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Modelling and simulation are becoming essential for new fields such as synthetic biology.
Perhaps the most important aspect of modelling is to follow a clear design methodology that
will help to highlight unwanted deficiencies. The use of tools designed to aid the modelling
process can be of benefit in many situations. In this paper, the modelling approach called
systemic computation (SC) is introduced. SC is an interaction-based language, which
enables individual-based expression and modelling of biological systems, and the
interactions between them. SC permits a precise description of a hypothetical mechanism
to be written using an intuitive graph-based or a calculus-based notation. The same
description can then be directly run as a simulation, merging the hypothetical mechanism
and the simulation into the same entity. However, even when using well-designed modelling
tools to produce good models, the best model is not always the most accurate one.
Frequently, computational constraints or lack of data make it infeasible to model an aspect
of biology. Simplification may provide one way forward, but with inevitable consequences of
decreased accuracy. Instead of attempting to replace an element with a simpler
approximation, it is sometimes possible to substitute the element with a different but
functionally similar component. In the second part of this paper, this modelling approach is
described and its advantages are summarized using an exemplar: the fractal protein model.
Finally, the paper ends with a discussion of good biological modelling practice by presenting
lessons learned from the use of SC and the fractal protein model.
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1. UNDERSTANDING MODELLING AND
SIMULATION

Computer formalisms, simulations and models are
becoming increasingly important tools for the natural
sciences. In computer science, entire fields now exist
that are based purely on the tenets of simulation and
modelling of biological processes (e.g. computational
neuroscience: Holmes et al. 2008; artificial life: Bullock
et al. 2008; computational biology: Wren et al. 2008).
In the developing fields of synthetic biology, DNA
computing and living technology, computer modelling
plays a vital role in the design, testing and evaluation of
almost every stage of the research1 (e.g. Blain et al.
2004; Rudge & Haseloff 2005; Dupuy et al. 2007). It is
thus perhaps surprising that very little consideration is
given to the process of modelling and simulation itself
(Webb 2001). Out of necessity, all models must be
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abstractions from reality. Thus, all models are wrong in
some respect by design (or more commonly, by
accident). But how should these abstractions be
designed? How wrong is your model?

In this paper, we focus on models and simulations
that aim to represent and explain the internal workings
of a biological system. Figure 1 illustrates a typical view
of the simulation process (based on Webb 2001). We
typically begin with a biological system under consider-
ation, which exists in the world and has an observable
behaviour. Next, some hypothetical mechanism2 is
developed from a source, from which a predicted
behaviour is hypothesized. In some cases, it may be
possible to theorize the hypothetical mechanism
directly from the biological system or the biological
system from the hypothetical mechanism. Likewise, it
may be possible to compare the predicted behaviour
with the biological behaviour and refute (or provide
doi:10.1098/rsif.2008.0505.focus
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2Note that the terminology for the stages illustrated in the figure is
varied. It is common for Webb’s ‘hypothetical mechanism’ to be
termed a model, but it is also common for the simulation to be called a
model. There are no clear or agreed definitions, so this work uses
Webb’s terminology where possible.

This journal is q 2009 The Royal Society1

http://www.ecltech.org/publications.html


Figure 2. Example of an actual simulation design adapted from Webb’s (2001) framework.

Figure 1. The simulation process, adapted from fig. 1 of Webb (2001).
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supporting evidence for) the hypothetical mechanism
and predicted behaviour directly. However, in many
cases, this is not possible due to the lack of data or
practical constraints in testing. The solution is to use
some form of technology to create a simulation or model
that represents or encapsulates the hypothetical
mechanism, i.e. we produce a simulation of the biological
system according to how we think it works. The
simulation uses technology to produce some behaviours
and enables fast production of data. Significantly for
this paper, the quality of the simulation is assessed by
comparing how its behaviour matches the predicted
behaviour (does it behave in the way we believe the
biological system behaves) and how well it represents
the hypothetical mechanism (does it model the workings
of the biological system in the way we believe the
biological system works).

Webb’s framework can be illustrated through a
simple example (figure 2). The biological system under
consideration might be ‘the evolution of protein and
gene interactions of eukaryotes’, with the behaviour of
interest being ‘how evolution is able to form useful gene
regulatory networks’ (GRNs). When attempting to
create the hypothetical mechanism, the source might be
from a completely different field, for example the
mathematics of complex systems. The hypothetical
mechanism might then be ‘natural selection of non-
linear interactions with specific properties between
proteins and between genes and proteins’, which
implies a predicted behaviour that ‘evolution is
better able to design useful GRNs given the hypo-
thetical mechanism’. In this example, gathering data
on long-term evolutionary trends on GRNs of differing
R. Soc.J. Interface (2009)
complexities in eukaryotes is not feasible. Thus, we
might use a computer to simulate the evolution of
GRNs using a genetic algorithm (GA) and model
protein shapes using fractals (we return to this example
later in the paper).

The justification for simulation is simple. Following
Webb’s framework again (figure 1), if we propose a
mechanism by which we believe a biological system
works, and create a simulation which properly rep-
resents that mechanism, then comparing (which may
require interpretation) predicted behaviour with
simulated behaviour can provide evidence that our
hypothesis may have some merit. If we also compare
the predicted behaviour with actual behaviour of the
biological system, we have further evidence that our
hypothetical mechanism may be plausible. Chan &
Tidwell (1993) concisely summarize this process: we
theorize that a system is of type T, and construct an
analogous system to T, to see whether it behaves
similar to the target system.

But, if we propose a mechanism by which we believe
a biological system works, and the simulation mis-
represents that mechanism, then no useful evidence
can be gained by comparing simulated behaviour
with predicted behaviour. Or to use the terminology
of Chan & Tidwell (1993): if we theorize that a system
is of type T, and construct a system that behaves
as we predict T behaves, but is not analogous to T, then
we have no useful evidence, despite the apparent
matching behaviours.

The same pitfall arises if we construct a hypothetical
mechanism that appears to have the same predicted
behaviour as the biological system, but the theorizing is
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Figure 3. Adapted from the figure of Xinshu et al. (2005).
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flawed. The evidence of matching behaviours is of little
help if the biological system actually generates its
behaviours through entirely different means to those
theorized. (It may look like a duck and quack like a
duck—but it may not be a duck at all.)

These pitfalls form the main stumbling blocks of
analysis and simulation of biological systems.3 Experi-
ence suggests that it is astonishingly common for
hypothetical mechanisms and simulations to be created
that appear to match biological behaviours and
predicted behaviours very well according to numerical
analysis. They do so because they have been designed to
do so, and not because their internal workings and
mechanisms resemble the actual biological system.

