
J. R. Soc. Interface (2009) 6, S419–S436
*Author for c

One contribut
challenges an

doi:10.1098/rsif.2009.0072.focus
Published online 17 June 2009

Received 25 F
Accepted 13 M
A programming language for
composable DNA circuits

Andrew Phillips* and Luca Cardelli

Microsoft Research, Cambridge CB3 0FB, UK

Recently, a range of information-processing circuits have been implemented in DNA by using
strand displacement as their main computational mechanism. Examples include digital logic
circuits and catalytic signal amplification circuits that function as efficient molecular detec-
tors. As new paradigms for DNA computation emerge, the development of corresponding
languages and tools for these paradigms will help to facilitate the design of DNA circuits
and their automatic compilation to nucleotide sequences. We present a programming
language for designing and simulating DNA circuits in which strand displacement is the
main computational mechanism. The language includes basic elements of sequence domains,
toeholds and branch migration, and assumes that strands do not possess any secondary
structure. The language is used to model and simulate a variety of circuits, including an
entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a
scheme for implementing an arbitrary system of chemical reactions. The language is a
first step towards the design of modelling and simulation tools for DNA strand
displacement, which complements the emergence of novel implementation strategies for
DNA computing.

Keywords: DNA computing; circuits; programming language; compositional
1. INTRODUCTION

Nucleic acids have a number of desirable properties for
engineering artificial biochemical circuits. Their
sequences can be precisely controlled in order to
encode distinct signals while avoiding cross-talk
between molecules, and Watson–Crick base pairing
can be used to engineer interactions between specific
molecules at well-defined rates. Previous efforts in
designing biochemical circuits with DNA have tended
to make use of additional restriction enzymes
(Benenson et al. 2001, 2003), or structural features
such as hairpins within the molecules to perform com-
putation (Sakamoto et al. 2000; Benenson et al. 2004;
Yin et al. 2008). While this allows the implementation
of somewhat ingenious molecular devices (Yurke et al.
2000; Venkataraman et al. 2007), simpler designs
have recently been proposed for the construction
of large-scale, modular circuits. In particular, a range
of information-processing circuits have recently been
implemented in DNA by using strand displacement as
the main chemical process to perform computation.
Examples include various digital logic circuits (Seelig
et al. 2006) together with catalytic signal amplification
circuits that function as efficient molecular detectors
(Zhang et al. 2007). The use of DNA strand displace-
ment to perform computation enables the construction
of simple, fast, modular composable and robust circuits,
as demonstrated in Zhang et al. (2007).
orrespondence (andrew.phillips@microsoft.com).

ion to a Theme Supplement ‘Synthetic biology: history,
d prospects’.

ebruary 2009
ay 2009 S419
A range of modelling approaches have also been
developed for DNA computation (Paun et al. 1998).
One example is sticker systems (Kari et al. 1998;
Paun & Rozenberg 1998), which model the sticking
together of DNA strands. Such operations can effec-
tively model Adleman’s experiment (Adleman 1994),
in which DNA was used to compute a Hamiltonian
path in a graph. Other examples include Watson–
Crick automata, which are the automata counterpart
to sticker systems, insertion–deletion systems, which
contain operations for inserting and deleting DNA
sequences, and splicing systems, which can be physically
implemented with the help of restriction enzymes. A
more recent review of modelling approaches is presented
in Amos (2005), together with their corresponding
physical implementations.

So far, however, DNA strand displacement operations
have only been represented either by informal notations
or by manually constructing a corresponding set of
chemical reactions. Here, we investigate whether strand
displacement can be used as the basis for a DNA pro-
gramming language. The execution rules of the language
correspond to interactions between physical DNA
strands, while the kinetics of these rules correspond to
the underlying kinetics of strand displacement.

We first present an overview of a programming
language for DNA strand displacement, which includes
basic elements of sequence domains, toeholds and
branch migration. We also present an algorithm for auto-
matically generating a set of chemical reactions from a
given set of DNA molecules. We then use our language
to model various practical and theoretical systems,
This journal is q 2009 The Royal Society

mailto:andrew.phillips@microsoft.com

S420 Programming language for composable DNA circuits A. Phillips and L. Cardelli
including an entropy-driven catalytic gate (Zhang et al.
2007), a simple gate motif for synthesizing large-scale cir-
cuits (Qian & Winfree 2008) and a scheme for implement-
ing an arbitrary system of chemical reactions (Soloveichik
et al. 2008). More generally, the algorithm allows a given
circuit design to be repeatedly modified and simulated in
an iterative cycle, until it exhibits the desired behaviour.
Inspired by the work of Yin et al. (2008), in the long
term we envisage a language that can be used to program
a range of DNA molecules, simulate their behaviour and
then automatically generate the corresponding nucleic
acid sequences, ready for synthesis.
2. RESULTS

2.1. A language for DNA strand displacement

2.1.1. Simple examples. We present a language for DNA
strand displacement by means of simple examples,
together with their corresponding graphical
representation. The design of the language is
motivated by the assumptions outlined in Zhang et al.
(2007). Examples of DNA molecules are presented
below, where parallel composition (j) denotes the
presence of multiple molecules next to each other.

