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A vast number of different nucleic acid sequences can all be translated by the genetic code
into the same amino acid sequence. These sequences are not all equally useful however; the
exact sequence chosen can have profound effects on the expression of the encoded protein.
Despite the importance of protein-coding sequences, there has been little systematic study to
identify parameters that affect expression. This is probably because protein expression has
largely been tackled on an ad hoc basis in many independent projects: once a sequence has
been obtained that yields adequate expression for that project, there is little incentive to
continue work on the problem. Synthetic biology may now provide the impetus to transform
protein expression folklore into design principles, so that DNA sequences may easily be
designed to express any protein in any system. In this review, we offer a brief survey of
the literature, outline the major challenges in interpreting existing data and constructing
robust design algorithms, and propose a way to proceed towards the goal of rational
sequence engineering.
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1. INTRODUCTION

At the heart of biotechnology is our ability to cause
a cell to produce a protein it would not normally make.
These proteins may be useful in themselves, for
example as therapeutics or industrial catalysts. They
may enable a cell to produce new compounds or to
interact with other cells in a novel way. Whether a
protein is a modified version of proteins that are
naturally produced by the intended expression host or
comes from another kingdom, its sequence must be
encoded in a gene that the host cell recognizes as
instructions to produce appropriate amounts of the
specified amino acid sequence.

Synthetic biologists envision a future in which
combinations of well-characterized sequence elements
lead to predictable outcomes, enabling the rational
design of biological circuits and novel metabolic
pathways (Andrianantoandro et al. 2006; Heinemann &
Panke 2006; Drubin et al. 2007; Sayut et al. 2007;
Tyo et al. 2007). Attempts to characterize and employ
sequences that control transcription, mRNA stability
and the initiation of translation are underway in
many synthetic biology laboratories (Yokobayashi et al.
2002; Sprinzak & Elowitz 2005; Heinemann & Panke
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2006; Dasika & Maranas 2008; Michalodimitrakis &
Isalan 2009). One aspect of the design process that needs
more attention, however, is the treatment of coding
sequences. As in biotechnology, these are at the
centre of synthetic biology: it is proteins that will
catalyse the reactions in a novel metabolic pathway
or be the signal transducers or the new biomaterials.
There is an implicit assumption that, because we
know the genetic code, it will be straightforward to
choose a DNA sequence to encode any protein. But
we need to think about more than the sequences that
will ensure enough mRNA and an adequate rate of
translational initiation: the codon choices themselves
must not limit expression under the anticipated
conditions of use.

Today, researchers can obtain genes by cloning from
cDNA libraries or polymerase chain reaction (PCR)
amplification from the source organism. Increasingly,
they are also turning to direct synthesis of genes whose
sequences appear in rapidly expanding sequence data-
bases, but whose physical location is frequently obscure
(Venter et al. 2004). When a gene is synthesized, it is
generally modified from the natural version. These
modifications are made to simplify subsequent manip-
ulations (adding or eliminating restriction sites, for
example), but also for a much more significant
reason: natural genes are often poorly expressed in
heterologous hosts, even when the expression system is
related to the organism from which the gene originated.
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Figure 1. Factors influencing protein expression. Several factors that act along the path of expression from DNA to mRNA to
protein are shown, any of which could be altered by or could affect the impact of gene design. RBS, ribosome-binding site.
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Several different prokaryotic and eukaryotic systems
are now available for heterologous expression, offering
flexibility for a variety of protein types and appli-
cations. For improved results, these systems can be
further manipulated by changing environmental con-
ditions such as temperature or media components, by
changing the intracellular environment by altering
tRNA levels, and by changing the context and copy
number of the gene itself (Hannig & Makrides 1998;
Baneyx 1999; Aricescu et al. 2006). Despite so many
options, natural genes are still frequently recalcitrant
to expression in any host system useful for an intended
application. Synthetic biology applications may also be
particularly inflexible in their choice of host, especially
if the characterization of synthetic parts turns out to be
very host specific. Successful expression of target
proteins, particularly high-yield expression, may there-
fore only be achieved by adaptation of the gene
sequence to the desired expression system.