Given sufficient experimentation to gather the data
of all behaviours (including those not specified in the
design of the hypothetical mechanisms and
simulations), these pitfalls can in theory be avoided.
In practice, time and monetary constraints prevent
comprehensive testing, so all comparisons are always
performed using partial, incomplete and often very
noisy data. Our only recourse in such situations is thus
also to examine the process of hypothetical mechanism
creation, and simulation creation.

When assessing the quality and validity of a
simulation, one established approach is to use formal
mathematical methods to prove that the simulation is
exactly as defined in the hypothetical mechanism. (For
example, pi-calculus and other process algebras enable
such proofs (Milner 1993, 2005).) The advantage of the
approach is that there can be no doubt that the
representation is accurate and correct. The disadvan-
tage is that the hypothetical mechanism and simulation
typically become unwieldy, unintuitive and difficult for
those unfamiliar with such calculi to interpret. There
are also practical limits on the complexity of models
that can be simulated in this way.

The problem of model creation is hardly new,
however. The control systems engineering community
is largely responsible for developing and advancing the
field of system identification, where the goal is to build
models that describe how the behaviour of a system
relates to external influences (inputs to the system).
Their initial contributions began shortly after the
establishment of modern control theory in the 1960s.
At present, the field is very mature and several
comprehensive textbooks on the subject matter exist
(Juang 1993; Nelles 2000). The system identification
method is an iterative process consisting of three basic
steps: (i) data generation, (ii) model determination, and
(iii) model validation (figure 3). Model estimation can
be compared with Webb’s hypothetical mechanism. If
the model is not validated, then steps (i) and/or (ii) are
adjusted and the ensuing steps are repeated until
successful model validation is achieved. A priori
knowledge is injected into this process wherever
possible (Xinshu et al. 2005).

Many researchers attempt to improve the method-
ology of modelling, for example the framework of
3Interested readers should consult Webb (2001) for a comprehensive
review of this topic.
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Stepney et al. (2005). But given the difficulties
involved, it is perhaps not surprising that the process
of modelling and simulation is filled with ambiguity and
disagreement. Models are always wrong, but when
models are created and techniques applied using
questionable methodologies, it is not always clear how
they are wrong. Is the hypothetical mechanism
incorrect? (i.e. have we misunderstood the biology?)
Is the simulation invalid? (i.e. are we truly simulating
the hypothetical mechanism or are we just using
software to create the results we are hoping to see?)

In an attempt to simplify the many layers of analysis
and simulation favoured by some, recent work intro-
duced by the author (Bentley 2007) takes an alternative
approach. Instead of using one language and/or
representation to define the hypothetical mechanism
and another for the simulation, with additional proofs
and checking required to prove their equivalence, this
work proposes a single biological modelling language to
express both. Using this approach, the biological
system can be analysed and a hypothetical mechanism
developed. The same mechanism can then be run as a
simulation, using the simulation behaviour as the
predicted behaviour. With this approach, all that
remains is theorizing (is the model right?) and
comparing (does the model behave correctly?; figure 4).
2. OVERVIEW OF SYSTEMIC COMPUTATION

‘Systemics’ is a world view where traditional reduc-
tionist approaches are supplemented by holistic,
system-level analysis. Instead of relying on a notion of
compartmentalizing a natural system into components,
analysing each in isolation and then attempting to fit
the pieces into a larger jigsaw, a systemic approach
would recognize that each component may be intri-
cately entwined with the other components and would
attempt to analyse the interplay between components
and their environment at many different levels of
abstractions (Eriksson 1997). For example, a reduc-
tionist analysis of the immune system might reach very
specific conclusions about the effect of certain stimuli
on certain cells (e.g. freezing of cells in culture, which



Figure 4. Systemic computation (SC) is designed to provide a language with which to describe the hypothetical mechanisms
behind biology. SC is also a Turing complete computer, so any model described using SC can be run as a program, turning it into
a simulation with its systemic behaviour.

Figure 5. Two systems interacting (colliding, in this example).
The systems have properties of size, shape, composition,
position and velocity, some or all of which will be transformed
as a result of the interaction. The transformation is dependent
on the context in which the interaction takes place; here the
context includes gravity, friction, elasticity, inertia, tempera-
ture and space–time. Within a different context, the
interaction will have a different resultant transformation.

4Where ‘shape’ means distinguishing properties and attributes and
may encompass anything from morphology to spatial position.
5Akin to dynamic bigraph links [a].
6Akin to the views of Varela (Varela et al. 1974; McMullin & Varela
1997).
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causes necrosis). A systemic approach might recognize
that the real immune system would never encounter
such stimuli in isolation (cold temperatures cause many
important physiological effects in the body, which
would change the environment of the cells), and thus
the results may be inaccurate or irrelevant.

‘Systemic computation’ (SC) is a method of compu-
tation proposed in Bentley (2007), which uses the
systemics world view and incorporates a series of
important attributes of natural computation, including:
stochasticity, asynchrony, parallelism, homeostasis,
open-endedness, distribution, approximate, embodied
and circular causality (Bentley 2007). The method
builds upon many existing concepts such as object-
oriented programming, flow diagrams, graph-based
notations and previous models of computation, but is
biased towards the representation of natural and
biological features. Instead of the traditional centralized
view of computation, here all computation is distrib-
uted. There is no separation of data and code, or
functionality into memory, arithmetic logic unit (ALU)
and input/output, as is traditional in contemporary
computer architectures. Everything in SC is composed
of systems, which may not be destroyed, but may
transform each other through their interactions, akin to
collision-based computing (Adamatzky 2002). Two
systems interact in the context of a third system,
which defines the result of their interaction. This is
intended tomirror all conceivable natural processes, e.g.

—molecular interactions (twomolecules interact accor-
ding to their shape, within a specific molecular and
physical environment),
Soc. InterfaceJ. R. (2009)
—cellular interactions (intercellular communication
and physical forces imposed between two cells occur
in the context of a specific cellular environment), and

— individual interactions (evolution relies on two
individuals interacting at the right time and context,
both to create offspring and to cause selection
pressure through death).

Systems have some form of ‘shape’4 that determines
which other systems they can interact with and the
nature of that interaction. The shape of a contextual
system affects the result of the interaction between
systems in its context. Figure 5 illustrates this concept:
the resultant transformation of two interacting systems
is dependent on the context in which that interaction
takes place. A different context will produce a different
transformation. Since everything in SC is a system,
context must be defined by a system.