The molecule 1 : 2 represents a lower strand of DNA,
where the 30 end of the strand is assumed to be on the
left, as indicated by an arrowhead in the graphical rep-
resentation. The strand is divided into domains, which
correspond to short DNA sequences. The domains are
represented by numbers 1 and 2, where each number
represents a distinct domain. The DNA sequences of
distinct domains are assumed to be sufficiently different
that they do not interfere with each other. The red
domain 1 represents a toehold domain, while the black
domain 2 represents an ordinary specificity domain.
The colour is merely an annotation, since the length
of the domain sequence is sufficient to determine its
type. Toehold domains are very short sequences, gener-
ally between 4 and 10 nucleotides in length, that enable
one DNA strand to bind to another. Since the sequence
is short, the two strands will quickly unbind from each
other in the absence of further interaction along neigh-
bouring domains. The molecule ,1 2. represents an
upper strand of DNA, where the 30 end of the strand
is assumed to be on the right. The strand consists of
two domains that are complementary to domains 1
and 2, where two domains are complementary if their
respective sequences are Watson–Crick complemen-
tary. We denote 1 : 2 as a lower strand and ,1 2.

as an upper strand in order to emphasize the comple-
mentarity between strands. Two complementary
strands 1 : 2 and ,1 2. can hybridize along their
complementary domains to form a double-stranded
molecule [1 2]. A molecule can also consist of multiple
upper strands bound to a single lower strand. For
example, [1 2]:[3 4] consists of upper strands
J. R. Soc. Interface (2009)
,1 2. and ,3 4. bound to a single lower strand
1:2:3:4. There can also be gaps between bound
upper strands, as in the molecule [1 2]:3:[4 5],
where domain 3 of the lower strand is unoccupied.

Bound upper strands can also overhang to the left or
right, as shown below.

The molecule ,1.[2 3],4. consists of an upper
strand ,1 2 3 4. bound to a lower strand 2:3. The
region [2 3] of the molecule is double-stranded, while
,1. and ,4. represent single-stranded regions over-
hanging to the left and right. The molecule
[1],2.:[3] consists of an upper strand ,1 2.

bound to a molecule 1:[3], where the single-stranded
region ,2. is overhanging the double-stranded region
[3]. Multiple overhanging strands can be bound simul-
taneously along different regions, as in the case of the mol-
ecule ,1.[2 3],4.:,5.[6 7],8 . , which
represents two upper strands, ,1 2 3 4. and ,5 6 7
8 . , bound along regions [2 3] and [6 7], respectively.
Notice how the colon is used to separate the two bound
upper strands. In general, the DNA molecules are assumed
to have no additional secondary structure. This can be
achieved by careful selection of appropriate DNA
sequences, as discussed, for example, in Zhang et al. (2007).

We give examples of the main types of interactions
that are possible between DNA molecules in the
strand displacement language. The simplest example
is of one strand binding to another, as shown below.

An upper strand ,1 2. can bind to a molecule
1:[3] on toehold domain 1, and the bound strand
can subsequently unbind. The rates of binding and
unbinding are determined by the sequence of the toe-
hold domain 1 and are given by r1 and r21 which can
be abbreviated to þ1 and 21, respectively.

A given strand can also be displaced by another
strand as a result of binding, as shown below.

Although toehold domains are short enough to
unbind rapidly in the absence of additional specificity
domains, they are still long enough to greatly accelerate
the initiation of strand displacement when additional
specificity domains are present. In the above example,
when the strand ,1 2. becomes bound, it initiates
the displacement of its neighbouring strand by a process
of branch migration. Although this process involves a

Programming language for composable DNA circuits A. Phillips and L. Cardelli S421
random walk of multiple elementary steps, these are
relatively fast at experimental concentrations and can
be omitted (Zhang et al. 2007). This was previously
demonstrated by Green & Tibbetts (1981) and Yurke
& Mills (2003), who showed that strand displacement
can be modelled as a second-order process over a wide
range of experimental conditions. This means that the
unbinding reaction on toehold domain 1 can be effec-
tively ignored, and the two consecutive reactions can
be approximated by a single displacement reaction
with rate r1 as follows.

Once bound, a given strand can also cause the toe-
hold domain of a neighbouring strand to unbind, as
shown below.

A strand ,1 2. can bind to a molecule 1:[2 3] on
toehold domain 1, and then displace the bound domain 2
of its neighbouring strand by branch migration. This can
result in the unbinding of the neighbouring strand on toe-
hold domain 3. The reverse sequence of reactions can also
occur. Since branch migration is very fast compared with
binding and unbinding reactions, the two molecules
[1],2.:[2 3] and [1 2]:,2.[3] are considered
equivalent. This is because the molecule will be constantly
migrating back and forth between these two states, such
that the states become indistinguishable from the point
of view of the slower binding and unbinding reactions.

The strand displacement language also allows
parametrized modules to be defined, as shown below.

A module is represented as a collection of one
or more molecules enclosed in a box. In this example,
the module consists of a population of molecules
Z*A:[B C],D . , where Z* denotes the number of
copies of the molecule. The name of the module
Cascade(A,B,C,D) is written along the bottom,
where A,B,C,D represent parameters of the module.
The parameters allow similar molecules to be
constructed using different domains, as shown below.
J. R. Soc. Interface (2009)
The molecules represent the result of executing
three separate instances of the module Cascade
(A,B,C,D) with three different sets of parameters:
Cascade(2,3,4,5), Cascade(4,5,6,7) and
Cascade(5,6,7,8). In this example, a strand ,1 2 3.

will be able to displace a strand ,3 4 5. from the
first stage of the cascade, which will in turn displace a
strand ,5 6 7. from the second stage, which will
then displace a strand ,7 8 9. from the third and
final stage. In general, modules allow parts of a program
to be reused with different parameters, reducing code
repetition and enabling more compact programs.

