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Synthetic biology aims at producing novel biological systems to carry out some desired and
well-defined functions. An ultimate dream is to design these systems at a high level of
abstraction using engineering-based tools and programming languages, press a button, and
have the design translated to DNA sequences that can be synthesized and put to work in
living cells. We introduce such a programming language, which allows logical interactions
between potentially undetermined proteins and genes to be expressed in a modular manner.
Programs can be translated by a compiler into sequences of standard biological parts, a
process that relies on logic programming and prototype databases that contain known
biological parts and protein interactions. Programs can also be translated to reactions,
allowing simulations to be carried out. While current limitations on available data prevent
full use of the language in practical applications, the language can be used to develop formal
models of synthetic systems, which are otherwise often presented by informal notations. The
language can also serve as a concrete proposal on which future language designs can be
discussed, and can help to guide the emerging standard of biological parts which so far has
focused on biological, rather than logical, properties of parts.

Keywords: synthetic biology; programming language; formal methods; constraints;
logic programming
1. INTRODUCTION

Synthetic biology aims at designing novel biological
systems to carry out some desired and well-defined
functions. It is widely recognized that such an endeavour
must be underpinned by sound engineering techniques,
with support for abstraction and modularity, in order to
tackle the complexities of increasingly large synthetic
systems (Endy 2005; Andrianantoandro et al. 2006;
Marguet et al. 2007). In systems biology, formal
languages and frameworks with inherent support for
abstraction and modularity have long been applied, with
success, to the modelling of protein interaction and gene
networks, thus gaining insight into the biological
systems under study through computer analysis and
simulation (Garfinkel 1968; Sauro 2000; Regev et al.
2001; Chabrier-Rivier et al. 2004; Danos et al. 2007;
Fisher & Henzinger 2007; Ciocchetta & Hillston 2008;
Mallavarapu et al. 2009). However, none of these
languages readily capture the information needed to
realize an ultimate dream of synthetic biology, namely
the automatic translation of models into DNA sequences
which, when synthesized and put to work in living cells,
express a system that satisfies the original model.
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In this paper, we introduce a formal language for
Genetic Engineering of living Cells (GEC), which
allows logical interactions between potentially unde-
termined proteins and genes to be expressed in a
modular manner. We show how GEC programs can be
translated into sequences of genetic parts, such as
promoters, ribosome binding sites and protein coding
regions, as categorized for example by the MIT Registry
of Standard Biological Parts (http://partsregistry.org).
The translation may in general give rise to multiple
possible such devices, each of which can be simulated
based on a suitable translation to reactions. We thereby
envision an iterative process of simulation and model
refinement where each cycle extends the GEC model by
introducing additional constraints that rule out devices
with undesired simulation results. Following completion
of the necessary iterations, a specific device can be
chosen and constructed experimentally in living cells.
This process is represented schematically by the flow
chart in figure 1.

The translation assumes a prototype database of
genetic parts with their relevant properties, together
with a prototype database of reactions describing
known protein–protein interactions. A prototype tool
providing a database editor, a GEC editor and a GEC
compiler has been implemented and is available for
download (Pedersen & Phillips 2009). Target reactions
are described in the Language for Biochemical Systems
(Pedersen & Plotkin 2008), allowing the reaction model
doi:10.1098/rsif.2008.0516.focus
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Figure 1. Flow chart for the translation of GEC programs to
genetic devices, where each device consists of a set of part
sequences. The GEC code describes the desired properties of
the parts that are needed to construct the device. The
constraints are resolved automatically to produce a set of
devices that exhibit these properties. One of the devices can
then be implemented inside a living cell. Before a device is
implemented, it can also be compiled to a set of chemical
reactions and simulated, in order to check whether it exhibits
the desired behaviour. An alternative device can be chosen,
or the constraints of the original GEC model can be modified
based on the insights gained from the simulation.

Table 1. Table representation of a minimal parts database.
(The three columns describe the type, identifier and proper-
ties associated with each part.)

type id properties

pcr c0051 codes(clR, 0.001)
pcr c0040 codes(tetR, 0.001)
pcr c0080 codes(araC, 0.001)
pcr c0012 codes(lacI, 0.001)
pcr c0061 codes(luxI, 0.001)
pcr c0062 codes(luxR, 0.001)
pcr c0079 codes(lasR, 0.001)
pcr c0078 codes(lasI, 0.001)
pcr cunknown3 codes(ccdB, 0.001)
pcr cunknown4 codes(ccdA, 0.1)
pcr cunknown5 codes(ccdA2, 10.0)
prom r0051 neg(clR, 1.0, 0.5, 0.00005)

con(0.12)
prom r0040 neg(tetR, 1.0, 0.5, 0.00005)

con(0.09)
prom i0500 neg(araC, 1.0, 0.000001, 0.0001)

con(0.1)
prom r0011 neg(lacI, 1.0, 0.5, 0.00005)

con(0.1)
prom runknown2 pos(lasR-m3OC12HSL, 1.0, 0.8, 0.1)

pos(luxR-m3OC6HSL, 1.0, 0.8, 0.1)
con(0.000001)

rbs b0034 rate(0.1)
ter b0015
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to be extended if necessary and simulated. Stochastic
and deterministic simulation can be carried out directly
in the tool (relying on the Systems Biology Workbench
(Bergmann & Sauro 2006)) or through third-party tools
after a translation to Systems Biology Markup
Language (Hucka et al. 2003; Bornstein et al. 2008).