In order to represent these notions computationally,
the notions of schemata and transformation functions
are used. The shape of a system in this model is the
combination of schemata and function, so specific
regions of that shape determine the meaning and effect
of the system when behaving as a context or inter-
acting. Thus, each system comprises three elements:
two schemata that define the possible systems that may
interact in the context of the current system5 and the
transformation function, which defines how the two
interacting systems will be transformed (figure 6a).
This behaviour enables more realistic modelling of
natural processes, where all behaviour emerges through
the interaction and transformation of components in a
given context (figure 6b).6 It incorporates the idea
of circular causality (e.g. ‘A’ may affect ‘B’ and
simultaneously ‘B’ may affect ‘A’) instead of the linear
causality inherent in traditional computation
(Wheeler & Clark 1999). Such ideas are vital for
accurate computational models of biology and yet
currently are largely ignored. Circular causality is the
norm for biological systems. For example, consider two
plants growing next to each other, the leaves of each
affecting the growth of the leaves of the other at the
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Figure 6. Systemic computing relies on the concept of a system to perform all computation. (In this figure, label ‘s’ represents any
unspecified system, ‘sn’ represents a specific system n and ‘sn

1’ represents a change to the specific system n.) (a) A system
comprises three elements: two schemata and a transformation function. Systems may be defined in memory as strings; they are
graphically depicted as a circle surrounding the transformation function, with two ‘cups’ or receptors representing the two
schemata. The two schemata of a system define which other systems may match and hence be affected by this system. (b) The
transformation function of a system defines how two schemata-matching systems are changed when they interact with each other
in the context of this system; arrows indicate transformed systems at time tC1. (c) A system may be pushed inside the scope of a
second system through an interaction with it. (d ) A system within the scope of a larger system may be pushed outside that scope
through an interaction with another system. (e) Computation occurs by transforming input from the environment into systems,
which interact with ‘organism’ systems (equivalent to software or hardware) and potentially each other to produce new systems
that provide output by stimulating or altering the environment. Most computation requires more structured systems enabling
the equivalent of modules, subroutines, recursion and looping. Most or all systems may be active and capable of enabling
interactions. ( f ) Note the similarity between a typical SC with the structure of biological systems such as the cell.
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same time; in the interaction of any two systems, there
is always some effect to both systems.

SC also exploits the concept of scope. In all inter-
acting systems in the natural world, interactions have a
limited range or scope, beyond which two systems can
no longer interact (for example, binding forces of atoms,
chemical gradients of proteins, physical distance
between physically interacting individuals). In cellular
automata, this is defined by a fixed number of
neighbours for each cell. Here, the idea is made more
flexible and realistic by enabling the scope of
interactions to be defined andaltered by another system.

As figure 6c,d illustrates, interactions between two
systems may result in one system being placed within
the scope of another (akin to the pino membrane
computing operation; Cardelli 2005), or being removed
from the scope of another (akin to the exo membrane
computing operation; Cardelli 2005). So just as two
systems interact according to (in the context of ) a third
system, so their ability to interact is defined by the
scope they are all in (defined by a fourth system). Scope
is designed to be indefinitely recursive, so systems may
contain systems containing systems and so on. Scopes
may overlap or have fuzzy boundaries; any systems can
J. R. Soc. Interface (2009)
be wholly or partially contained within the scopes of
any other systems. Scope also makes this form
of computation tractable by reducing the number of
interactions possible between systems to those in
the same scope.

Figure 6e illustrates an idealized view of a
computation using this approach. The environment
(or problem or user) affects the overall system by
modifying a series of systems. These are transformed by
the program (a previously defined pool of systems) that
then affects the environment through transducers. The
separation into layers is shown purely for clarity—in
reality, most SC forms a complex interwoven structure
made from systems that affect and are affected by their
environment. This resembles a molecule, a cell, an
organism or a population, depending on the level of
abstraction used in the model. Figure 6f shows a more
realistic organization of a SC, showing the use of
structure enabled by scopes.

In summary, SC makes the following assertions:

— everything is a system,
— systems cannot be created or destroyed, only

transformed,



mainmain
c1

c1

c1

c1

A2

A2

print print

main

print

main

print

A1

A1

A1

A2
A3

A3

– e – e

– e

– e

– e

–e

0

0

0

10

–e

c2

c2
c2

c2

A4

A4

-

A3

A4

(A
1-A

2)

(A
3-A

4)

-

(a) (b)

(c) (d )

*

Figure 7. SC calculation of PRINT((A1-A2)�(A3-A4)). As with all SC calculations, interactions occur randomly and
asynchronously where permitted by scopes and contexts. The example also demonstrates that SC makes no difference between
function and value: the data making up a system may behave as either depending on whether they are interacting or behaving
as a context for an interaction. In this figure, the transformation functions of context systems and the results of the
transformed systems are written within each system. (a) The initial systems prior to calculation. (b) Systems transformed by
subtract–escape function ‘Ke’ that subtracts and ejects the result system one level outward, leaving behind the remnant
system with a value of zero (executed fragments shown in bold): PRINT((A1-A2)�(A3-A4)). (c) Systems transformed by
multiply function producing a system containing the result of the calculation and a remnant containing the value of one, prior
to activation of PRINT function which prints the result of the calculation: PRINT((A1-A2)�(A3-A4)). (d ) The same
calculation can be performed in different ways, for example, a more compact, functionally equivalent arrangement of systems,
sharing the subtract–escape function.
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— systems may comprise or share other nested
systems,

— systems interact, and interaction between systems
may cause transformation of those systems, where
the nature of that transformation is determined by
a contextual system,

— all systems can potentially act as context and affect
the interactions of other systems, and all systems
can potentially interact in some context,

— the transformation of systems is constrained by the
scope of systems, and systems may have partial
membership within the scope of a system, and

— computation is transformation.

Although SC is designed for biological modelling, it
can be used to perform ordinary calculations similar to
a conventional computer. Figure 7a–c illustrates the
progression of a simple program that performs the
nested parallel calculation: PRINT((A1-A2)�(A3-A4)).
J. R. Soc. Interface (2009)
Note that the subexpression (A1-A2) is performed
correctly (instead of A2-A1) because the schemata of
the ‘subtract’ system must match the correct systems
for the function to be carried out. Figure 7d illustrates
the same calculation defined using overlapping scopes
to reduce the total number of systems required.
(Note that unlike traditional computer approaches, a
systemic computer does not add or remove items from
memory. Instead, it begins with every system it can
support and enables all to interact and be transformed
where appropriate. Adding or removing memory or
hardware would simply have the effect of adding or
removing resources, i.e. systems that are exploited
automatically.) Figure 8 illustrates two working models
implemented in SC.