The language also allows local domains to be defined
for a particular collection of molecules, as shown below.

Local domains are represented using the new key-
word. Graphically, they are represented by placing a
dotted line around the molecules, with the local
domains in the top left corner. In this example, the
domains (C,D) are local to molecules A:[B C],D.

and C:[D E],F. . This guarantees that there can
be no interference on domains C and D from any other
molecules in the system, even if those molecules use
the same names C or D. In practice, this is enforced by
renaming the local domains C, D in the event of any
clashes. The renaming is done prior to executing a
given system of molecules. Local domains are particu-
larly useful when building large programs from smaller
building blocks, since they avoid having to manually
check all the domains in a given program to ensure
that there are no unintended clashes.
2.1.2. Main syntax and execution rules. In general, there
are many possible configurations for individual DNA
molecules, and many ways in which these molecules
can interact with each other over time. We capture
the set of possible molecular configurations and
interactions by defining precise syntax and execution
rules for the DNA strand displacement language. In
this section, we present the main rules, together with
their corresponding graphical representation. The
complete set of rules is provided in §3.

The syntax of the strand displacement language is
presented in figure 1, in terms of DNA molecules D, mol-
ecule segments G and DNA sequences S, L, R. A
sequence S consists of a series of domains O1 . . . OK,
where a domain O can be a specificity domain N or a toe-
hold domain Nˆc with degree of matching c. N is a name
or number representing a unique DNA sequence, where

N^c

Nc

lower strand with toehold Nc

S

RL

<L>[S]<R>

double strand with sequence S
and overhangs L, R

S

G1 G2 ... GK

G1:G2:...:GK

<S>

upper strand with sequence
complementary to S

molecule with segments G1,..., GK

D1 D2 ... DK

D1 | D2 | ... | DK

parallel molecules D1,..., DK

O1 O2 ... OK

O1 O2 ... OK

sequence of domains O1,..., OK

new (N1,...,NK) D

molecules D with private domains N1,..., NK

(N1,..., NK)
D

(a) syntax of DNA molecules D (b) syntax of DNA segments G

(c) syntax of DNA sequences S, L, R

Figure 1. Syntax of the strand displacement language, in terms of (a) DNA molecules D, (b) molecule segments G and (c) DNA
sequences S, L, R. For each construct, the graphical representation at the top is equivalent to the program code at the bottom.
Sequences S, L, R are composed of a series of domains O1 . . . OK, where a domain O can be a specificity domain N or a toehold
domain N ĉ with degree of matching c. We assume that all toeholds in upper strands have degree of matching 1.

S422 Programming language for composable DNA circuits A. Phillips and L. Cardelli
the sequence of toehold domains is assumed to be
between 4 and 10 nucleotides in length. The degree of
matching c allows different binding and unbinding
rates to be implemented for different molecules that
interact on the same toehold domain. The degree c is
assumed to be greater than 0 and less than or equal
to 1, where a sequence N̂ 1 with degree 1 is identical to
the sequence N. Degrees of matching 1 can usually be
omitted, where N̂ 1 is abbreviated to N. Small mis-
matches in sequence complementarity can significantly
affect toehold binding and unbinding rates, while still
avoiding interference with other toehold domains.
Thus, the degree of matching can be used to modify
the binding and unbinding rates of a given toehold.
For example, a toehold ,N̂ 1. will interact with toe-
holds N̂ c1 and N̂ c2 at different rates depending on
the degrees of matching c1 and c2. If c1 , c2 , 1
then toehold ,N̂ 1. will have a higher binding rate
and a lower unbinding rate when interacting with
N̂ c2, compared with N̂ c1. To simplify the syntax,
we assume that all toeholds in upper strands have
degree of matching 1. This avoids having to record
the degree of matching for both upper and lower strands
in a double-stranded molecule.

A molecule D can be an upper strand ,S. with a
sequence complementary to S, or a molecule with
segments G1: . . . :GK. A segment G can be a lower
strand with toehold domain N̂ c, or a double
strand [S] with upper strands ,L. and ,R. over-
hanging to the left and right, respectively, written
,L.[S],R . . The syntax ensures that specificity
domains on the lower strands are always occupied by
an upper strand, such that only toehold domains on
the lower strands can be unoccupied. This ensures
J. R. Soc. Interface (2009)
that two single-stranded molecules can only interact
with each other via complementary toehold domains,
as described by Zhang et al. (2007).

Multiple DNA molecules can be present in parallel,
written D1 j . . . j DK. We abbreviate K parallel copies of
the same molecule D to K*D . Domains N1, . . . ,NK can
also be restricted to molecules D, written new (N1, . . . ,
NK) D. This represents the assumption that the domains
are not used by any other molecules apart from D. We
also allow module definitions of the form X(m)¼ D,
where m are the module parameters and X(n) represents
an instance of the module D with parameters m replaced
by n. We assume a fixed set of module definitions, which
are declared at the start of the program.

The main reduction and equivalence rules of the
language are presented in figure 2. The reduction rules
are of the form D! r D0, which means that D can reduce
to D0 by a reaction with rate r. We write D r 0 $ r D0

as an abbreviation for the two reductions D! r D0 and
D0 ! r 0 D. We also write D! D0 as an abbreviation for
a reduction that is effectively immediate.