Unfortunately, robust rules for designing a gene for
heterologous expression are not available, despite much
study. There are two main reasons for this: (i) synthetic
genes have only been widely and cheaply available for a
few years, so systematic, well-controlled studies of the
relationship between gene design parameters and
expression have not been practical and (ii) protein
synthesis is a complex process and probably depends on
multiple properties of the gene sequence in addition to
host-specific variables and environmental conditions.

Design of an ‘optimal’ gene (which we define in this
review as one in which the codon choices do not limit
expression) requires a thorough understanding of the
interaction of the gene sequence with the expression
J. R. Soc. Interface (2009)
environment and specification of the desired goal
(expression level, solubility, localization of expressed
protein, etc.). One does not need to dig deeply into the
scientific literature to realize that the relationship
between sequence, host and expression properties is
complex (figure 1). It is also clear that there are big gaps
in the data available to map this relationship. Previous
studies have generally focused on one or a few rules
applied to design a single modified version of a gene
(Gustafsson et al. 2004;Wu et al. 2007a,b). If expression
is improved, there is a good chance that the result
is described in the published literature; if not, it is
probably not reported. As none of these rules has
reliably improved expression, the tendency has been
to layer more and more rules on top of each other,
greatly complicating the gene design task and creating
problems of prioritization when applying several
conflicting principles. The problem is that the design
rules are often only weakly supported by anecdotal
data and little is known about their general applica-
bility and relative significance. In many cases, they
also have no obvious grounding in biochemical expla-
nations of protein expression. A robust and generally
applicable gene design method must instead be
based on well-established relationships that are
validated by thorough experimentation. The ability
to create synthetic gene sets with variations in
synonymous gene coding will be essential to elucidate
these relationships.

In this review, we discuss the difficulties with current
gene design methods, focusing on the interdependence
and conflicts of common design principles. The
principles that are currently applied are evaluated
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and challenges in incorporating them into algorithms
for automated design are described. Finally, we propose
practical ways to resolve current uncertainties that
limit the potential of synthetic genes.
2. THE GENE DESIGN CHALLENGE

The standard genetic code encodes the 20 ubiquitous
amino acids by 61 nucleotide triplets (codons). An
amino acid may be encoded by as few as one or as many
as six codons. This redundancy means that a protein
can be encoded by many alternative nucleic acid
sequences; a 300 amino acid protein of average amino
acid composition could be encoded by more than 10100

different gene sequences. If the codon choice at each
position is considered an independent variable, the
possibilities would be distributed over an intractable,
high-dimensional sequence space. Methodical gene
optimization is thus only practical if the governing
variables can be dramatically reduced and/or general
rules exist to limit the considered possibilities.

A reasonable body of published work exists in which
significant changes in expression are found in genes that
have been resynthesized according to simple design rules
(Gustafsson et al. 2004; Wu et al. 2007a,b). This is
encouraging because it suggests that the optimization
problem can be reduced to a manageable number of
variables to describe a gene sequence. What has not yet
emerged is the identity of the most important sequence
variables or their contributions to protein expression.
Part of the problem is one of variable definition—we
know categorically what is important but not exactly
what, how and/or when. For example, codon bias is
widely thought to affect expression, but which codons
are important, how best they should be biased, whether
the same biases are important for all proteins and how
this relates to the expression host is much less clear.
Compounding this lack of clarity, we do not knowhow to
prioritize or compromise with interdependent variables.
For example, consider a protein containing many
tyrosine residues that is encoded by following the rule
‘maximize GC content’. The resulting expression levels
may then be ascribed to the overall GC content of the
gene, since that was the design rule used. However,
suppose that the expression levels were primarily
influenced by the choice of UAC instead of UAU to
encode every tyrosine. A second gene containing no
tyrosines encoded by ‘maximizingGC content’ would be
completely unaffected by the choice of tyrosine codons,
so that the rule may result in quite different expression
properties in the second case. In §3, the case for and
limitations of various gene design variables previously
associated with expression level are discussed.
3. GENE DESIGN PRINCIPLES