To our knowledge, only one other formally defined
programming language for genetic engineering of cells is
currently available, namely the GenoCAD language
(Cai et al. 2007), which directly comprises a set of
biologically meaningful sequences of parts. Another
language is currently under development at the Sauro
Lab, University of Washington. While GenoCAD
allows a valid sequence of parts to be assembled
directly, the Sauro Lab language allows this to be
done in a modular manner and additionally provides a
rich set of features for describing general biological
systems. GEC also employs a notion of modules, but
allows programs to be composed at higher levels of
abstraction by describing the desired logical properties
of parts; the translation deduces the low-level
sequences of relevant biological parts that satisfy
these properties, and the sequences can then be checked
for biological validity according to the rules of the
GenoCAD language.
J. R. Soc. Interface (2009)
Section 2 describes our assumptions about the
databases, and gives an informal overview of GEC
through examples and two case studies drawn from the
existing literature. Section 3 gives a formal presen-
tation of GEC through an abstract syntax and a
denotational semantics, thus providing the necessary
details to reproduce the compiler demonstrated by the
examples in the paper. Finally, §4 points to the main
contributions of the paper and potential use of GEC on
a small scale, and outlines the limitations of GEC to be
addressed in future work before the language can be
adopted for large-scale applications.
2. RESULTS

2.1. The databases

The parts and reaction databases presented in this
paper have been chosen to contain the minimal
structure and information necessary to convey the
main ideas behind GEC. Technically, they are
implemented in Prolog, but their content is
informally shown in tables 1 and 2. The reaction
table represents reactions in the general form
enzymes w reactants/{r} products, optionally with
some parts omitted as in the reaction luxIw/{1.0}
m3OC6HSL, in which m3OC6HSL is synthesized by
luxI. We stress that the mass action rate constants
{r} are hypothetical, and that specific rates have been
chosen for the sake of clarity. The last four lines of
the reaction database represent transport reactions,
where m3OC6HSL/[m3OC6HSL] is the transport of
m3OC6HSL into some compartment.



Table 2. A minimal reaction database consisting of basic
reactions, enzymatic reactions with enzymes preceding the w

symbol and transport reactions with compartments rep-
resented by square brackets. (Mass action rate constants are
enclosed in braces.)

luxRCm3OC6HSL/{1.0} luxRKm3OC6HSL
luxRKm3OC6HSL/{1.0} luxRCm3OC6HSL

lasRCm3OC12HSL/{1.0} lasRKm3OC12HSL
lasRKm3OC12HSL/{1.0} lasRCm3OC12HSL

luxIw/{1.0} m3OC6HSL
lasIw/{1.0} m3OC12HSL

ccdAw ccdB/{1.0}
ccdA2w ccdB/{0.00001}

m3OC6HSL/{1.0} [m3OC6HSL]
m3OC12HSL/{1.0} [m3OC12HSL]
[m3OC6HSL]/{1.0} m3OC6HSL

[m3OC12HSL]/{1.0} m3OC12HSL

Table 3. Parts in GEC with their corresponding graphical
representation.

Table 4. Part properties and their reactions in GEC with their
corresponding graphical representation. (Some of the species
used in the reactions will also depend on the properties of
neighbouring parts.)
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The parts table contains three columns, the first
representing part types, the second representing unique
IDs (taken from the Registry of Standard Biological
Parts when possible) and the third representing sets of
properties. For the purpose of our examples, the
available types are restricted to promoters prom,
ribosome binding sites rbs, protein coding regions
pcr and terminators ter. Table 3 shows the set of
parts currently available in GEC, together with their
corresponding graphical representation. The shapes are
inspired by the MIT registry of parts. The variables X,
which occur as prefixes to part names and as labels in
the graphical representation, range over part identifiers
and will be discussed further in §2.2.

Promoters can have properties pos(P,RB,RUB,RTB)
and neg(P,RB,RUB,RTB), where P is a transcription
factor (a protein or protein complex) resulting in
positive or negative regulation, respectively. The
remaining entries give a quantitative characterization
of promoter regulation: RB and RUB are the binding and
unbinding rates of the transcription factor to the
promoter; and RTB is the rate of transcription in the
bound state. Promoters can also have the property
con(RT), where RT is the constitutive rate of
transcription in the absence of transcription factors.
Protein coding regions have the single property
codes(P,RD) indicating the protein P they code for,
together with a rate RD of protein degradation.
Ribosome binding sites may have the single property
rate(R), representing a rate of translation of mRNA.

While the reaction database explicitly represents
reactions at the level of proteins, the rate information
associated with the parts allows further reactions at the
level of gene expression to be deduced automatically
from part properties. Table 4 shows the set of part
properties currently available in GEC, together with
their resulting reactions. A corresponding graphical
representation of properties is also shown, where a
dotted arrow is used to represent protein production,
and arrows for positive and negative regulation are
inspired by standard notations.

The pos and neg properties of promoters each give
rise to three reactions: binding and unbinding of the
transcription factor and production of mRNA in
J. R. Soc. Interface (2009)
the bound state. The con property of a promoter yields
a reaction producing mRNA in the unbound state,
while the rate property of a ribosome binding site
yields a reaction producing protein from mRNA.
Finally, the codes property of a protein coding region
gives rise to a protein degradation reaction. We observe
thatmRNAdegradation rates do not associate naturally
with any of the part types since mRNA can be
polycistronic in general. Therefore, the rate rdm used
for mRNA degradation is assumed to be defined
globally, but may be adjusted manually for individual
cases where appropriate. Also note that quantities
such as protein degradation rates could in principle be
stored in the reaction database as degradation reactions.
We choose however to keep as much quantitative
information as possible about a given part within the
parts database.
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A part may generally have any number of properties,
e.g. indicating the regulation of a promoter by different
transcription factors. However, we stress that the
abstract language presented in this paper is indepen-
dent of any particular choice of properties and part
types, and that the particular quantitative character-
ization given in this paper has been chosen for the sake
of simplicity. As for the reaction database, we stress
that hypothetical rates have been given. Sometimes
we may wish to ignore these rates, in which case we
assume derived, non-quantitative versions of the
properties: for all properties pos(P,RB,RUB,RTB)
andneg(P,RB,RUB,RTB), therearederivedproperties
pos(P) and neg(P); and for every property
codes(P, RD), there is a derived property codes(P).
These derived properties are used in the remainder of
the paper. Their corresponding graphical represen-
tation is the same as in table 4, but with the rate
constants omitted.