SC is designed to be written using an intuitive graph-
based notation to ease the process of analysis and
modelling. It can also be expressed using a calculus
notation (see table 1 for details of SC expressions).



synapse

synapse

axon

axon

axon

axon

membrane

membrane

membrane

soma

soma

soma

dendrites

dendrites

dendrites

synapse

synapse

synapse

food
universe

organism
(dead)

cell

(dead)
adhesion
surface

adhesion
surface

adhesion
surface

(dead)
danger
signal

danger
signal

growth
cell

absorb

food

cell

expel
waste

see
zoom

cell

expel

waste

cell
recycle

waste
recycle

waste

cell
zoom

time

decay

split
adhesion
surface

synapse
axon

(a) (b)
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3. MAKING MODELLING MORE INTUITIVE

While mathematicians and computer scientists may
enjoy calculus-based representations, it is apparent
that many biologists do not. Any modelling and
simulation approach must consider the needs of its
users in addition to the needs of rigorous and sound
hypothesis generation and simulation. SC attempts to
satisfy these needs and requirements (tables 2 and 3).

SC is unique, not only because it defines an
unconventional (non-Von Neumann) computer archi-
tecture, but because it has biases designed to aid in the
modelling of natural systems. One such important
feature of SC is the incorporation of the law of
conservation. In physics, we can informally state ‘the
law of conservation’: energy cannot be created or
destroyed, it can only be changed from one form to
another or transferred from one body to another, the
total amount of energy remaining constant (Hiebert
1962).7 In SC this is stated as: systems cannot be
created or destroyed, only transformed. It is a funda-
mental modelling constraint not seen in other modelling
or computational approaches. It provides straightfor-
ward ‘sanity checking’ of models of natural systems—if
the design of a model cannot be implemented in SC
because it would require a system to be created or
destroyed, then the model is wrong. Practical experi-
ence quickly demonstrates how often this constraint is
helpful in producing models that obey the laws of
physics—which is surely the most fundamental require-
ment of any model.

For example, in most traditional models of
evolution, the death of an organism might result in a
system being destroyed and the creation of a new child
might involve the creation of a system. In SC (as in
reality), the death of an organism simply transforms its
state into non-living—its substance still exists and
therefore must be dealt with through some form of
recycling mechanism (such as an ecosystem). In SC, the
7This is more properly stated using the laws of thermodynamics, but
although the correct use of SC results in these laws being followed,
they are considered beyond the scope of this paper.
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creation of a new organism requires the modeller to
consider where the substance comprising that organism
came from, leading to notions of growth, feeding,
nutrients, appropriate movement of nutrients and
environment. The repercussions are fascinating—for
example, the model of the growing organism shown in
figure 8b required food systems to provide the systems
needed for growth and metabolism, which were then
processed internally, resulting in a turnover of new cells
and waste. The waste systems could not be destroyed,
so they were recycled in the environment and (even-
tually) turned back into food again. Perhaps surpris-
ingly, SC thus requires ecologically sound models in
order to function properly; otherwise, models may
become clogged with waste systems and run out of new
systems to process.

While these constraints may be inconvenient for the
modeller, they are a fundamental part of our universe
and comprise a significant raison d’être for life and why
it functions in the way it does. Thus, the simple
requirement in SC for transformation (instead of
magically appearing or disappearing out of existence
like a cartoon) is an important constraint to force the
modeller to create more realistic models.

It is hard to prove that any approach is ‘easier to use’
compared with another, or indeed that one methodology
is ‘better’ than another. For example, few would argue
against the premise that the programming language
Prolog is ideally suited for logic-based computations
(Bratko 2000), but proving this language is easier or
better than another may not be possible. Nevertheless,
comparisons can enable more informed judgements.

SC is not the only method capable of expressing
biological systems using a graph notation and a
calculus. Methods such as stochastic pi-calculus pro-
vide an alternative way of expressing biological
processes formally. However, the origins of pi-calculus
lie in computer science and communications theory
(Milner 1993, 2005), where concepts such as ‘channels
of communication’ are very important—evident from
the non-intuitive method of expressing the interaction
and transformation of entities.



H() = new e@10.0 (!share(e); H_Bound(e))
H_Bound(e) = !e; H()
Cl() = ?share(e); Cl_Bound(e)
Cl_Bound(e) = ?e; Cl()

Figure 9. Graphical representation of pi-calculus model and
the corresponding notation of binding model HCCl4HCl
(adapted from Phillips & Cardelli 2004). It is not obvious that
H and Cl become bound to each other, despite this being the
purpose of the model.
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For example, the molecular binding model HC
Cl4HCl shows the difference in clarity of expression
very clearly. Figure 9 shows the extremely simple
stochastic pi-calculus model (hypothetical mechanism)
used by Phillips & Cardelli (2004) to introduce and
teach stochastic pi-calculus. Atom H donates its
electron, which is shared between H and Cl. Cl then
loses an electron and H gains it to break the bond. But
despite its simplicity, the model is confusing. The use of
non-intuitive symbols makes reading the graph nota-
tion and the calculus a challenge. Even worse, in the
model, binding of H and Cl is never explicit—they are
never actually linked in the model, simply transformed
from H to H_Bound and Cl to Cl_Bound. It is also
unclear at what level of abstraction this model uses as it
contains both atoms (which comprise electrons, neu-
trons and protons) and one electron. This combination
of non-intuitive notation (what does ‘?’ and ‘!’ mean?),
confusion of bindings (which atom is bound to which?)
and a confusion of abstractions (are atoms being
modelled or electrons, protons and neutrons?) results
in a partial and somewhat cryptic model.

By contrast, when using SC, we have no need for
such complications; instead we can remain at one level
of abstraction—the atom. We do not need to model
individual electrons for such a simple model of binding.
All we need to do is to ensure the scopes of each atom
overlap. The result in SC graph form (figure 10) looks
similar to a familiar representation of the molecular
model for HCl (figure 11), making the model remark-
ably intuitive and simple to understand. But most
significantly, the SC version includes the cause of the
binding—energy. The whole reaction between the two
atoms is impossible without sufficient energy—a detail
that is necessary to include in SC (the interaction
between the atoms must occur in some context) but
can be and has been ignored in pi-calculus, resulting
in an incomplete model. In addition, while ease of
understanding is always a subjective measure, a
comparison between figure 9 (duplicated from a tutorial
on how to teach pi-calculus, by Phillips & Cardelli
(2004)) and the same model (hypothetical mechanism)
implemented in SC in figure 10 shows clear evidence
that SC is more descriptive and representative of
reality and uses simpler calculus notation.
J. R. Soc. Interface (2009)
Both SC and pi-calculus enable multiple atoms and
bindings to be modelled by the addition of parameters.
But SC permits the modelling of this process in more
detail by revealing the deeper systems (protons,
neutrons and electrons) hidden within the H and Cl
systems without changing the overall structure of the
model. It should thus be evident that by designing SC
explicitly for natural and biological computations, real
advantages of clarity can be obtained compared with
other modelling approaches.