3.1. Origins of codon usage bias

Grantham et al. (1981) identified biases in the codons
that were used to encode amino acids in the 161 full or
partial mRNA sequences present in the nucleic acid
sequence database at that time. These biases differed
depending on which organism the gene came from.
The authors speculated that these differences in codon
J. R. Soc. Interface (2009)
bias may play a role in protein expression levels, and
proposed a biophysical basis for this. We now have a
much more detailed understanding of how gene
expression is regulated including synthesis, processing
and degradation of mRNA and initiation of translation.
The role of natural codon biases, however, is still very
poorly understood.

Why some organisms show marked bias and why
organisms often differ dramatically has been the subject
of much speculation (Holm 1986; Eyre-Walker &
Bulmer 1993, 1995; Eyre-Walker 1996; Akashi 2001;
Knight et al. 2001; Akashi & Gojobori 2002; Rocha
2004; Marquez et al. 2005; Suzuki et al. 2008; Yang &
Nielsen 2008). Codon bias may serve to make the
translational process more efficient. Biases can reduce
the diversity of isoacceptor tRNAs required, perhaps
reducing the metabolic load (Rocha 2004). This may
particularly be beneficial to organisms that spend much
of their life cycle in rapid growth. Several other
constraints, not directly related to expression yield,
are also likely to influence codon bias. These include
altering the likelihood and directionality of amino
acid substitutions (mutational bias) and selection for
GC content (Eyre-Walker & Bulmer 1995; Eyre-Walker
1996; Knight et al. 2001; Marquez et al. 2005; Antezana &
Jordan 2008; Yang & Nielsen 2008).

Whatever the evolutionary factors contributing to
codon usage biases, the relevance of natural biases to
designing genes for heterologous expression is not clear.
Weak correlations between codon bias and expression
of individual intragenomic genes have been observed in
yeast and bacteria, but these genes are very rarely
expressed at the high levels that are often desirable in
biotechnological applications (more than 10 or 20% of
cell protein). Furthermore, the cellular protein
expression machinery has several means to control
expression other than by control of translational
elongation step rates. Indeed, in thorough studies
where protein expression has been normalized relative
to mRNA levels, correlations between expression and
codon bias have all but disappeared (Gouy & Gautier
1982; Sharp & Li 1987; dos Reis et al. 2003;
Jansen et al. 2003; Friberg et al. 2004; Lu et al.
2007; Wu et al. 2007a,b). Nevertheless, genes that are
designed using different codon biases often do have
significantly different expression properties, suggesting
that bias or covariant gene variables are important
(Gustafsson et al. 2004).
3.2. Biochemistry of codon usage bias

Synonymous codon choice may influence heterologous
expression yield by limiting the translational elonga-
tion rate. For each codon along a message, the
translational elongation step rate is probably primarily
determined by the concentrations of cognate and
competing EF-Tu$aa-tRNA ternary complexes in the
cell and rate constants for complex selection at the
ribosomal A-site (Varenne et al. 1984; Curran & Yarus
1989; Gromadski & Rodnina 2004; Wintermeyer et al.
2004; Rodnina et al. 2005). There is also evidence that
the rate of tRNA selection at the A-site may be
significantly influenced by the tRNA and codon
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occupying the ribosomal P-site, causing local context
effects (Yarus & Folley 1985; Gouy 1987; Folley &
Yarus 1989; Gutman & Hatfield 1989; Irwin et al. 1995;
Boycheva et al. 2003; Moura et al. 2005; Buchan et al.
2006). Finally, and of particular relevance when high
levels of heterologous protein are expressed, the
concentrations of free amino acids and charged tRNA
in the cell could change significantly, altering the
relative translation step rates for different codons
(Dong et al. 1995; Elf et al. 2003; Dittmar et al. 2005;
Elf & Ehrenberg 2005a,b).