The current MIT registry allows parts to be grouped
into categories and given unique identifiers, but does
not currently make use of a database of possible
reactions between parts, nor does it contain a logical
characterization of part properties. As such, our overall
approach can be used as the basis for a possible
extension to the MIT registry, or indeed for the creation
of new registries.
2.2. The basics of GEC

2.2.1. Part types. On the most basic level, a program
can simply be a sequence of part identifiers together
with their types, essentially corresponding to a program
in the GenoCAD language. The following program is an
example of a transcription unit that expresses the
protein tetR in a negative feedback loop, where a
corresponding graphical representation is shown above
the program code:

The symbol : is used to write the type of a part, and the
symbol ; is the sequential composition operator used to put
parts together in sequence. Writing this simple program
requires the programmer to know that the protein coding
regionpartc0040 codes for theproteintetRand that the
promoter part r0040 is negatively regulated by this
protein, two facts that we can confirm by inspecting
table 1. In this case, the compiler has an easy job: it just
produces a single list consisting of the given sequence of
part identifiers, while ignoring the types:

[r0040; b0034; b0040; b0015]
2.2.2. Part variables and properties. We can increase the
level of abstraction of the program by using variables and
properties for expressing that any parts will do, as long
as the protein coding region codes for the protein tetR
and the promoter is negatively regulated by tetR:
J. R. Soc. Interface (2009)
The angle brackets!O delimit one ormore properties
and upper-case identifiers such as X1 represent variables
(undetermined part names or species). Compiling this
program produces exactly the same result as before, only

this time the compiler does the work offinding the specific
parts required based on the information stored in the
parts database. The compiler may in general produce
several results. For example, we can replace the fixed
species name tetR with a new variable, thus resulting in
a program expressing any transcription unit behaving
as a negative feedback device:

This time the compiler produces four devices, one of
them being the tetR device from above. When variables
are used only once, as is the case for X1, X2, X3 and X4
above, their names are of no significance and we will use
the wild card _ instead. When there is no risk of
ambiguity, we may omit the wild card altogether and
write the above program more concisely as follows:

2.2.3. Parametrized modules. Parametrized modules are
used to add a further level of abstraction to the language.
Modules that act as positive or negative gates, or which
constitutively express a protein, can be written as follows,
where i denotes input and o denotes output:
module tl(o) {
rbs; pcr!codes(o)O; ter

};
module gatePos(i, o) {
prom!pos(i)O; tl(o)

};
module gateNeg(i, o) {
prom!neg(i)O; tl(o)

};
module gateCon(o) {
r0051:prom; tl(o)

};



Table 5. Reactions in the GEC language with their
corresponding graphical representation.
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The module keyword is followed by the name of the
module, a list of formal parameters and the body of
the module enclosed in brackets {}. For the constitutive
expressionmodule, we arbitrarily fix a promoter.Modules
can be invoked simply by naming them together with a
list of actual parameters, as in the case of the tl module
above. These gate modules allow subsequent examples to
abstract away from the level of individual parts. The
remaining examples in this paper will also use dual-
output counterparts of some of these modules, for
producing two proteins rather than one:

module tl2(o1, o2) {
rbs; pcr!codes(o1)O;
rbs; pcr!codes(o2)O; ter

};
module gateCon2(o1, o2) {
r0051:prom; tl2(o1, o2)

};

Note that these modules result in devices that express
polycistronic mRNA. A corresponding graphical rep-
resentation can also be defined for modules, but we omit
the details here. For the remaining examples in the
paper, the graphical representation will therefore be
obtained by expanding the module definitions and
by appropriately substituting module bodies for
module invocations.
2.2.4. Compartments and reactions. The GEC language
also allows the use of compartments which represent the
location of the parts, such as a particular cell type. In
addition, the language allows reactions to be represented
as additional constraints on parts. Table 5 summarizes
the reactions available in the language, together with
their corresponding graphical representation. The formal
syntax and semantics of the GEC language are presented
in more detail in §3.
2.3. Case study: the repressilator

Our first case study considers the repressilator circuit of
Elowitz & Leibler (2000), which consists of three genes
negatively regulating each other. The first gene in the
circuit expresses some protein A, which represses
the second gene; the second gene expresses some protein
B, which represses the third gene; and the third gene
expresses some protein C, which represses the first gene,
thus closing the feedback loop. Using our standard
gate modules, the repressilator can be written in GEC
as follows:

gateNeg(C,A);gateNeg(A,B);gateNeg(B,C)

The expanded form of this program is shown in
figure 2, together with the corresponding graphical
representation. Compiling the repressilator program
produces 24possibledevices.Oneof these is the following:

[r0051, b0034, c0040, b0015, r0040, b0034,
c0080, b0015, i0500, b0034, c0051, b0015]
J. R. Soc. Interface (2009)
To see why 24 devices have been generated, an
inspection of the databases reveals that there are four
promoter/repressor pairs that can be used in the
translation of the program: r0011/c0012, r0040/
c0040, r0051/c0051 and i0500/c0080. It follows
that there are four choices for the first promoter in the
target device, three choices for the second promoter and
two remaining choices for the third promoter. There is
only one ribosome binding site and one terminator
registered in the parts database, and hence there are
indeed 4$3$2Z24 possible target devices.

Our above reasoning reflects an important assump-
tion about the semantics of the language: distinct
variables must take distinct values. If we allowed, for
example, A and B to represent the same protein, we
would get self-inhibiting gates as part of a device and
these would certainly prevent the desired behaviour.
This assumption seems to be justified in most cases,
although it is easy to change the semantics of the
language and compiler on a per-application basis, to
allow variables to take identical values. We also note
that variables range over atomic species rather than
complexes, so any promoters that are regulated by
dimmers, for example, would not be chosen when
compiling the repressilator program.

In the face of multiple possible devices, the question of
which device to choose naturally arises. This is where
simulation and model refinement become relevant.
Figure 3a shows the result of simulating the reactions
associated with the above device, which can be found
in the electronic supplementary material. We observe
that the expected oscillations are not obtained. By
further inspection, we discover the failure to be caused
by a very low rate of transcription factor unbinding for
the promoter i0500: once a transcription factor (araC)
is bound, the promoter is likely to remain repressed.