The first reduction rule models toehold binding and
unbinding. Each toehold domain N is associated with
corresponding binding and unbinding rates given by rN

and r2N, which can be abbreviated to +N and 2 N,
respectively. We multiply the binding rate by the
degree of matching c of domain N and we divide the
unbinding rate by this degree, since a low degree of
matching between toehold sequences will result in
slower binding and faster unbinding. In practice, the
degree of matching c of a toehold N̂ c can be deter-
mined by measuring the binding rate of N̂ c to ,N.

and dividing by the binding rate of N̂ 1 to ,N. .
The next two rules model a strand being displaced

S2

N RL Nc G2G1 Nc

L R

G2G1

S1

L1 S2

R1
L2 R2

R2L2S2S1

L1 R1
S2

+N·c–N/c

1. toehold binding and unbinding

S2S1

L1 R1S1 R2
R1L1S2S1

L2 R2
S1

2. strand displacement to the right

L2

3. strand displacement to the left

S2S1

L1 S2

R1
L2 R

2
S3 S2S1

L
1

S2

L2
R2

S3

R1

4. branch migration

<L1>[S1]<S2 R1>:<L2>[S2]<R2> <L1>[S1 S2]<R1> | <L2 S2 R2>

<L1>[S1]<R1>:<L2 S1>[S2]<R2> <L2>[S1 S2]<R2> | <L1 S1 R1>

<L1>[S1]<S2 R1>:<L2>[S2 S3]<R2> <L1>[S1 S2]<R1>:<L2 S2>[S3]<R2>

<L N R> | G1:N^c:G2 G1:<L>[N^c]<R>:G2

Figure 2. Reduction and branchmigration rules of the strand displacement language. For each rule, the graphical representation at the
top is equivalent to the program code at the bottom.

Programming language for composable DNA circuits A. Phillips and L. Cardelli S423
from a molecule to the right and left. The reductions are
immediate, since branch migration is considered to be
much faster than toehold binding or unbinding. The
fourth rule models equivalence of molecules up to
branch migration. Since a given DNA molecule can
rapidly sample its space of possible configurations by
branch migration, the different configurations are con-
sidered to represent the same molecule.

We can use the reduction rules of the language to
generate the set of all possible reactions for a given set
of DNA molecules. Essentially, this is achieved by
repeated application of the reduction rules to the mol-
ecules, where each application of a rule corresponds to
a reaction. The rules are repeatedly applied until no
new reactions are generated. The algorithm is presented
in more detail in §3. The strand displacement language
can be used to construct an initial set of DNA mol-
ecules, and then to determine automatically the set of
all possible interactions between these molecules over
time, together with their corresponding interaction
rates. We illustrate the application of the strand
displacement language to three main case studies.
2.2. Case study: entropy-driven catalytic gate

This case study uses the strand displacement language to
implement an entropy-driven catalytic gate developed by
Zhang et al. (2007). The gate enables key functions of
signal amplification and circuit gain, which are essential
for implementing large cascaded circuits in DNA.
According to Zhang et al. (2007), the gate is
J. R. Soc. Interface (2009)
substantially simpler, faster, better understood and
more modular than previous DNA hybridization designs.

Figure 3 presents an implementation of the entropy-
driven catalytic gate of Zhang et al. (2007) in the strand
displacement language. The gate consists of initial con-
centrations of fuel, catalyst and substrate molecules.
The full sets of species and reactions for the gate are
presented in figure 4. These were compiled from the
molecules of figure 3 using the algorithm described in
§3. From the compiled reactions, we observe that Cata-
lyst C binds to Substrate S, causing the release of Signal
SB and Output OB in the presence of Fuel F. The same
catalyst can be reused to drive the release of multiple
signal and output strands, provided sufficient substrate
and fuel molecules are present. Thus, the compiled reac-
tions serve as an initial validation of the catalytic gate
design.

Note that the compiled reactions of figure 4 differ
from the manually defined reactions of Zhang et al.
(2007). A comparison between the two sets of reactions
is given in figure 5. A non-catalytic reaction

Sþ F�!k0 OBþ SBþW as also given in Zhang et al.
(2007), but the rate k0 was considered to be negligible
and can be effectively ignored. Both models also
assume the presence of excess reporter molecules SR
and OR, which detect the signals SB and OB, respect-
ively, as follows:

SBþ SR�!kTET TET; ð2:7Þ

OBþOR�!kTET ROX: ð2:8Þ

542
1 6

33 42 4 5

Catalytic

PS*PF * PC *

Catalytic =
(PF*<2 3 4> | PC * <4 5> | PS * <1>[2]:<6>[3 4]:5)

Figure 3. An implementation of the entropy-driven catalytic
gate of Zhang et al. (2007) in the strand displacement
language. The gate consists of Fuel ,2 3 4. , Catalyst
,4 5. and Substrate molecules ,1.[2]:,6.[3 4]:5,
at initial concentrations given by PF, PC and PS, respectively.

+3

+3
–3

42

1 6 4

3 42

1 6 4

542

1 6

42

1 2

42

42

5

5

3 5

33

5

5

3

3

4

3 42 3 46

21

4

42

1 2

53

4

Substrate S

Fuel F

Intermediate I1

Waste W

Signal SB

Output OB

4 5

Catalyst C

Intermediate I4

Intermediate I5

3 42

1

5

Intermediate I3

+5
–5

+5
–5

C = <4 5> S = <1>[2]:<6>[3 4]:5
SB = <6 3 4> I1 = <1>[2]:<6>[3]<4>:[4 5]
F = <2 3 4> I3 = <1>[2]:3:[4 5]
OB = <1 2> I4 = <1>[2]:<2>[3]<4>:[4 5]
W = [2 3 4]:5 I5 = [2 3 4]:<4>[5]

S + C {rm5}<->{r5} I1 I1 {r3}<->{rm3} I3 + SB
I3 + F ->{r3} I4 I4 -> I5 + OB
I5 {r5}<->{rm5} C + W

Figure 4. Species and reactions for the entropy-driven cataly-
tic gate of Zhang et al. (2007). Starting from the molecules of
figure 3, the full set of species and reactions were compiled
using the algorithm described in §3. Species are given
unique identifiers to allow a more compact representation of
reactions. Here the species identifiers were chosen to be the
same as in Zhang et al. (2007).