A detailed mechanistic model of expression incor-
porating accurate rates for all steps in the synthesis
pathway and context dependence is not imminent even
for Escherichia coli and even further off for many other
potentially useful hosts. Even without complete under-
standing, however, the biochemical principles of
expression can inspire some reasonable guesses about
design criteria. In E. coli, there is some correlation
between codon usage frequency and observed cognate
tRNA level, which is more pronounced at higher growth
rates (Ikemura 1981; Bulmer 1987; Dong et al. 1996).
Translation of a gene containing many codons that are
rarely used in the host organism will therefore generally
use cognate tRNAs that are present at low levels in the
cell in a large number of steps in translational
elongation. This would be expected to impair
expression, an effect that is indeed observed (Chen &
Inouye 1990; Kane 1995; Cruz-Vera et al. 2004). Also
consistent with this mechanistic explanation, E. coli
strains expressing boosted levels of such tRNAs from
plasmid-borne genes can in some cases support
increased expression levels of genes containing rare
codons (Kane 1995; Burgess-Brown et al. 2008).

Although rare codons may often be translated at
lower rates, the relationship between their use and
expression yield is not a simple one. In fact, in some
cases, the inclusion of rare codons may even improve
yield perhaps by controlling the ribosomal traffic along
the translated message or by introducing translational
pauses at strategic positions, such as domain
boundaries, to help promote proper protein folding
(Angov et al. 2008; Tsai et al. 2008). Also, position and
sequence context of the rare codons can significantly
affect their impact. In certain contexts, rare codons
have been shown to increase translational errors
(Del Tito et al. 1995; Kane 1995; Kurland & Gallant
1996; You et al. 1999; Kerrigan et al. 2008). In
particular, consecutive rare codonswithin thefirst codons
of a message may be especially deleterious, whereas in
some cases rare codons may be distributed downstream
of the initial coding sequencewith little effect (Varenne&
Lazdunski 1986; Chen & Inouye 1990, 1994).

How to abstract gene design principles from non-rare
codon biases in an expression host’s genome is even less
clear. One idea that is commonly cited, despite the
gradual evaporation of experimental support, is that
higher levels of expression can be obtained by maximiz-
ing high-frequency codons within a gene. This idea is
an extension of Grantham’s work (Grantham et al.
1981), coupled with the observation that some highly
expressed genes inE. coli and Saccharomyces cerevisiae
(predominantly ribosomal proteins) are more biased in
J. R. Soc. Interface (2009)
codon usage than the average for the genome (Sharp &
Li 1987). In this line of reasoning, the codon that is used
most frequently in these highly expressed genes is
considered an ‘ideal’ codon. How closely a gene con-
forms to this ideal can then be quantified as the codon
adaptation index (CAI; Sharp & Li 1987); a gene of
maximal CAI equal to 1 is one that uses only the most
frequent codon in the high expressor subset to encode
each amino acid. Although the CAI of a gene has often
been cited as a predictor of the expression level of a
protein, there is no demonstrated causality. In E. coli
and S. cerevisiae, where protein and mRNA levels have
both been measured, there is no meaningful correlation
between CAI and protein yield per mRNA transcript,
suggesting that CAI is not a measure of translational
efficiency (Friberg et al. 2004; Lu et al. 2007).

From a purely biochemical perspective, simply
maximizing the CAI of a gene might be problematic,
especially for applications where the target protein is to
be expressed at much higher levels than any single
natural protein.While it would favour the use of tRNAs
present at higher levels in a non-expressing cell,
limiting the used tRNA pool to just one or two
isoacceptors per amino acid could limit the maximal
synthesis flux and increase translational errors (Kane
1995; Kurland & Gallant 1996). A balance between
tRNAs used that maximizes the availability of
aa-tRNA for production while maintaining a non-
limiting elongation rate is probably preferable.