Appropriate ranges for quantitative parameters in
which oscillations do occur can be found through
further simulations or parameter scans as in Blossey
et al. (2008). We can then refine the repressilator
program by imposing these ranges as quantitative
constraints. This can be done by redefining the
negative gate module as follows, leaving the body of
the repressilator unmodified:



A B C

Figure 2. The expanded repressilator program and its
corresponding graphical representation.
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Figure 3. Stochastic simulation plots of two repressilator
devices. (a) The device using clR (red solid lines), tetR (blue
dashed lines) and araC (green dotted lines) is defective due to
the low rate of unbinding between araC and its promoter, while
(b) the device using clR (red solid lines), tetR (blue dashed
lines) and lacI (green dotted lines) behaves as expected.
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Figure 4. The expanded quantitative repressilator program
(with quantitative constraints omitted) and the correspond-
ing graphical representation. The quantitative constraints
given in the main text restrict rates to a given range, placing
further constraints on the parts that can be chosen from
the database.
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module gateNeg(i, o) {
new RB. new RUB. new RTB.
new RT. new R. new RD.

prom!con(RT), neg(i, RB, RUB, RTB)O;
rbs!rate(R)O;
pcr!codes(o,RD)O; ter j
0.9!RB j RB!1.1 j
0.4!RUB j RUB!0.6 j
0.05!RT j RT!0.15 j
RTB!0.01 j
0.05!R j R!0.15

};

The first two lines use the new operator to ensure that
variables are globally fresh. This means that variables of
the same name, but under different scopes of the new
operator, are considered semantically distinct. This is
important in the repressilator example because the
gateNegmodule is instantiated three times, and we do
not necessarily require that the binding rate RB is the
same for all three instances. A sequence of part types
with properties then follows, this time with rates given
by variables, as shown in figure 4. Finally, constraints on
these rate variables are composed using the constraint
composition operator j. With this module replacing the
non-quantitative gate module defined previously, com-
pilation of the repressilator now results in the six devices
without the promoter araC, rather than the 24 from
before. One of these is the repressilator device contained
in the MIT parts database under the identifier I5610:

[r0040, b0034, c0051, b0015, r0051, b0034,
c0012, b0015, r0011, b0034, c0040, b0015]

Simulation of the associated reactions now yields the
expected oscillations, as shown in figure 3b. Observe
also how modularity allows localized parts of a program
to be refined without rewriting the entire program.
2.4. Case study: the predator–prey system

Our second case study, an Escherichia coli predator–
prey system (Balagaddé et al. 2008) shown in figure 5,
represents one of the largest synthetic systems
implemented to date. It is based on two quorum-sensing
systems, one enabling predator cells to induce
expression of a death gene in the prey cells, and the
other enabling prey cells to inhibit expression of a death
gene in the predator. In the predator, Q1a is constitu-
tively expressed and synthesizes H1, which diffuses to
the prey where it dimerizes with the constitutively
J. R. Soc. Interface (2009)
expressed Q1b. This dimer in turn induces expression of
the death protein ccdB. Symmetrically, the prey
constitutively expresses Q2a for synthesizing H2,
which diffuses to the predator where it dimerizes with
the constitutively expressed Q2b. Instead of inducing
cell death, this dimer induces expression of an antidote
A, which interferes with the constitutively expressed
death protein.

Note how we have left the details of the quorum-
sensing system and antidote unspecified by using
variables (upper case names) for the species involved.
Only the death protein is specified explicitly (using a
lower case name). A GEC program implementing the
logic of figure 5 can be written as follows:
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module predator() {
gateCon2(Q2b, Q1a) j
Q1aw/H1;
Q2bCH24Q2bKH2 j
gatePos(Q2bKH2, A);
gateCon(ccdB) j
Aw ccdB/ j
ccdBw Q1a �/{10.0} j
H1 �/{10.0} j H2 �/{10.0}

};
module prey() {
gatePos(H1KQ1b, ccdB) j
H1CQ1b4H1KQ1b;

Q2aw/H2 j
gateCon2(Q2a, Q1b) j
ccdBwQ2a �/{10.0} j
J. R. Soc. Interface (2009)
H1 �/{10.0} j H2 �/{10.0}
};
module transport() {
c1[H1]/H1 j H1/c2[H1] j
c2[H2]/H2 j H2/c1[H2]

};
c1[predator()]kc2[prey()] k transport()

The predator and prey are programmed in two
separate modules that reflect our informal description
of the system, and a third module links the predator and
prey by defining transport reactions. Several additional
language constructs are exhibited by this program.
Reactions are composed with each other and with the
standard gate modules through the constraint compo-
sition operator, which is also used for quantitative
constraints. Reactions have no effect on the geometrical
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structure of the compiled program since they do not add
any parts to the system, but they restrict the possible
choices of proteins and hence of parts. Reversible
reactions are an abbreviation for the composition
of two reactions. For example, Q2bCH24Q2bKH2
is an abbreviation for Q2bCH2/Q2bKH2 j Q2bK
H2/Q2bCH2. The last two lines of the predator and
prey modules specify reactions that are used for
simulation only and do not impose any constraints,
indicated by the star preceding the reaction arrows. The
second to last line is a simple approach to modelling cell
death, and we return to this when discussing
simulations shortly. The last line consists of degradation
reactions for H1 and H2; since these are not the result of
gene expression, the associated degradation reactions
are not deduced automatically by the compiler.

The transport module defines transport reactions in
and out of two compartments, c1 and c2, representing,
respectively, the predator and prey cell boundaries. The
choice of compartment names is not important for
compilation to parts, but it is important in simulations
where a distinction must be made between the popu-
lations of the same species in different compartments.

The main body of the program invokes the three
modules, while putting the predator and prey inside
their respective compartments using the compartment
operator. The modules are composed using the parallel
composition operator. In contrast to the sequential
composition operator which intuitively concatenates
the part sequences of its operands, the parallel
composition intuitively results in the union of the part
sequences of its operands. This is useful when devices
are implemented on different plasmids, or even in
different cells as in this example. The expanded
predator–prey program is shown in figure 5.

Compiling the program results in four devices, each
consisting of two lists of parts that implement
the predator and prey, respectively. One device is
shown below.

[r0051, b0034, c0062, b0034, c0078, b0015,
runknown2, b0034, cunknown5, b0015,
r0051, b0034, cunknown3, b0015]

[runknown2, b0034, cunknown3, b0015,
r0051, b0034, c0061, b0034, c0079, b0015]

By inspection of the database, we establish that
the compiler has found luxR/lasI/m3OC12HSL and
lasR/luxI/m3OC6HSL for implementing the quorum-
sensing components in the respective cells and ccdA2 for
the antidote, and that it has found a unique promoter
runknown2, which is used both for regulating
expression of ccdA2 in the predator and for regulat-
ing expression of ccdB in the prey. The fact that the
two instances of this one promoter are located in different
compartments now plays a crucial role: without the
compartment boundaries, undesired crosstalk would
arise between lasR-m3OC12HSL and the promoter
runknown2 in the predator, and between luxR-
m3OC6HSL and the promoter runknown2 in the prey.
Indeed, if we remove the compartments from the
program, the compiler will detect this crosstalk and
report that no devices could be found. This illustrates
Soc. InterfaceJ. R. (2009)
another important assumption about the semantics of
the language: a part may be used only if its ‘implicit’
properties do not contain species which are present in the
same compartment as the part. By implicit properties,
we mean the properties of a part that are not explicitly
specified in the program. In our example, the part
runknown2 in the predator has the implicit property
that it is positively regulated by lasR-m3OC12HSL.
Hence the part may not be used in a compartment
in which lasR-m3OC12HSL is present. The use of
compartments in our example ensures that this condition
of crosstalk avoidance is met.