S + C
k1

k−1

I3 + SB (2.1)

(2.6)

I3 + F
k2−→ I5 + OB (2.2)

I 5
k3

k−3

C + W (2.3)

S + C
ρ5

ρ
 – 5

I1
ρ

 – 3

ρ3
I3 + SB (2.4)

I3 + F
ρ3−→ I 4 → I5 + OB (2.5)

I5
ρ

 – 5

ρ5

C + W

Figure 5. Comparison between the manually defined reactions
of Zhang et al. (2007), shown on the left, and the compiled
reactions of figure 4, shown on the right.

S424 Programming language for composable DNA circuits A. Phillips and L. Cardelli
The reporter SR binds to the signal SB causing the
release of the green tetrachlorofluorescein (TET) fluor-
ophore, while the reporter OR binds to the output
OB causing the release of the red carboxy-Xrhodamine
(ROX) fluorophore. Thus, the levels of green and red
fluorescence can be used to measure the concentrations
of signal and output strands, respectively.

The remaining reactions in Zhang et al. (2007)
assume that the binding rate for S and C is the same
as the binding rate for C and W, since both reactions
J. R. Soc. Interface (2009)
involve the same toehold sequence 5. Similarly, the
binding rate for I3 and SB is assumed to be the same
as the binding rate for I3 and F. Thus, k1 ¼ k23 ¼ r5

and k21 ¼ k2 ¼ r3. This is consistent with the reduction
rules of the strand displacement language, which
assume that interactions on the same toehold occur at
the same rate.

For reaction (2.5), since strand displacement is
assumed to be much faster than toehold unbinding,
the unbinding reaction on toehold 3 is effectively
ignored, which is consistent with reaction (2.2). This
assumption was previously discussed in §2.1. For reac-
tion (2.4), the original reactions ignored the formation
of the intermediate complex I1, resulting in the approxi-
mation reaction (2.1). The toehold unbinding reaction
r23 is considered to be quite fast, since toehold 3 is
deliberately shortened to accelerate strand unbinding.
However, the original reactions do not explicitly take
into account the constraints between r23 and r25.
According to our reactions, the rate of unbinding of
toehold 3 must be significantly faster than the rate
of unbinding of toehold 5, and we can simulate the
effects of different unbinding rates for these toeholds.

In figure 6, we simulate the system assuming that
toehold 3 unbinds 10 times more quickly than toehold
5, and we compare this with the simulation of the orig-
inal reactions presented in Zhang et al. (2007). Even
with an order of magnitude difference, the effects on
the system behaviour are still noticeable. The faster
the unbinding rate for toehold 3, the closer the results
to the original simulations (not shown). Thus, we can
quantify the impact of toehold strengths on the overall
system dynamics, prior to implementing the physical
system in DNA. Note that the chemical reactions for
the system were compiled directly from the DNA
molecules themselves by application of the algorithm
outlined in §3. This simplifies the process of evaluating
new designs before their subsequent implementation.
In the original experimental setup, the reaction rate
k3 ¼ r25 was difficult to measure, and was fit to the
data. Even if we are unable to measure the exact rates
experimentally, it is possible to ensure constraints
between rates, such as r23�r25, by choosing appropriate
sequences for the corresponding toehold domains.
2.3. Case study: gate motif for large-scale
circuits

This case study uses the strand displacement language
to implement a DNA gate motif developed by Qian &
Winfree (2008). The motif was designed as a building

ROX(1.0)
ROX(0.5)
ROX(0.2)
ROX(0.1)
ROX(0.05)
ROX(0.02)
ROX(0.01)
ROX(0.005)
ROX(0.002)
ROX′(1.0)
ROX′(0.5)
ROX′(0.2)
ROX′(0.1)
ROX′(0.05)
ROX′(0.02)
ROX′(0.01)
ROX′(0.005)

ROX′(0.002)

7000

7000

6000

6000

5000

5000

4000

time

4000

3000

3000

2000

2000

1000

1000

0

Figure 6. Simulation results for the entropy-driven catalytic gate of figure 4, using reactions (2.4)–(2.8). The rates are taken from
Zhang et al. (2007), with r5 ¼ 6.5 � 105, r3 ¼ 4.2 � 105, kTET ¼ 8 � 105 and kROX ¼ 4 � 105 M21 s21, and with r25 ¼ 4 �
1023 s21 and r23 ¼ 10 � r25. Initial concentrations of S ¼ C ¼ 10 nM, F ¼ 13 nM and OR ¼ SR ¼ 30 nM were used, where
the concentration of C was varied by a factor of 1–0.002. The levels of ROX fluorescence (arbitrary units) were plotted over
time (s) for different input concentrations of catalyst C. The simulation results for the reactions of Zhang et al. (2007) are
represented on the same plot using dark colours, while the results from the reactions of figure 4 are shown in pale colours.
The simulation results of both systems differ slightly, where the choice of rate constants is discussed in the main text.