One of the advantages of SC is that it encourages
modellers to understand and investigate the systems
they are modelling. If a ‘context system’ has a complex
function, then it may well abstract the behaviours of
several underlying systems (e.g. in this example model,
the ‘energy context’ must comprise sufficient ionization
energy to push an electron outside the potential barrier
of one atom and into another—and the specific amount
of energy depends on how many other electrons and
neutrons are present). This might lead to a further
development of the model (hypothetical mechanism),
incorporating the shell theory (figure 12).

One final advantage of SC is that it is more than a
language. It defines a parallel, stochastic computer that
is designed to behave in a manner more akin to
biological systems compared with conventional com-
puters (Bentley 2007; Le Martelot et al. 2007b).
This means that when a systemic computer is being
used to model a biological system with fault tolerance
and self-repair, these biological features are enabled
without the brittle nature of conventional computers
and operating systems causing difficulties (Le Martleot
et al. 2008a). (Previous work has demonstrated that
while conventional computers modelling evolutionary
developmental systems may enable the systems to
recover from 1 per cent damage, a systemic computer
modelling evolutionary developmental systems can
recover from over 33 per cent damage. The difference
was caused by conventional operating systems failing in
the former case (Bentley 2005; LeMartelot et al. 2008b).)
4. DELIBERATELY INCORRECT MODELLING:
THE USE OF SUBSTITUTION

SC is designed to aid modellers and improve their ability
to determine an appropriate level of abstraction for their
models. But whether SC is used or not, abstraction is a
vital notion when modelling. Which elements should be
accurately represented, which should be approximated
by a simpler component or which should be ignored
altogether? The rule of thumb, ‘model the elements that
have the most effect and simplify or ignore everything
else’, is often our only option.

However, there are times when we wish to model an
important element with some precision, but are
prevented from doing so because of the extreme
computational demands. In such cases, modellers
often choose approximation, resulting in a model with
decreased accuracy and disappointing predictive capa-
bilities. However, there are other ways to design
models. Instead of attempting to replace an element
with a simpler approximation, it is sometimes possible



Table 1. SC calculus.

concept SC calculus notation

system identifier string

system with internal variable. (Every part of all
systems is potentially variable, including parts used
for data, schemata and context functions, so all
systems may be written as string[x1,x2,., xi],
where i corresponds to the total number of
information blocks of the system. However,
normally only the variable of interest is written.)

string[x]

system2 partially inside the scope of system1, to
degree of n. When nZ1, system2 is fully within the
scope of system1 and ‘s:n’ may be omitted,
reverting to simpler notation. When nZ0, system2
is not within the scope of system1 and systems
should be written without parentheses. Probability
of interaction between systems is dependent on the
degree of membership of systems in the same super
system. By default, all systems are fully within
their own scopes, i.e. systemx(systemx)s:1 for all x

system1(system2)s:n

when nZ1, use simpler notation
system1(system2)s:15system1(system2)

when nZ0, use simpler notation
system1(system2)s:05system1 system2

when both system1 is a member of system2 to degree
n1 and system2 is a member of system1 to degree
n2: (system1()s:n1system2)s:n2

when n1Z0 and n2Z0
(system1()s:0system2)s:05(system1()system2)

interacting triplet of system1, system2, context where
all three systems are within the same super-scope.
All interactions are asynchronous and may occur in
parallel with each othera

system1 }-context-{ system2

interacting triplet of system1, system2, context where
system2 and context are inside system1. (Assumes
system1 is also fully within its own scope. In the
special case where system1(system1)s:n and n!1
this interaction is less likely, or when nZ0, it is not
possible.) All interactions are asynchronous and
may occur in parallel with each other

system1(system2) }}-context

‘absorb to (further) degree of m’ interaction rule system1 }-absorbs:m-{ system2/system1(system2)s:m
or

system1(system2)s:n }}-absorbs:m/ system1(system2)s:nCm

‘expel to degree of m’ interaction rule system1(system2)s:n }}-expels:m/ system1(system2)s:nKm

general rule, where system1 and system2 are
transformed according to some function or algo-
rithm. (The transformation may also include
absorb or expel operations.)

system1 }-context-{ system2/system11 system21
or

system1(system2) }}-context/system11(system21)

general rule, where system1 and system2 variables are
transformed according to some function f. (The
transformation may also include absorb or expel
operations.)

system1[x] }-context[ f(x,y)]-{ system2[y]/
system1[x1] system2[y1]

or
system1[x] }-context[x,y]-{ system2[y]/

system1[x1] system2[y1]

generalized rules, where # indicates ‘any system’ or
‘any variable’, ‘j’ represents ‘or’ and ‘result’ is two
transformed systems

system1(#) }}-context/result
#(system2) }}-context/result
system1 }-context-{ #/result

system11 j system12 j system13}-context-{ system2/result

generalized rule, where j indicates ‘or’ (probability of
outcome determined by transformation function)
and ‘interaction’ is the interacting triplet of
system1, system2 and context systems

interaction/system1(system2) j system1 system2 j
system2(system1)

aNote that the same context may be used for any number of pairs of simultaneously interacting systems without conflict as
context systems are never changed during the interaction. Conflicts between pairs of interacting systems are not permitted,
i.e. system1 }-context1-{ system2 and system1 }-context2-{system3 is not permitted to occur in parallel. (This is based on the
assumption that any interacting triplet can be reduced to two sequential interacting pairs.) All other forms of parallelism
are unconstrained.
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Table 2. Any language or method to be used for hypothetical mechanism development must have specific features to be valuable
for the researcher.

needs for hypothetical mechanism development matching systemic computation features

be as flexible as possible, to enable complex processes and
systems to be defined

SC is a Turing complete computer in its own right (Bentley
2007) and so can simulate all existing computations,
software and existing modelsa

ease biologically plausible models, but discourage unna-
tural or physically implausible models

SC deliberately biases the modeller away from physically
impossible models by incorporating
conservation of energy, and a requirement for contexts
for all interactions, but eases biological modelling by
enabling features such as encapsulation, scope, circular
causality, parallelism, asynchrony and interaction

enable compact and appropriate descriptions that comprise
elements that clearly correlate with and correspond to
the elements of the biological system being modelled

SC analysis involves the identification of systems, their
interactions and their mutual relationships with each
other; experience indicates that the most ‘natural
implementations’ tend to be those in which systems
correlate well to real physical elements (Le Martelot
et al. 2007b)

be readable, both in notational and graphical forms SC has an intuitive graph-based notation, and a calculus
notation that resembles the graph-based notation,
making it potentially easier to learn compared with other
approaches

enable useful methods of analysis (e.g. formal proofs) of the
system being modelled

SC may be analysed formally in the same way as has been
achieved using pi-calculus

encourage theorizers to produce hypothetical mechanisms
based on the analysis of the natural system and not based
on notational ease (or difficulty) of expression

SC is designed to improve models and increase their
fidelity, i.e. it makes ‘hacks’ and ‘programmer’s tricks’
harder to implement and appropriate descriptions easier

aAs discussed in Bentley (2007), the notion of Turing completeness is not very useful when viewed in the context of biological
modelling—it is perhaps irrelevant whether a human brain is Turing complete or not. However, the notion is relevant in
computer science, for it tells us that SC is compatible with all existing computers and simulations. SC may be slow and
inefficient at performing conventional serial computations, but it can perform them all; and it is fast and efficient at
performing parallel, stochastic computations.