The reactions associated with the above device are
shown in the electronic supplementary material.
Simulation results, in which the populations of the killer
protein ccdB in the predator and prey are plotted, are
shown in figure 6a. We observe that the killer protein
in the predator remains expressed, hence blocking the
synthesis of H1 through the simulation-only reaction,
and preventing expression of killer protein in the prey.
This constant level of killer protein in the predator is
explained by the low rate at which the antidote protein
ccdA2 used in this particular device degrades ccdB,
and by the high degradation rate of ccdA2. The second
of the four devices is identical to the device above,
except that the more effective antidote ccdA is
expressed using cunknown4 instead of cunknown5:

[r0051, b0034, c0062, b0034, c0078,
b0015, runknown2, b0034, cunknown4,
b0015, r0051, b0034, cunknown3, b0015]

[runknown2, b0034, cunknown3, b0015,
r0051,b0034,c0061,b0034,c0079,b0015]

The simulation results of the reactions associated
with this device are shown in figure 6b. The two
remaining devices are symmetric to the ones shown
above in the sense that the same two quorum-sensing



Table 6. The abstract syntax of GEC, in terms of programs P,
constraints C and reactions R, where the symbol « is used to
denote alternatives. (Programs consist of part sequences,
modules, compartments and constraints, together with
localized variables. The definition is recursive, in that a
large program can be made up of smaller programs.
Constraints consist of reactions and parameter ranges.)

P ::Z u:t(Qt ) part u of type t with properties Qt

« 0 empty program

« pð~uÞfP1g;P2 definition of module p with
formals ~u

« pð ~AÞ invocation of module p with

actuals ~A
« P j C constraint C associated to

program P
« P1sP2 parallel composition of P1 and P2

« P1 ; P2 sequential composition of
P1 and P2

« c[P ] compartment c containing
program P

« new x .P local variable x inside program P
C ::Z R reaction

« T transport reaction
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systems are used, but they are swapped around such
that the predator produces m3OC6HSL rather than
m3OC12HSL, and vice versa for the prey.

We stress that the simulation results obtained for the
predator–prey system do not reproduce the published
results. One reason is that we are plotting the levels of
killer proteins in a single predator and a single prey cell
rather than cell populations, in order to simplify the
simulations. Another reason is that the published
results are based on a reduced ordinary differential
equation model, and the parameters for the full model
are not readily available. Our simplified model is
nevertheless sufficient to illustrate the approach, and
can be further refined to include additional details of the
experimental set-up. We note a number of additional
simplifying omissions in our model: expression of the
quorum-sensing proteins in the prey, and of the killer
protein in the predator, are IPTG induced in the
original model; activated luxR (i.e. in complex with
m3OC6HSL) dimerizes before acting as a transcription
factor; and the antidote mechanism is more compli-
cated than mere degradation (Afif et al. 2001).
« K numerical constraint
« C1jC2 conjunction of C1

and C2

R ::Z S w P
mi$Sj

/r
P

mi$Sj

reactants Si, products Sj

T ::Z S /r c[S ] transport of S into compartment c
« c[S ] /r S transport of S out of

compartment c
K ::Z E1 O E2 expression E1 greater than E2

E ::Z r real number or variable
« E15E2 arithmetic operation 5 on E1

and E2

A ::Z r real number or variable
3. METHODS

In this section, we give a formal definition of GEC in
terms of its syntax and semantics. The definition is
largely independent of the concrete choice of part types
and properties, except for the translation to reactions,
which relies on the part types and properties described
in the previous section. Here, we focus on the
translation to parts, which we consider to be the main
novelty, and the translation to reactions is defined
formally in the electronic supplementary material.
« S species
3.1. The syntax of GEC

3.1.1. The abstract syntax of GEC. We assume fixed
sets of primitive species names Ns, part identifiers Np

and variables X. We assume that x2X represents
variables, n2Np represents part identifiers and u2U
represents species, parts and variables, where
UbNsgNpgX . A type system would be needed to
ensure the proper, context-dependent use of u, but this
is a standard technical issue that we omit here. The set
of complex species is given by the set S of multisets over
NsgX and is ranged over by S; multisets (i.e. sets that
may contain multiple copies of each element) are used
in order to allow for homomultimers.

A fixed set T of part types t is also assumed together
with a set Qt of possible part properties for each type
t2T. We define Qbgt2TQt and let Qt=Qt range
over finite sets of properties of type t. In the case
studies, properties are terms over SgR where R is the
set of real numbers, but the specific structure of
properties is not important from a language perspec-
tive; all we require is that functions FV : Q1X and
FS : Q1S are given for obtaining the variables and
species of properties, respectively, and we assume
these functions to be extended to other program
constructs in the standard way.

Finally, c ranges over a given set of compartments,
p ranges over a given set of program (module)
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identifiers, m ranges over the natural numbers N, r
ranges over RgX and 5 ranges over an appropriate
set of arithmetic operators. The abstract syntax of GEC
is then given by the grammar in table 6. The tilde
symbol ð$~Þ in the grammar is used to denote lists, and
the sum (

P
) formally represents multisets.
3.1.2. Derived forms. Some language constructs are not
represented explicitly in the grammar of table 6, but can
easily be defined in terms of the basic abstract syntax.
Reversible reactions are defined as the parallel compo-
sition of two reactions, each representing one of the
directions. We use the underscore (_) as a wild card
to mean that any name can be used in its place.
This wild card can be encoded using variables and
the new operator; for example, we define _ : tðQtÞb
new x:ðx : tðQtÞÞ. In the specific case of basic part
programs, we will often omit the wild card, i.e.
tðQtÞb_ : tðQtÞ. We also allow constraints to be
composed to the left of programs and define C jPbPjC .
3.1.3. The concrete syntax of GEC. The examples of
GEC programs given in this paper are written in a
concrete syntax understood by the implemented parser.
The main difference compared to the abstract syntax is
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that variables are represented by upper case identifiers
and names are represented by lower case identifiers.
Complex species are represented by lists separated by
the (K) symbol in the concrete syntax, and the fact
that complex species are multisets in the abstract
syntax reflects that this operator is commutative (i.e.
ordering is not significant). Similar considerations
apply to the sum operator in reactions. We also assume
some standard precedence rules, in particular that (;)
binds tighter than (k), and allow the use of parentheses
to override these standard rules if necessary.
3.2. The semantics of GEC