Programming language for composable DNA circuits A. Phillips and L. Cardelli S425
block for synthesizing large-scale circuits involving
potentially thousands of gates.

Figure 7 presents an implementation of the seesaw
gate of Qian & Winfree (2008) in the strand displacement
language. The gate is essentially a simplified version of
the catalytic gate developed by Zhang et al. (2007).
The main species and reactions for the gate are presented
in figure 8. These were compiled from the molecules of
figure 7 using the algorithm of §3. The compiled reactions
are consistent with the manually defined reactions of
Qian & Winfree (2008). From the compiled reactions,
we observe that the Input I is neutralized by the
Threshold Th. Once all the Threshold molecules are
consumed, the Input can bind to the GateOutput GO,
causing the release of the Output O. The Fuel F binds
to the GateInput GI, causing the release of the Input I,
which can be subsequently reused to catalyse the
displacement of additional Output molecules.

In addition to the reactions shown in figure 7, there
are a number of spurious reactions between toehold
domains. For example, the Input ,S3 T S4. can inter-
act with T:[S3 T],S4. on toehold T. However, since
there is a mismatch in the specificity domains of these
molecules, they will immediately unbind. Although
these reactions can potentially slow down the system,
they will not result in major interferences. This illus-
trates an important principle when designing
large-scale circuits: the same toehold domain can be
reused in multiple reactions, provided the specificity
domains are chosen accordingly. Toehold domains can
bind and unbind repeatedly, but a displacement reac-
tion can only progress if there is a subsequent match
J. R. Soc. Interface (2009)
between the adjacent specificity domains. In the
remainder of the paper we omit such spurious
interactions on toehold domains.

An empty seesaw gate T:S3:T consists of a single
domain S3 with toehold domains T to the left and
right. The Input binds to the right toehold of the gate,
while the Output and Fuel bind to the left toehold.
The Input, Output and Fuel strands are defined as
,S3 T S4 . , ,S1 T S3. and ,S2 T S3 . , respect-
ively, and are termed wires, since they can each form a
link between two gates. For example, the Input wire
,S3 T S4. can form a link between gates T:S3:T
and T:S4:T. The threshold molecules consume the
Input, preventing it from binding to the main gate
until all the threshold molecules are depleted. This acts
to filter out low levels of input that could have been pro-
duced accidentally, such as those produced by a leaky
circuit. In order to achieve this, the threshold gate is
designed so that it binds to the input at a much faster
rate than the main gate. In Qian & Winfree (2008),
this is implemented by extending the binding region of
the threshold toehold. Here, we implement the increased
binding rate by increasing the degree of matching of the
threshold toehold, so that it is significantly higher than
the degree of matching of other toeholds. Although the
maximum degree of matching is 1, in practice we can
encode a degree of matching greater than 1 by lowering
the degree of matching of all other toeholds.

In general, each seesaw gate can interact with mul-
tiple wires to the left and right. We can model this by
defining two modules, SeesawL and SeesawR, as
shown in figure 9. The specificity domains of the gate

Seesaw

TS3T

S1

S3 TTcS3 PGO*PTh* PI*T S3PF * S2 S4

Seesaw = (PF * <S2 T S3> | PTh * [S3]:Tˆc
 | PI * <S3 T S4> | PGO * <S1>[T S3]:T)

Figure 7. An implementation of the seesaw gate of Qian &
Winfree (2008) in the strand displacement language. The
gate consists of Fuel ,S2 T S3. , Threshold [S3]:T ĉ,
Input ,S3 T S4. and GateOutput molecules ,S1.[T
S3] : T, at initial concentrations given by PF, PTh, PI and
PGO, respectively.

T

TS3T
S1

S3 T

S3T
S1 S4S3

TS3

S4
TT S3 T S3

TS3T
S2 S4S3

TS3T
S

2
TcS3

S3

GateOutput GO Input I GateFuel GF

Output O GateInput GI Fuel F

TS3

S4

Waste w

GateOutputInput GOI GateInputFuel GIF

Threshold Th

Waste e

+T.c

+T
–T

+T
–T

+T
–T

+T
–T

S1 S2

S4

I = <S3 T S4> Th = [S3]:Tˆc
F = <S2 T S3> GF = <S2>[T S3]:T
O = <S1 T S3> GO = <S1>[T S3]:T
e = <S3> GOI = <S1>[T S3]:<S3>[T]<S4>
w = [S3 T]<S4> GIF = <S2>[T]<S3>:[S3 T]<S4>
 GI = T:[S3 T]<S4>

Th + I ->{rT*c} e + w
GO + I {rmT}<->{rT} GOI GOI {rT}<->{rmT} GI + O
GI + F {rmT}<->{rT} GIF GIF {rT}<->{rmT} I + GF

Figure 8. Species and reactions for the seesaw gate of Qian &
Winfree (2008). Starting from the molecules of figure 7, the set
of species and reactions were compiled using the algorithm
described in §3.

SeesawL (S3, S1, PT, P)

TS3T

S1
Tc S3 P*PT *

SeesawR (S3, S4, PT, P)

PT* TcS3 TS3

S4
TP*S3 T

Wire (S3, S4)

S4

Wire(S3,S4)=<S3 T S4>
SeesawL(S3,S1,PT,P)=PT*Tˆc:[S3] | P*<S1>[T S3]:T
SeesawR(S3,S4,PT,P)=PT*[S3]:Tˆc | P*T:[T S3]<S4>

Figure 9. Generic modules for the seesaw gate of figure 7.