Table 3. Any simulation package or language to be used for simulation development must have specific features to be valuable for
the researcher.

needs for simulation development systemic computation features

be computationally inexpensive SC is a parallel computer. Previous work simulated parallelism using a virtual
machine (Le Martelot et al. 2007b). Work to create a grid-based SC parallel
computer capable of running over any network of computers is underway

enable abstraction at any level of
detail

SC forces the modeller explicitly to think about abstraction as they choose what
each individual system should model; there are no limits (except those imposed
by finite memory of computers) on the level of abstraction or detail that can be
supported

enable automated analysis (e.g.
statistical, visualization) of the
system being simulated

recent research has created a series of visualizers for systemic computation
models, allowing information flow, structure and interactions within models to
be analysed in detail

enable the hypothetical mechanism
under investigation to be exactly
simulated

hypothetical mechanisms can be written using the language of SC, then directly
run as simulations

ease collaboration between related
fields of mathematics, computer
sciences and life sciences and
enable exploitation of shared
knowledge

SC supports bioinspired algorithms (genetic algorithms, neural networks,
artificial immune system, developmental algorithms) in addition to more
specific biological models, enabling the fields of artificial life, biomimetics,
systems biology and computational biology to use the same computational tools
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to substitute the element with a different but function-
ally similar component.

To illustrate this principle, the final part of this paper
provides an example of a model based on substitution—
the fractal GRN (Bentley 2004a). In this work, the focus
J. R. Soc. Interface (2009)
of investigation was on the evolution of GRNs that had
specific patterns of gene activation. Previousmodels that
made use of simplified and often binary gene–protein
interactions (de Garis 1999; Reil 2003; Kumar 2004;
Basanta 2005; Gordon 2005) showed disappointing



H  }-energyf1-{ Cl     --> (H()Cl)
H(Cl) }}-energyf2      --> H Cl
Cl(H) }}-energyf3      --> H Cl

Figure 10. SC graph model and the corresponding notation of
binding model HCCl4HCl. Note that the diagram closely
resembles standard diagrammatic representations of this
chemical process (figure 11) and clearly shows how H and Cl
become bound in a symmetrical way.

H
Cl

Figure 11. Molecular model of HCl (hydrogen chloride).
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evolvability that prevented desirable or complex
solutions from evolving. None of the models attempted
to include the more complex chemical interactions
caused by protein folding and protein interactions.
A hypothesis was formed:
J. R. S
when more complex chemistries are available to
evolution, evolvability is greater,
i.e. the larger the number of possible protein shapes, the
more possible interactions there could be between
proteins, and so the more possible ways for evolution
to enable genes to interact with each other. This
hypothesis was in direct opposition to conventional
wisdom in optimization theory, which suggested that
fewer possible solutions make the search for a desired
solution easier (Goldberg 1989).

It is not possible to test this hypothesis in the wet
laboratory for we cannot easily alter biochemistries and
force life to use ultra-simple chemistries and then
perform thousands of evolutionary experiments. Thus
it is an ideal candidate for computational modelling.
But a hypothesis of this type presents unique problems
for simulation development. Just as it is difficult to
simplify biochemistries of living organisms, it is difficult
to complexify computer models. An evolutionary model
requires millions of individual solutions to be evaluated,
each comprising thousands or millions of protein
interactions even for a small GRN. Since evolution
would be designing new proteins, some way of
calculating how they each interacted would be required.
Modelling protein folding with enough accuracy or
oc. Interface (2009)
speed to allow realistic artificial chemistries to be
embedded in such a simulation is infeasible, even with
the fastest of contemporary computers. But if complex
chemistries cannot be modelled, how can the hypothesis
be tested in simulation?

The solution is substitution. Instead of attempting to
model real protein folding, the concept can be sub-
stituted with a process of complex shape formation taken
from mathematics—fractals. This was the solution used
for the study (Bentley 2004a–c, 2005). A model was
created in which genes were parameters which mapped
to subsets of the Mandelbrot set. Proteins were thus
represented by fractal shapes of infinite complexity, with
the number of possible shapes limited only by the
precision of the computer and the equation of the fractal.
Proteins were permitted to interact according to their
shapes, and with matching fractal cis-sites of genes. This
solution was a computational trick—fractals are fast and
easy to compute—but the result was an infinitely
complex fractal chemistry with many of the same
properties of biochemistry. (For example, fractal
proteins are not random—the self-similarity of fractals
means that some shapes are more common than others;
but there is an infinite number of variations of similar
shapes.) The model does not suggest that biology is
fractal (although some researchers do appear to claim
this; Mitra & Rani 1993); it merely uses substitution to
enable similar properties to be produced more feasibly
and practically than would otherwise be possible.

Currently in this model, there exist the following.

— Fractal proteins, defined as subsets of the Mandel-
brot set. In this work, four categories of proteins are
modelled: those within the cell cytoplasm (cfractal
protein); those used within the cell for cell beha-
vioural and structural purposes (bfractal proteins);
those outside the cell (efractal proteins); and those
that behave as cell receptors to enable transport of
environmental proteins inside the cell (rfractal
proteins). Multiple fractal proteins of the same
type are merged into a fractal compound, whose
shape depends on the fractal shapes of the constitu-
ent fractal proteins.

—Environment, which can contain one or more fractal
proteins (expressed from the environment gene(s)),
and one or more cells.

—Cell, which contains a genome and cytoplasm, and
which has some behaviours.

—Cytoplasm, which can contain one or more fractal
proteins.

—Genome, which comprises structural genes and
regulatory genes. In this work, the structural genes
are divided into different types: cell receptor genes;
environment genes; and behavioural genes.