We first illustrate the semantics of GEC informally
through a small example, which exhibits characteristics
from the predator–prey case study, and then turn to the
formal presentation.
3.2.1. A small example. The translation uses the notion
of context-sensitive substitutions (q,r,s,t) to represent
solutions to the constraints of a program, where q is a
mapping from variable names to primitive species
names, part names or numbers; r is a set of variables
that must remain distinct after the mapping is applied;
s and t are, respectively, the species names that have
been used in the current context and the species names
that are excluded for use. This information is necessary
in order to ensure piecewise injectivity over compart-
ment boundaries, together with crosstalk avoidance, as
mentioned in the case studies. The translation also uses
the notion of device templates. These are sets containing
lists over part names and variables, and a context-
sensitive substitution can be applied to a device
template in order to obtain a final concrete device.
Consider the following example:

(X1:prom!pos(H1-Q1b)O; X2:rbs) k
(Y2:prom!pos(Q2b-H2)O; Y2:rbs)

The translation first processes the two sequential
compositions in isolation, and then the parallel
composition.

(i) Observe that the database only lists a single
promoter part that is positively regulated by a
dimer, namely runknown2. The first sequential
composition gives rise to the device template
{[X1,X2]} and two context-sensitive sub-
stitutions, one for each possible choice of
transcription factors listed in the database for
this promoter part. These are (q1,r1,s1,t1) and
ðq01; r01; s0

1; t
0
1Þ where

—q1Z{(X11runknown2),(X21b0034),
(H11m3OC12HSL),(Q1b1lasR)}.

— r1Z{H1,Q1b}.
— s1Z{m3OC12HSLKlasR}.
— t1Z{m3OC6HSLKluxR}.
— q01Z{(X11runknown2),(X21b0034),
(H11m3OC6HSL),(Q1b1luxR)}.

— r01Z{H1,Q1b}.
— s0

1Z{m3OC6HSLKluxR}.
— t01Z{m3OC12HSLKlasR}.
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Note that t1Z{m3OC6HSLKluxR}, since
the complex m3OC6HSLKluxR is in the proper-
ties of runknown2, but has not been mentioned
explicitly in the program under the correspond-
ing substitution q1. Therefore, this complex
should not be used anywhere in the same
compartment as runknown2, in order to pre-
vent unwanted interference between parts.
Similar ideas apply to t01.

(ii) The second sequential composition produces
equivalent results, namely the device template
{[Y1,Y2]} and two context-sensitive sub-
stitutions, one for each possible choice of
transcription factors in the database for
the promoter part. These are (q2,r2,s2,t2) and
ðq02; r02; s0

2; t
0
2Þ where

— q2Z{(Y11runknown2),(Y21b0034),
(H21m3OC12HSL),(Q2b1lasR)}.

— r2Z{H2,Q2b}.
— s2Z{m3OC12HSLKlasR}.
— t2Z{m3OC6HSLKluxR}.
—q02Z{(Y11runknown2),(Y21b0034),

(H21m3OC6HSL),(Q2b1luxR)}.
— r02Z{H2,Q2b}.
— s0

2Z{m3OC6HSLKluxR}.
— t02Z{m3OC12HSLKlasR}.

(iii) The parallel composition can nowbe evaluated by
taking the union of device templates from
the two components, resulting in {[X1,X2],
[Y1,Y2]}. However, none of the context-
sensitive substitutions are compatible. We can
combine neither q1 and q2, nor q

0
1 and q02, because

the union of these is not injective on the
corresponding domains determined by r1gr2
and r01gr02, respectively. And we can combine
neither q1 and q02, nor q01 and q2, because the
corresponding used species and exclusive species
overlap. This can be overcome by placing each
parallel component inside a compartmentas in the
predator–prey case study. The compartment
operator simply disregards the injective domain
variables, the used names and the exclusive
names of its operands, after which all the four
combinations of substitutions mentioned above
would be valid. In this example, all four
resulting substitutions map the part variables
to the same part names, and hence only
the single device {[runknown2,b0034],
[runknown2,b0034]} results.
3.2.2. Formal definition. Transport reactions contain
explicit compartment names that are important
for simulation, but only the logical property that
transport is possible is captured in the parts database.
We therefore define the operator ($)Y on transport
reactions to ignore compartment names, where
ðS/c½S 0�ÞYb S/ ½S 0� and ðc½S�/S 0ÞYb½S�/S 0.
The meaning of a program is then given relative to
global databases Kb and Kr of parts and reactions,
respectively. For the formal treatment, we assume
these to be given by two finite sets of ground terms:



Languages for genetic engineering M. Pedersen and A. Phillips S447
Kb=fn : tðQtÞ j FVðQtÞZ 0/g and

Kr =fR j FVðRÞZ 0/ggfTY j FVðTÞZ 0/g:

In the following, we use Dom(q) and Im(q) to denote,
respectively, the domain and image of a function q. We
then define CS to be the set of context-sensitive
substitutions (q,r,s,t), where

(i) q : X-NsgNpgR is a finite, partial function
(the substitution).

(ii) r=X is a set of variables over which q is
injective, i.e. c x1; x2 2 r: ðx1sx2Þ0ðqðx1Þ
sqðx2ÞÞ.

(iii) s; t=S are, respectively, the species names that
have been used in the current context and the
species names that are excluded for use, and
shtZ0/.