An additional complication is that different proteins
with different amino acid compositions will stress the
translational process differently (Kane 1995). For
example, the optimal balance of serine codons in a
gene encoding a protein containing only a few serine
residues may be quite different from the optimal
balance of serine codons where the protein is 20 per cent
serine. In the latter case, the rates at which serine
tRNAs are recharged may have a significant impact on
translation rate. Likewise, the effect of codon bias may
depend on the expression level itself. The prevalence of
serine in a protein, for example, may not matter if the
protein is produced at a low level owing to other
expression limiting factors, such as low mRNA level or
slow translational initiation. In such a case, the stress
on serine tRNAs would be low, independent of the
protein serine content.

Many examples exist where changes in synonymous
codon usage have a dramatic effect on the yield of
heterologously expressed protein, but drawing con-
clusions about optimal codon biases from these data is
very difficult (Gustafsson et al. 2004). Published
examples differ widely in many respects including the
expression host, regulatory elements associated with
the gene and, most importantly, the protein being
expressed. Furthermore, the sample sets in such
examples are generally small, usually describing only
two genes, one natural and one whose codon bias has
been altered. Now that genes can be synthesized
quickly and cheaply, it should be possible to construct
sets that are diversified systematically to experimen-
tally test the effects of changes in bias of codons for each
amino acid, the occurrence of codon pairs, GC%,
the use of rare codons and other potentially important
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determinants of expression level. The effects of other
factors on expression can also be tested, including those
described in the following sections.
3.3. Codon bias at the start of the open
reading frame

Numerous lines of evidence suggest that the initial
15–25 codons of the open reading frame deserve special
consideration in gene optimization (Eyre-Walker &
Bulmer 1993; Chen & Inouye 1994; Stenström et al.
2001a,b; Stenström & Isaksson 2002; Gonzalez de
Valdivia & Isaksson 2004, 2005). Natural E. coli genes
show a distinct bias in codon usage for the initial
25 codons compared with the overall genomic bias
(Eyre-Walker & Bulmer 1993; Chen & Inouye 1994;
Stenström et al. 2001b). In fact, rare codons are
enriched in this initial leader for reasons that are not
clear. Studies have shown that the impact of rare
codons on translation rate is particularly strong in these
first codons, especially within the first six triplets
(Chen & Inouye 1990, 1994).

Ribosomes in the initial phase of elongation appear
to be particularly prone to abortive termination,
perhaps owing to an increased rate of peptidyl-tRNA
drop-off (Gonzalez de Valdivia & Isaksson 2004, 2005).
Early rare and NGG codons may accelerate pre-
mature termination by stalling elongation (Gonzalez de
Valdivia& Isaksson 2005).These codon effects appear to
be independent of alterations in mRNA secondary
structure that might also stall early elongation or
prevent initiation. As translational initiation depends
on the rates of both ribosome binding and clearing of
the ribosome-binding site (RBS) after initial elongation
(approx. 13–20 codons), slow translation through the
initial leader may reduce or eliminate any benefits of a
strong RBS sequence.
3.4. mRNA structure

Gene design strategies often seek to minimize mRNA
structure. Structures that involve or otherwise occlude
the RBS and/or start codon in genes expressed in
prokaryotes can impair expression, presumably by
interfering with ribosomal binding and translational
initiation (Kozak 1986; de Smit & van Duin 1990, 1994;
Griswold et al. 2003; Studer & Joseph 2006). For this
reason, gene design strategies often consider such
structure in coding of the first several amino acids.
Voigt and co-workers have recently developed an
algorithm for designing prokaryotic RBSs to achieve
desired rates for initiation of translation considering
the structure of the mRNA and the affinity of the
RBS for the ribosome (http://www.voigtlab.ucsf.edu/
software/).

