully mixed space with a total ventilation rate of
27 m® min ! over 170 h, this yields a quanta production
rate of 14.5 quanta h™ ', less than half the actual value.
This suggests that using a fully mixed model to deter-
mine quanta production rates from outbreak data
may significantly underestimate the quanta values in
environments such as multi-zoned hospital wards or
office buildings where the air will be far from fully
mixed. In addition, using such values derived from out-
breaks to estimate risk and design control procedures
may significantly underestimate the actual risk, par-
ticularly for susceptible people in closer proximity to
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the index case. Although shown here from a simple rep-
resentation of the ventilation, the results concur with
the findings of Qian et al. (2009) who showed differ-
ences between quanta values determined from mixed
and spatially varying CFD models.

6. CONCLUSIONS

The Wells—Riley model has been used to examine air-
borne infectious disease transmission since the 1970s
and remains a simple and valuable approach for under-
standing the role of various parameters to inform
research, design and risk assessment. Linking the
model with ventilation flows is a straightforward and
practical option for those involved in the design and
risk assessment of healthcare buildings. Provided users
appreciate the limitations of the Wells—Riley model
and their ventilation model, the approach enables a
much greater understanding of the possible spatial
transmission of infection and allows design and
operational control strategies to be explored. The
importance of stochastic effects, especially in small
populations, should not be underestimated and users
should seek to incorporate this into any model to
evaluate the potential range of risk.

Coupling the model with disease dynamics, vacci-
nation and environmental control strategies have also
been tackled in previous studies and shown to give
greater insight into the role of environmental and
management strategies, particularly for the trans-
mission of short incubation period diseases. The
greatest uncertainty in the Wells—Riley model remains
the disease parameters, with the concept of quanta suit-
able for parametric studies but severely limited in real
risk assessments owing to the necessity to derive
expected values from prior outbreaks. However, recent
developments are showing considerable promise for
establishing new methodologies for evaluating airborne
disease transmission based on the dose—response
characteristics of real pathogens. While this is currently
limited by available time—dose data relevant to human
subjects (Pujol et al. 2009), the right collaboration
between those conducting experimental dosing studies
and the infection risk modelling community could sig-
nificantly enhance knowledge of disease characteristics
and the pathogen—host interaction. Linking such
knowledge to models incorporating environmental par-
ameters offers a very effective framework for future
assessment of airborne disease transmission in indoor
environments.

The authors would like to acknowledge the support of the
Department of Health, Estates and Facilities Division
Research and Development Fund in funding this study.
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