—Regulatory gene, comprising operator (or promoter)
region that may be activated or suppressed by a
matching cfractal protein compound and coding (or
output) region, which produces a cfractal protein.

—Cell receptor gene, a structural gene with a coding
region which produces an rfractal protein that acts
as a mask, permitting variable portions of the
environmental proteins to enter the corresponding
cell cytoplasm.



Valence_shell[x](electron electron electron electron electron electron electron Lshell[y](electron electron electron electron electron
electron electron electron Kshell[z](electron electron proton1…proton17))

Valence_shell[x](electron proton)

In the correct context one of the electrons of Hydrogen will be pushed (partially) within the Valence_shell of Chlorine and partially
outside the Valence_shell of Hydrogen, forming a bond. The resulting SC expression is a general rule that would work
for any atoms, the function dependent on the characteristics of the two Valence_shell systems as defined by their variables,
and the current and resulting memberships of the electron in the Valence_shell systems:

Valence_shell1[x](electron)s:n }-energy[f(x,y,m,n)]-{ Valence_shell2 [y]() --> Valence_shell1 [x](electron)s:n-m Valence_shell2
[x](electron)s:n+m

Further interactions may occur between the electrons, changing memberships within the two valence_shells. To break the bond
this electron (or an electron with similar memberships of the two valence_shells) may be expelled from the Valence_shell
of Chlorine. (Systemic interactions not shown.)

Figure 12. An overview of the HCl binding model at a lower level of abstraction using SC.
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—Environment gene, a structural gene that determines
which efractal proteins (maternal factors) will be
present in the environment of the cell(s).

—Behavioural gene, a structural gene comprising
operator region and a cellular behaviour region,
which produces bfractal proteins.

Figure 13 illustrates the representation using SC.
Figure 14 provides an overview of the algorithm used to
develop a phenotype from a genotype. Note how most of
the dynamics rely on the interaction of fractal proteins.
Evolution is used to design genes that are expressed into
fractal proteins with specific shapes, which result in
developmental processes with specific dynamics.
Figure 15 illustrates how two fractal proteins can
interact and form a new fractal compound shape,
which has a shape and concentration dependent on the
fractal shape of its constituents. The fractal compound is
formed by merging fractals. Fractal proteins are merged
(for each point sampled) by iterating through the fractal
equation of all proteins in ‘parallel’, and stopping as soon
as the length of any is unbounded (i.e. greater than 2).
Intuitively, this results in black regions being treated as
though they are transparent, and paler regions ‘winning’
over darker regions. Other types of protein have different
effects, e.g. receptors act as masks on environmental
proteins (Bentley 2004a–c). In this way, fractal proteins
interact together forming new compounds that alter the
expression of genes, which produce new fractal proteins,
and so on, in a highly complex fractal chemistry.
J. R. Soc. Interface (2009)
Interested readers can find complete details of the
experiments performed using this model in Bentley
(2004a–c, 2005). In summary, experiments showed that
using this model evolution was able to evolve a series of
GRNs that produced many desired patterns of gene
activation, including sequential counting behaviours
(Bentley 2004a). Surprisingly, however, unlike simpler
models of genes and proteins, in this simulation,
evolution never ceased in its fine-tuning of the solutions.
Even when perfect fitness scores were achieved (patterns
of activation that matched the desired patterns per-
fectly), evolution continued to alter the genes and
corresponding protein shapes to satisfy unspecified
secondary goals of efficiency and robustness to enable
these good solutions to survive further disruption by
evolution. In other words, as an unexpected side effect
of the evolvability of this model, the evolutionary
algorithm that generated fractal GRNs within the
developmental process had a natural tendency towards
the creation of efficient and compact solutions by
reducing the number of genes and proteins employed
within solutions. The same system also had a natural
tendency towards more robust solutions (genetic
canalization), increasing the ability of GRNs to survive
damage from the removal of genes (Bentley 2004b).
This effect was investigated further by using the model
to evolve and develop a computer program, which was
then deliberately damaged to assess its ability to
survive—akin to damaging phenotypes and assessing
viability (Bentley 2005). The program displayed



Fractal development

For every developmental time step:

  For every cell in the embryo:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the  cytoplasm.

Figure 13. Fractal GRN model in SC graph notation, using ‘trans mach’ (transcription machinery) systems to enable the gene–
protein interactions.
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graceful degradation and continued to function
(compared with a human-designed program and an
evolved program not using the fractal protein model,
which failed instantly and fatally at the smallest
corruption; Bentley 2005). The same model has even
been shown to be capable of evolving fractal GRNs of
sufficient complexity to guide a robot through a maze
(Bentley 2004c), while other researchers have also
corroborated the findings by reimplementing the same
model and showing improved evolvability compared
with other approaches (Zahadat & Katebi 2008).

Substituting fractals for an infeasible biologically
accurate model of protein folding and biochemistry is
just one way of investigating a natural phenomenon
through careful simulation design. But care must be
taken to identify the level of abstraction involved, the
systems to be modelled, their interactions and organiz-
ation, before any attempt at substitution is made.
If the concentration level of a protein falls to zero, that protein
does not exist.

Figure 14. The fractal development algorithm written as
conventional pseudocode for clarity. (SC notation can be
provided on request by the author; however, the complexity of
this model means that the description is lengthy and beyond
the scope of this paper.)
5. LESSONS FOR BIOLOGICAL MODELLING

Modelling and simulation is still something of a black
art. While many researchers are trained in experi-
mental design and statistical analysis, the majority of
biology modellers are self-taught because of the
interdisciplinary nature of the work. The result can be
a mixture of mathematical and software models, not
fully understood by biologists and potentially not
incorporating the very concepts they are supposed to
help analyse. While not every researcher may be
J. R. Soc. Interface (2009)
comfortable with using SC or fractal proteins for their
application, lessons learned from the use of these
techniques can be exploited by all those with an
interest in modelling. These are summarized below.



(a) (b) (c)

Figure 15. (a,b) Two fractal proteins and (c) the resulting merged fractal protein compound.
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(a) Identify the scope of your work. Referring back to
figure 1, explicitly identify which biological system
is to be the subject of study and which behaviour is
of relevance. This is often best performed by
examining the availability of data—the more
reliable the data that are available, the better the
model will be. This should not just be data
describing the biological behaviour; it should be
as much data as possible on the nature and
workings of the biological system itself, its
constituents and interactions between them.

(b) Explicitly state your hypothetical mechanism: how
do you believe the biological system is working;
what assumptions are you making; what predic-
tions can you make about the behaviour if your
hypothesis is correct; and are there any behaviours
that, if observed, would disprove your hypothesis?
Again, this should be stated with as much detail as
you can.