As with codon bias, considerations of the effects of
mRNA structure within the open reading frame are not
straightforward. While some RNA structures, particu-
larly pseudoknots, have been shown to cause
translational pauses (Kontos et al. 2001; Hansen et al.
2007; Wen et al. 2008), a clear relationship of RNA
structure strength, type and distribution to translation
rate is lacking. Ribosomes possess an intrinsic helicase
J. R. Soc. Interface (2009)
activity that allows translation through even very
strong hairpins and may preclude many structures from
limiting the translation rate (Takyar et al. 2005). An
actively translated message can be densely packed with
ribosomes, unwinding structure as they move along.
For this reason and others, structures predicted by
RNA folding algorithms may not reliably represent
actual mRNA structures in vivo (Meyer & Miklos 2004,
2007). Relevant structures may be those restricted to
windows along the mRNA where structure could form
between ribosomes. The lengths and lifetimes of such
windows would be dependent on translational kinetics
and would probably vary significantly along the
message. These many layers of uncertainty greatly
obscure a rational approach to general mRNA structure
optimization. As structure minimization strategies can
greatly influence other gene parameters, such as codon
bias, it is critical that systematic analysis of the benefits
of various mRNA structure treatments be performed.
3.5. Gene design and protein structure

Although much of the forgoing discussion has implicitly
assumed that maximizing the rate of translational
elongation is unequivocally desirable, this is not
entirely accurate. Often the expressed protein must
be properly folded to be useful. There have been several
recent reports describing the effects of synonymous
codon changes on protein folding (Thanaraj & Argos
1996; Angov et al. 2008; Tsai et al. 2008). It has been
suggested that too rapid translation may not allow for
efficient ‘self’ or chaperone-aided folding and that
strategically placed slower codons or codon runs,
perhaps at protein domain boundaries, could maximize
folding efficiency while maintaining a high overall
translation rate (Angov et al. 2008). Unfortunately,
there are even less data from which to derive rules
for such designs than there are for understanding codon
bias. Developing rules for designing genes to express
soluble active protein should be facilitated by synthesis
and testing of varied sets of genes, as described above
for penetrating the mysteries of codon bias and other
gene variables.
3.6. Potentially deleterious motifs

Depending on the host expression system, there are a
number of sequence motifs to be avoided in gene design.
These comprise an expanding list of sequence element
classes that could have negative effects on expression of
a target protein. For example, in an E. coli system
expressing a gene under control of a T7 promoter, one
would wish to avoid both class I and II transcriptional
termination sites. Shine–Dalgarno-like sequences
within the coding sequence may cause incorrect down-
stream initiation or translational pauses in prokaryotic
hosts. In eukaryotic hosts, potential splice signals,
polyadenylation signals and other motifs affecting
mRNA processing and stability are generally to be
avoided. Other classes of deleterious motifs include
sequences that promote ribosomal frameshifts and
pauses (Kurland & Gallant 1996; Kontos et al. 2001;
Hansen et al. 2007). For many of these motifs,

http://www.voigtlab.ucsf.edu/software/
http://www.voigtlab.ucsf.edu/software/
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polyadenylation sites in particular, the relationship of
sequence and impact on expression is not yet well
understood. With further work, we expect that the
list of toxic and regulatory motifs will grow, but also
that rules for avoiding them in gene design will be
better defined.
4. INTEGRATING PRINCIPLES INTO DESIGN
ALGORITHMS

Several algorithms have been developed which allow
researchers to manipulate various gene design para-
meters (Grote et al. 2005; Jayaraj et al. 2005; Villalobos
et al. 2006; Ferro et al. 2007; Wu et al. 2007a,b). Ideally,
an algorithm should be based on an accurate predictive
model of the relationship between design parameters
and expression yield. To develop such a model, it is
critical to first identify the sufficient subset of pre-
dictive design variables for explaining expression.
There is good reason to hope that careful experi-
mentation will allow reasonable quantification of the
effects of codon bias, mRNA structure and other factors
on heterologous expression in various expression
systems.

Prioritization of the expression-determining vari-
ables is also necessary to create a robust design
algorithm. It may not be sufficient or practical to
simply apply standard criteria independently to a
number of design parameters, as the parameters
themselves may not be fully independent of each
other. Avoidance of possible deleterious motifs, particu-
larly those that are ambiguously defined or otherwise
common, can conflict with codon usage and other
design parameters. Common design requirements such
as the removal of restriction sites, avoidance of dam or
dcmmethylation sites overlapping with restriction sites
or elimination of extended coding sequences in other
reading frames also constrain codon choices.