Input S4

Output S1

Fuel S2

10

Gate S3

–0.5

10

(SeesawL(S3,S1,0,10.0|SeesawR(S3,S1,0.5,0)
| 1*wire(S3,S4)|10*wire(S2,S3))

1

Figure 10. An instance of the seesaw gate of figure 7, using the
more general modules of figure 9. A more abstract graphical
representation of the gate is also given.

S426 Programming language for composable DNA circuits A. Phillips and L. Cardelli
and interacting wire are passed as parameters, together
with the populations of the threshold gate and the
initially bound wires. Figure 10 presents an instance
of the seesaw gate of figure 7, using the more general
modules of figure 9. A more abstract graphical represen-
tation of the gate is also given. Initial populations of
Fuel, Input and Output wires are given by 10, 1 and
0, respectively. The populations are represented as
numbers on the edges connected to the gate, where
the absence of a number denotes a population of 0.
There is also an initial population of 10 Output wires
bound to the left side of the gate, assuming suitable
population units. This is indicated by the number 10
inside the left half of the circle, next to the Output
wire. There are no Fuel or Input wires bound to the
gate, since there are no positive numbers inside the
circle next to the Fuel or Input wires. The negative
J. R. Soc. Interface (2009)
number 20.5 on the inside of the circle next to the
Input wire indicates an initial population of 0.5
threshold gates. According to Qian & Winfree (2008),
we assume that a given seesaw gate will not have both
a population of bound wires and a population of
threshold gates. Under these assumptions, a single
integer can be used to represent both populations. If
the integer is positive, then it represents the population
of bound wires, and if it is negative, then its absolute
value represents the population of threshold gates. For
the program definition of our seesaw modules, rather
than using a single integer, we use two positive numbers
PT and P, with the additional constraint that both
numbers cannot be greater than zero simultaneously.

We can use these modules to implement the logical
OR gate presented in Qian & Winfree (2008), as
shown in figure 11. Gates with a dotted outline have a
population of zero, and are not needed. They are
mainly included to give a uniform representation. As
a result, for the OR gate implementation only domains
3 and 4 need to be passed as parameters. The OR gate
takes two wires that bind to the left of domain 3. Once
one or both of these wires are present in sufficient num-
bers to consume all the threshold gates, they will
displace the wire ,3 T 4. that is bound on the right
of domain 3. The fuel ,3 T 5. ensures that the
bound input wires are freed again from the gate 3.
A module for the AND gate can also be defined,
though its behaviour is more complicated (see Qian &
Winfree 2008 for full details). Here we have shown how
seesaw gate modules can be used to construct simple
logic gate modules, which can in turn be used to
construct complex logical circuits of arbitrary size.
2.4. Case study: compiling chemical reactions
to DNA

The previous case studies described how physical DNA
systems can be represented as molecules in the strand
displacement language. The molecules were then

–0.5

3

1.5

w13

w23

–0.5 2.5

1

2

w34

4

5

w34 = w13 OR w23

OR(3,4)=new (1,2,5)
(SeesawL(3,1,0.5,0) | SeesawL(3,2,0.5,0)
| SeesawR(3,4,1.5,0) | 2.5*Wire(3,5))

Figure 11. Example logical OR circuit made of seesaw gates.
Signal concentrations below 0.1 are considered OFF, while
signal concentrations above 0.9 are considered ON.

4

2

1 432 2 3 4

5
6

3 4

1

643 5

5 876

input A gate g

waste wg intermediate o

waste wt output B

5 6

3

4 5 6

7
8

gate t

+2

+4

A = <1 2 3 4> g = 2:[3 4]<5 6>
o = <3 4 5 6> t = 4:[5 6]<7 8>
B = <5 6 7 8> wt = <3>[4 5 6]
 wg = <1>[2 3 4]

A + g ->{r2} wg + o o + t ->{r4} wt + B

Figure 13. DNA implementation of a transition reaction
A�!r B. The implementation uses a constant population Pg
of gates g, such that r ¼ r2 . Pg, and a very large constant
population Pt of translation gates t such that r4 . Pt� r.

1 432 2 3 4

input A gate g

2 3 4

1

waste w

43

empty e

+2

A = <1 2 3 4> g = 2:[3 4]
e = <3 4> w = <1>[2 3 4]

A + g ->{r2} w + e

Figure 12. DNA implementation of a degradation reaction
A�!r 1. The implementation uses a constant population Pg
of gates g, such that r ¼ r2 . Pg.

Programming language for composable DNA circuits A. Phillips and L. Cardelli S427
systematically translated to chemical reactions for
simulation and analysis. This case study addresses the
reverse question of how to translate an arbitrary set of
chemical reactions to a set of DNA molecules, in order
to derive systematically a physical DNA implemen-
tation. The question was previously addressed in
Soloveichik et al. (2008) by translating a given set of
chemical reactions to an extended set of reactions repre-
senting the implemented system. Here we present a
translation from a set of chemical reactions directly to
a set of DNA molecules. The extended set of reactions
for these molecules is then derived automatically
using the algorithm of §3.

We first illustrate the principle of the translation on a
number of simple chemical reactions, using the
approach presented in Soloveichik et al. (2008). Essen-
tially, each chemical species X is associated with three
distinct domains X1,X2,X3, where X1 and X3 are
toeholds. The general form of a species X is given by
,H X1 X2 X3. , where ,X1 X2 X3. denotes the rec-
ognition region of the species, and ,H. denotes the
history region. We assume that members of the same
species must all have the same recognition region, but
can have different history regions.