Context-sensitive substitutions represent solutions
to constraints. They also capture the information
necessary to ensure piecewise injectivity over compart-
ment boundaries, together with crosstalk avoidance, as
mentioned in the case studies and in the earlier
example. We define the composition of two sets of
context-sensitive substitutions as follows:

fðqi; ri; si; tiÞgI�ofðq0j ; r0j ; s0
j ; t

0
jÞgJb

fðqigq0j ; rigr0j ; sigs0
j ; tigt0jÞgI!JhCS:

Informally, the composition consists of all possible
pairwise unions of the operands that satisfy the
conditions of context-sensitive substitutions. This
means in particular that the resulting substitutions
are indeed functions, they are injective over the
relevant interval and they originate from pairs of
context-sensitive substitutions, for which the used
names in one are disjoint from the excluded names in
the other. So in practice, if two sets of context-sensitive
substitutions represent the solutions to the constraints
of two programs, their composition represents the
solutions to the constraints of the composite program
(e.g. the parallel or sequential compositions). From now
on, we omit the indices I and J from indexed sets when
they are understood from the context.

The target semantic objects of the translation we
wish to define on programs are pairs (D,Q) of device
templates D=U �, i.e. sets of lists over variables and
names, and sets Q=CS of context-sensitive sub-
stitutions. The intuition is that each context-sensitive
substitution in Q satisfies the constraints given
implicitly by a program, and can be applied to the
device template to obtain the final, concrete device. We
write Doms(q) for the subset of the domain of qmapping
to species names, i.e. DomsðqÞbfx j qðxÞ2Nsg, and we
write Ims(q) for the species names in the image of q, i.e.
ImsðqÞbImðqÞhNs. The denotational semantics of
GEC is then given by a partial function of the form
EPFZðD;QÞ, which maps a program P to a set D of
device templates and a set Q of substitutions. It is
defined inductively on programs with selected cases
shown below; the full definition, which includes a
treatment of modules and module environments, is
given in the electronic supplementary material.
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(i) Eu : tðQtÞFbðfðuÞg;QÞ, where

QZ fðqi; ri; si;FSðQiÞ n siÞ j
uqi : tðQiÞ2Kb;Q

t
qi4Qi;

DomðqiÞZFVðu : tðQtÞÞ;
ri ZDomsðqiÞ; si ZFSðQt

qiÞg:
(ii) EPjCFbðD;Q1�o

Q2Þ, where
ðD;Q1ÞZ EPF and Q2 Z ECF:

(iii) EP1kP2FbðD1gD2;Q1�o

Q2Þ, where
ðD1;Q1ÞZ EP1F and ðD2;Q2ÞZ EP2F:

(iv) EP1;P2Fbðfd1id2jgI!J ;Q1�o

Q2Þ, where
ðfd1igI ;Q1ÞZ EP1F and ðfd2jgJ ;Q2ÞZ EP2F:

(v) Ec½P�FbðD; fðq; 0/; 0/; 0/Þ j ðq; r; s; tÞ2QgÞ,where
ðD;QÞZ EPF:
(vi) ERFbfðqi;DomsðqiÞ;FSðRqiÞ; 0/Þ j

Rqi 2Kr ;DomðqiÞZFVðRÞg.

In the first case, the denotational function results
in a single sequence consisting of one part. The
associated substitutions represent the possible
solutions to the constraint that the part with the
given properties must be in the database. The
substitutions are required to be defined exactly on
the variables mentioned in the program and to be
injective over these. The excluded names are those
which are associated with the part in the database,
but not stated explicitly in the program.

The case (ii) for a program with constraints produces
the part sequences associated with the semantics for the
program, since the constraints do not give rise to any
parts; the resulting substitutions arise from the
composition of the substitutions for the program and
for the constraints. The case (iii) for parallel compo-
sition produces all the part sequences resulting from the
first component together with all the part sequences
resulting from the second component, i.e. the union of
two sets, and the usual composition of substitutions.
The case (iv) for sequential composition differs only in
the Cartesian product of part sequences instead of the
union, i.e. we get all the sequences resulting from
concatenating any sequence from the first program with
any sequence from the second program.

The case (v) for compartments simply produces the
part sequences from the contained program together
with the substitutions, except that it ‘forgets’ about the
injective domain, used names and restricted names.
Hence subsequent compositions of the compartment
program with other programs will not be restricted in
the use of names, reflecting the intuition that crosstalk
is not a concern across compartment boundaries, as
illustrated in the predator–prey case study. The last
case for reactions follows the same idea as the first case
for parts, except that the reaction database is used
instead of the parts database. Observe finally that
the semantics is compositional in the sense that the
meaning of a composite program is defined in terms of
the meaning of its components.
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3.2.3. Properties of the semantics. Recall the require-
ments for the translation alluded to in the case studies.
The first requirement is piecewise injectivity of
substitutions over compartments: distinct species vari-
ables within the same compartment must take distinct
values. The second requirement is non-interference: a
part may be used only if its implicit properties do not
contain species that are present in the same compart-
ment as the part. These requirements are formalized in
propositions 3.1 and 3.2.We use contexts C(,) to denote
any program with a hole, and C(P) to denote the
context with the (capture-free) substitution of the hole
for P. The free program identifiers of P, defined in a
standard manner with program definitions as binding
constructs, are denoted by FP(P).

Proposition 3.1 (piecewise injectivity). For any
context Cð,Þ and any compartment-free program P
with FP(P)Z0/, ECðPÞFZDfðqi; ri; si; tiÞg, it holds that
qi is injective on the domain FV(P)hDoms(qi).

Proposition 3.2 (non-interference). For any basic
program PZu : tðQtÞ and any compartment-free
context Cð,Þ with ECðPÞFZDfðqi; ri; si; tiÞg, it holds
that uqi : tðQÞ2Kb for some Q and sihðFSðQÞn
FSðQtqiÞÞZ0/.