Optimization of multiple constraints based on
anecdotal information and accepted but often unsub-
stantiated lore is particularly problematic. This
‘system voodoo’ can so significantly limit the available
DNA sequences as to actually preclude adequate
expression! It is impossible to overstate the value of
experimental support for assigning importance to the
impact of sequence variables on expression.
4.1. Managing constraints

Irrespective of the specific variables, gene design will
always involve several, often conflicting, types of
sequence constraints. Meeting these various constraints
simultaneously necessitates development of sophis-
ticated algorithms. The most useful algorithms would
allow flexibility in prioritization of constraints, as
appropriate for different applications and design
goals. In some cases, compromises may be acceptable
for some of the parameters, for example minimizing
repetitive sequences instead of eliminating them
completely. In other cases, the algorithm might have
the choice of meeting at least one of a set of constraints.
For example, the gene design may require that either
J. R. Soc. Interface (2009)
EcoRI or HindIII sites not be present in the resulting
DNA sequence.

Another important criterion is algorithm efficiency or
run time. For a complex set of design constraints,
optimization can be computationally intensive,
especially for large genes. In some cases, running the
algorithm for a few days or weeks might be acceptable, as
long as all the goals are met. In other cases, the algorithm
might need to be executed for a large library of genes in a
quick manner, so that post-optimization analysis may be
performed and new goals defined. Finally, there will
often be cases where the optimization problem is so
difficult, owing to particulars of the amino acid sequence
to be encoded and/or the combination of constraints
applied, that design goals cannot be reached within a
reasonable time and an exhaustive search of all
parameter space is unrealistic. Thus, a practical
algorithm must employ some kind of heuristic, perhaps
Monte Carlo random walks, simulated annealing or a
genetic algorithm, to efficiently search parameter space.

Typical gene design parameters vary in nature and
present different problems in optimization. Particularly
challenging are parameters of a distributed nature such
as codon bias or repeats in the DNA sequence, which
are necessarily interdependent with other parameters.
Codon bias for at least one amino acid will change
whenever a new codon is chosen anywhere in the
sequence to modify any other design parameter.
Changing a codon to eliminate repetition of one
sequence element within the gene may introduce
other, different repeated elements. Design algorithms
must use optimization methods that are suited to the
nature of the parameters involved.
4.2. Choosing optimization methods

For any optimization method, the starting point can be
very important. Ideally, it should be chosen as close as
possible to the expected optimum and in a way that is
not deterministic. That way, if the starting point proves
unacceptable, the algorithm can be restarted with a
new starting point. One way to select a starting point
that is non-deterministic and focuses on search space
near a typical optimization goal is to select a codon for
each amino acid, based on the probability of that codon
occurring as given by a target codon bias table.

As is common with multidimensional optimization
problems, there are many ways of navigating the search
space and each has its benefits depending on the
optimization requirements (figure 2). The search
hierarchy must accommodate the interdependencies
and priorities of the constraints. Otherwise, conflicts
might cause the algorithm to get cornered in a local
optimum and not reach the design goals.

If there is only one constraint (codon bias, for
example) or multiple constraints with non-conflicting
goals, then a ‘greedy’ algorithm may suffice to rapidly
find an optimum. At each iteration of such an
algorithm, the sequence is scored based on the
optimization parameters. If all the goals have not
been met, a random codon position is changed and
the resulting sequence is scored. If the new sequence
is improved, it becomes the starting point for the
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Figure 2. Choosing an appropriate design algorithm. A simple example is shown of how two different algorithms for the same
optimization problem are affected by sequence constraints. The coding sequence encodes five peptide segments of a protein,
which may or may not be contiguous. The initial starting sequence is one possibility, chosen to match the target codon bias of the
gene. The optimization constraints for both algorithms are that (i) no EcoRI is allowed, (ii) codon usage ratios for
E (GAG/GAA) and F (TTC/TTT) must be equal to 1, and (iii) direct sequence repeats greater than seven nucleotides should be
minimized. Iterations involve single codon replacements and a greedy search is followed. Thus, replacements are allowed only if
improvement is achieved. At each step, no worsening of previously applied constraints is allowed. The algorithm in (a) begins by
minimizing repeat elements and then tries to remove EcoRI sites without increasing the number of repeats. Since either possible
substitution to remove the EcoRI site will add new repeats, no change is allowed and the algorithm fails to reach its goals.
In (b), because the hard constraint of restriction site removal is applied first, the algorithm has two routes (red versus blue
arrows) to successfully reach the goals.
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next iteration. Otherwise, the previous sequence is
kept and changed randomly again in the next iteration.
This continues until all goals are met or a minimum
is reached.