(c) Design the simulation (which if using SC you will
be doing as you state your hypothetical mechanism
above). A simple design is often easier and
desirable, but not always better—biology is not
simple and so the simplest models may lack
significant detail. Ensure that you do the following.

(i) Define the level of abstraction and try to
represent everything at that level. If you are
trying to model tumour development, you
may want to model cells and some genes
and proteins—you do not need to model
electron clouds around atoms, or popu-
lations of evolving organisms. Or if you are
modelling an ecology, you may model
populations of organisms and weather
patterns, but you can ignore cells and
proteins. However, do not forget that all
of these features exist in reality and may
form the context that modifies the
interaction of entities at the level of
abstraction you have chosen. The decision
of which level of abstraction to use is often
determined by the amount of data available
and the feasibility of computation.

(ii) Identify the features to be modelled. In SC,
this equates to identifying the systems. So if
modelling tumours: which cells will be
included in the model; which genes; and
which proteins? These may include some
very fundamental features such as the laws
of physics, Brownian motion or reflectance
J. R. Soc. Interface (2009)
of light. The normal rule of thumb is to
include those systems that have the most
effect. But everything not explicitly mod-
elled may still have an effect, so try to state
and justify what is not in the model in
addition to what is in it.

(iii) Identify the organization of the features. In
SC, this corresponds to specifying the
scopes of systems: which systems are able
to affect others and which are not; which
contain subsystems or may subsume or
expel systems in the future; and how are
systems physically arranged in relation to
each other?

(iv) Identify the interaction of the features. In
real life, nothing happens without some
interaction. The most revealing models are
those that produce behaviours because of
the interaction of their constituents, for
such models provide better explanations
for the cause of those behaviours. (For
example, a numerical model that describes
evolutionary dynamics with a single
equation may be very useful, but a model
that describes evolutionary dynamics
through modelling of interacting individ-
uals allows the analysis of how dynamics
correspond to detailed changes in individ-
uals, their number and their interactions.)

(d) Implement the simulation. If any significant
element is excessively computationally expensive,
consider substituting the element with a behaviou-
rally equivalent analogue (e.g. fractals for protein
folding). If the design is still infeasible, change the
level of abstraction and redesign the model. A good
model should be transparent, intuitive and
unambiguous—it should be obvious how it works,
what it represents and thus easily extendible. It
should be straightforward to monitor and should
produce as much data as possible and feasible.

(e) Test the simulation. First, is its representation
appropriate? In SC, does each system correspond
to something real in the biological system (or does
it represent a programmer’s short cut)? Second,
does the simulation behaviour correspond to the
behaviour you hypothesized, and does it corre-
spond to the behaviour of the biological system
under study? If not, check the design and
hypothesis. The aim is not to modify the
simulation iteratively until it behaves as you
wish—the aim is to find a valid hypothesis that
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can be tested by comparing the behaviour of
simulation with reality. For example, a simple
electronic calculator may accurately reproduce the
ability of our brains to perform addition, but while
this aspect of its behaviour may be similar, it
provides no explanation of how our brains work.
A hypothesis that a network of neurons in our
brains can learn to perform addition, tested by a
simulation of a neural network that successfully
adds numbers together, provides a much more
convincing explanation.

(f ) Finally, use the simulation to test the hypothetical
mechanism. Does its behaviour match the
behaviour of the biological system; if you alter
the model in specific ways, can the new behaviour
(a prediction made by the model) be verified by
running new experiments in the biological system;
does the model match new previously unseen
biological data for the system under study; can
the analysis of the inner mechanisms of the model
be used as predictors in the biological system; and
do new findings about the inner mechanisms in the
biological system correspond to the behaviour of
the internal systems in the model?

SC is one approach that has been designed to aid the
modelling process and encourage modellers to follow
the lessons listed above. Future work will continue to
develop this method by creating a fully parallel
systemic computer and releasing the SC language,
compiler and visualizer for general use.
6. SUMMARY

All models are incorrect. The most important aspect of
modelling is to follow a clear design methodology that
will help highlight unwanted deficiencies. Even before
beginning, the modeller should be aware of the
fundamental questions: how will the hypothetical
mechanism be assessed for accuracy; how can the
simulation be checked to guarantee it follows the
hypothetic mechanism; and how are the resulting
behaviours compared which each other, and with
biological reality?

Most ‘artificial life’-based models use combinations
of different algorithmic techniques, from object-
oriented, to process-driven, to iterative rewriting
grammars. There is no coherent methodology available
for correlating these programmer’s tricks with real,
physical biological entities and indeed most modellers
make no attempt to do so (Webb 2001). This results in
opaque and largely unsubstantiated models that rely on
subjective metaphors and wishful thinking to provide
relevance for biology.

There can be no final answers or definitive solutions
to the problem of modelling, just as there can be no
single experimental approach or programming style
that will suit all situations. Nevertheless, the use of
tools designed to aid the modelling process can be of
benefit in many situations. In this paper, the modelling
approach called SC was introduced. SC is an
interaction-based language, which enables individual-
based expression and modelling of biological systems,
J. R. Soc. Interface (2009)
and the interactions between them. SC permits a
precise description of a hypothetical mechanism to be
written using an intuitive graph-based notation or a
calculus-based notation. The same description can then
be directly run as a simulation, merging the hypo-
thetical mechanism and the simulation into the same
entity. In this approach, all that is required is to ask
three questions (repeatedly): do the entities in the
model correspond to clear and measurable entities in
reality; are the entities in the model organized in the
same way compared with their corresponding entities in
reality; and do the interactions and results of
interactions between modelled entities correspond to
the interactions and results of interactions in reality?

Despite our best efforts to produce good models, the
best model is not always the most accurate one.
Frequently, computational constraints or lack of data
make it infeasible to model an aspect of biology.
Simplification may provide one way forward, but with
inevitable consequences of decreased accuracy. Instead
of attempting to replace an element with a simpler
approximation, it is sometimes possible to substitute
the element with a different but functionally similar
component. In the second part of this paper, one such
model was summarized: the fractal protein model and
its advantages were summarized.

As advances in fields such as synthetic biology
continue to be made, the needs for modelling and
simulation become ever greater. It can be argued that
biology is an example of a macroscale nanocomputer,
designed by evolution to exploit behaviours from
subatomic to ecological. If we stand any chance of
exploiting and redesigning biology, new advances in
modelling languages, computers and methodologies are
required. Our models will always be wrong—the trick is
to design them that way on purpose.

Much of the recent work described here (the SC virtual
machine, the SC models shown in figure 8 and described in
tables 2 and 3, and some refinements to the SC notation) was
created by doctoral student Erwan Le Martelot who is
also working to release an open source version of the SC
simulator soon.
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