Proofs are by induction and can be found in the
electronic supplementary material.
3.3. Implementation

A parser for recognizing the syntax of GEC programs
has been implemented using the parser generator tools
of the F# programming language. A corresponding
translator, also implemented in F#, conceptually
follows the given denotational semantics (Pedersen &
Phillips 2009). The translator generates constraints
rather than substitutions and subsequently invokes the
ECLiPSe Prolog engine (Apt & Wallace 2007) for
solving these constraints. We have presented the
denotational semantics in terms of substitutions for
the sake of clarity, but the corresponding constraints
are implicit and can be extracted by inspection. The
translator also generates reactions by directly taking
the reactions contained in programs after substituting
formal for actual parameters, and by extracting
reactions from the relevant parts as indicated earlier.
4. DISCUSSION

The databases used for the case studies have been
created with the minimal amount of information
necessary to convey the main ideas of our approach.
An immediate obstacle therefore arises in the practical
application of GEC to novel problems: the databases
needed for translation of general programs do not yet
exist, partly because the necessary information has not
yet been formalized on a large scale. In spite of this, we
believe that GEC does contribute important steps
towards the ultimate dream of compilable high-level
languages for synthetic biology. In the following, we
outline these contributions and proceed to discuss
future directions for developing the language.
J. R. Soc. Interface (2009)
4.1. Contributions

To our knowledge, GEC is the first formal language
that allows synthetic systems to be described at the
logical level of interactions between potentially unde-
termined proteins and genes, while affording a trans-
lation to sequences of genetic parts and to reactions. As
such, it provides a concrete basis for discussing the
design of future languages for synthetic biology. In
particular, we have introduced the elementary notions
of parts with properties and constraints, and a set of
operators with natural interpretations in the context of
synthetic biology. We have also shown how parame-
trized modules can be used to abstract away from the
layer of parts, and how modules in general can be used
to program systems in a structured manner. The
question of whether distinct variables should be allowed
to take identical values has been raised, and we have
shown how undesired crosstalk between parts in the
same compartment can be detected and avoided by the
compiler. These concepts have been defined formally
and validated in practice through case studies and the
implementation of a compiler.

The parts database, in spite of being incomplete,
points towards the logical properties that must be
formally associated with parts if languages and
compilers of the kind presented in this paper are to be
used in practice. For example, promoters should be
associated with details of positive and negative
regulation, and protein coding regions should be
associated with a unique identifier of the protein they
code for. These observations may contribute to the
efforts of part standardization, which so far seem to
have focused on biological, rather than logical, proper-
ties of parts.

An important benefit of representing systems in a
formal language is that their meaning is precisely and
unambiguously defined. This benefit also applies to
synthetic biology, where informal diagrams of protein
and gene networks are often difficult for outsiders to
interpret. In this respect, GEC can be used as a formal
representation of novel systems, and databases can be
constructed on a per-application or per-organism basis,
thus serving to formally capture the assumptions of a
given project. Furthermore, the notion of a reaction
database, which is perhaps the largest practical hurdle,
can be completely omitted by prefixing reaction arrows
with a star (�) in programs, effectively tagging them as
simulation only in which case they will not be used in
constraint generation. Such an approach may be
relevant in educational contexts, e.g. the International
Genetically Engineered Machine competition, where
students may benefit from gaining an understanding of
formal languages.
4.2. Challenges and future directions

Thereactiondatabasehasbeendesignedwith simplicity in
mind, by recording potential enzymes, reactants and
products for each reaction. The transport reactions also
capturenotionsof compartmentboundaries.But reactions
may generally be represented on multiple levels of detail,
such as the lower level of binding domains and
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modification sites that is common when modelling
signalling pathways. This in turn could tie in with the
use of protein domain part types, which are already
present to some extent in the Registry of Standard
Biological Parts. An important and non-trivial future
challenge is therefore to address this question of
representation.

For any given representation, however, logic program-
ming can be used to design further levels of deductive
reasoning. A simple example would be the notion of
indirect regulation, such as a promoter that is indirectly
positively regulated by s, which would have the property
ipos(s), if either (i) it has thepropertypos(s)or (ii) it
has the property neg(s0) and there is a reaction sC
s0 / sKs0. A deductive approach to the analysis of
genes, implemented using theorem proving in the tool
BioDeductiva, is discussed in Shrager et al. (2007). This
approach is likely to also work with biochemical
reactions, in which case linking the compiler to this tool
may be of interest. However, the challenge of formalizing
the data representation and deductive layers in this
framework remains.

With additional deductive power also comes
increased computational complexity. Our current
Prolog-based approach is unlikely to scale with
increasing numbers of variables in programs, partly
because the search for solutions is exhaustive and
unguided, and also because the order in which
constraints are tested is arbitrarily chosen as the
order in which they occur in the GEC programs. Future
work should seek to ameliorate these problems through
the use of dedicated constraint logic-programming
techniques, which we anticipate can be added as
extensions to our current approach by using the
facilities of the ECLiPSe environment.

More work is also needed to increase the likelihood
that devices generated by the compiler do in fact work
in practice, for example by taking into account
compatibility between parts and compatibility with
target cells. Quantitative constraints are another
important means to this end, and we have indicated
how mass action rate constants can be added to parts.
While such a representation is simple, it does not
account for the notion of fluxes, measured for example
in polymerases per second or ribosomes per second and
used for instance in Marchisio & Stelling (2008). But
imposing meaningful constraints on fluxes, which are
expressed as first-order derivatives of real functions, is
not an easy task and remains an important future
challenge. The related issue of accommodating coop-
eratively regulated promoters, such as those described
in Buchler et al. (2003), Hermsen et al. (2006) and Cox
et al. (2007), also remains to be addressed.

Another issue that needs to be considered is the
potential impact of circuits on the host physiology, such
as the metabolic burden that can be caused by circuit
activation. This is an important issue in the design of
synthetic gene circuits, as discussed for example in
Andrianantoandro et al. (2006) and Marguet et al.
(2007). One way to account for this impact is to include
an explicit model of host physiology when generating
the reactions of a given GEC program for simulation.
For instance, the degradation machinery of a host cell
J. R. Soc. Interface (2009)
could be modelled as a finite species, and protein
degradation could be modelled as an interaction with
this species, rather than as a simple delay. As the
number of proteins increases, the degradation
machinery would then become overloaded and the
effects would be observed in the simulations. More
refined models of host physiology could also be included
by refining the corresponding part properties
accordingly.

On a practical note, much can be done to improve the
prototype implementation of the compiler, including for
example better support for error reporting. Indeed, it is
possible towrite syntacticallywell-formed programs that
are not semantically meaningful, e.g. by using a complex
species where a part identifier is expected. Such errors
should be handled through a type system, but this is a
standard idea which has therefore not been the focus of
the present work. Neither have the efforts of the
GenoCAD tool been duplicated, so the compiler will not
refuse programs that do not adhere to the structure set
forth by the GenoCAD language. We do, however, show
in the electronic supplementary material how the
GenoCAD language can be integrated into our frame-
work in a compositional manner. Finally, practical
applications will require extensions of the current
minimal databases, which may lead to additional part
types or properties.

The authors would like to thank Gordon Plotkin for useful
discussions.
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