If the constraints are interdependent, as the most
proposed gene optimization parameters are, a greedy
algorithmmay be prone to getting trapped in undesired
local optima as it will always work towards the
optimum closest to the starting point. One way of
getting around this problem is to apply simulated
annealing (Kirkpatrick et al. 1983; Rodrigo et al. 2007;
Rocha et al. 2008). In this method, worse scoring
sequences can also be selected as the next current state,
but at a given probability (‘temperature’). As the
iterations step forward, the temperature is dropped
progressively, decreasing the probability of accepting a
sequence that scores lower than its predecessor. This
‘cooling’ results in an algorithm that initially samples a
broad region of search space and then slowly becomes
greedier in its heuristic, eventually becoming a simple
greedy algorithm once it reaches zero. Generally, the
‘best state’ observed during the iterations is taken as
the final result.

Another method for avoiding local optima, particu-
larly as parameter space becomes large and inter-
dependency is high, is to simultaneously follow multiple
search paths and choose those that perform best. In a
‘genetic algorithm’, for example, a population of
different current states is maintained (Mitchell 1998;
Patil et al. 2005; Rocha et al. 2008). With each
J. R. Soc. Interface (2009)
generation, the best individual sequences are selected
as parents for the next generation. These are randomly
mutated and recombined. The best of the resulting
progeny is then selected and iterations continue until
convergence in performance of the population is
reached. The combination of multiple starting points
and diversification through mutation and recombination
efficiently searches a large expanse of sequence
space, avoids single suboptimal solutions and is
more likely to find a true optimum for complex
multivariate problems.
4.3. Algorithms for exploring parameter space

Creating an optimization algorithm to find sequences
that meet multiple interdependent constraints is only
half the battle. The functionality of sequences designed
by these algorithms will generally be limited by how
well the constraints that the algorithm imposes match
parameters that actually affect expression. Robust
optimization algorithms will therefore require data
and development of valid models describing the
design–expression relationship. One way of approach-
ing this problem is to coevolve the design algorithms
together with these models. Initial algorithms can be
used to independently vary parameters thought to be
important, with experimental measurements and data
modelling allowing these hypotheses to actually be
tested. As more data are gathered, unimportant
parameters will be discarded, new parameters may be
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added and remaining parameters will be reprioritized in
the model. Thus, the optimization algorithm and our
understanding of how to design genes for protein
expression will be refined together.
5. FUTURE PROSPECTS

Rapid expansion of sequence databases and develop-
ment of gene synthesis technologies have greatly
increased the repertoire of protein sequences to which
biological researchers have access. Natural, derivative
or novel sequences of interest may be directly obtained
by researchers with minimal expertise in molecular
biology. Although the rules for deciphering a DNA
sequence to determine the amino acid sequence of the
encoded protein were established over 40 years ago, the
rules for designing DNA sequences to express an
encoded protein are still not well understood. Fortu-
nately, the methods for determining such rules are very
familiar to both scientific and engineering traditions,
merged in the field of synthetic biology. Reliable
criteria for designing expressible genes will help to
enable synthetic systems, where a gene encoding any
protein may be slotted between reusable control
elements, combined into new biosynthetic pathways
or biological circuits without having to suffer through
extensive trial and error just to get the gene to express.
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