Figure 12 presents a DNA implementation of a
degradation reaction A�!r 1, where species A is associ-
ated with the recognition region ,2 3 4.. The reac-
tion is implemented by a population of gates g, which
transform a strand ,1 2 3 4. into inert waste. The
reaction rate r is obtained by using a constant popu-
lation Pg of gates g, such that r ¼ r2 . Pg. In order to
achieve this, Soloveichik et al. (2008) assume an
excess population of gates that is large enough to
remain effectively constant. We adopt the same
approach for the implementation of constant gate
populations, but later discuss a potential alternative.

Figure 13 presents a DNA implementation of a tran-
sition reaction A�!r B. As with degradation, the
reaction is implemented by a constant population Pg
of gates g, such that r ¼ r2 . Pg. In order to ensure
that the domains of species B are completely indepen-
dent from the domains of species A, an additional trans-
lation gate t is needed. Furthermore, in order to ensure
that the reaction remains effectively first order, a very
J. R. Soc. Interface (2009)
large constant population Pt of translation gates t is
used, such that r4 . Pt� r.

Figure 14 presents a DNA implementation of a
production reaction A�!r B þ C . The implementation
of the reaction is similar to that in figure 13, except
that the intermediate output strand o displaces two
strands instead of one from the translation gate t,
which correspond to the two output species of
the reaction.

Figure 15 presents a DNA implementation of a
binary reaction Aþ B�!r C . The implementation is
less straightforward than in the previous examples,
since the output C must only be produced when both
inputs A and B are present. The solution, as presented
in Soloveichik et al. (2008), is to use a linker gate l that
rapidly binds and unbinds the reactant B, such that the
bound and free species B are in equilibrium, where

2

–6

73 8

9
10

gate Bg

5 876

input A

6

41

63

buffer b

+6

71 432 2 3 6 8

9
10

input B linker gate l

+2
–2

2 73 8

9
10

gate Bl

1

6

3
4

2

+6

73 8

waste wl

7 10988 9 10

11
12

intermediate o

41

gate t

5

6

+8

9 121110 9 10

output C waste wl

8

7

B = <1 2 3 4> l = 2:[3 6]:[7 8]<9 10>
b = <3 6> Bl = <1>[2]<3 4>:[3 6]:[7 8]<9 10>
A = <5 6 7 8> Bg = <1>[2 3]<4>:6:[7 8]<9 10>
o = <7 8 9 10> t = 8:[9 10]<11 12>
C = <9 10 11 12> wt = <7>[8 9 10]
 wl = <1>[2 3]<4>:<5>[6 7 8]

B + l {rm2}<->{r2} Bl Bl {rm5}<->{r5} b + Bg
Bg + A ->{r5} o + wg o + t ->{r8} C + wt

Figure 15. DNA implementation of a binary reaction
Aþ B�!r C . The implementation uses large constant popu-
lations Pl and Pb of linker gates l and buffers b, respectively,
such that Pl . r2 and Pb . r6� r. Furthermore, the toehold
unbinding rates are chosen such that r22 and r26� r.
These constraints ensure that an equilibrium can be rapidly
established between the population of free linker gates l and
bound linker gates Bg. The rates and populations are also
chosen such that r ¼ f(Bg) . r6, where f(Bg) denotes the frac-
tion of bound species Bg at equilibrium. As with the unary
reactions, we use a very large constant population Pt of
gates t such that r8 . Pt� r.

4

1 432 2 3 4

5
6

9

109643 5 94 5 6

7

10

11
8 12

95 6 10

3

5 876 9 121110

input A gate g

intermediate o gate t

waste wt output B output C

10

2 3 4

1

waste wg

+2

+4

A = <1 2 3 4> g = 2:[3 4]<5 6 9 10>
o = <3 4 5 6 9 10> t = 4:[5 6]<7 8>:[9 10]<11 12>
B = <5 6 7 8> wt = <3>[4 5 6 9 10]
C = <9 10 11 12> wg = <1>[2 3 4]

A + g ->{r2} wg + o o + t ->{r4} wt + B + C

Figure 14. DNA implementation of a production reaction
A�!r B þ C . The implementation is similar to that in figure
13, except that the translation gate t produces two output
strands instead of one.

S428 Programming language for composable DNA circuits A. Phillips and L. Cardelli
f(Bg) denotes the fraction of bound species B. When the
species A is present, it can interact with the bound form
of species B to complete the reaction. The rates and
populations are chosen such that r ¼ f(Bg) . r6.

Figure 16 presents a more general translation from
chemical reactions to DNA molecules, based on the
approach presented in Soloveichik et al. (2008). The
translation is defined for unary and binary reactions,
but translations for higher order reactions can be
defined in a similar fashion. The translation is defined
as a collection of modules in the strand displacement
language, which take the populations of gates and buf-
fers as parameters. The populations are chosen so as to
implement accurately the corresponding reaction rates,
using the approach outlined in the previous examples.
The populations also take into account the fact that a
given species may be involved in multiple binary inter-
actions simultaneously and can therefore bind to
multiple different gates, affecting the equilibrium of
free and bound species. As an alternative to varying
the initial gate populations, we can also vary the
degree of complementarity of toeholds for each reaction,
as discussed in Soloveichik et al. (2008).

As an example, we consider the coupled chemical
reactions for the chaotic system of Willamowsky and
Rossle, which was used as a case study in Soloveichik
et al. (2008). The reactions for this system are summar-
ized in table 1, together with their translation to DNA
molecules. The translation is implemented using a set of
modules for unary and binary reactions, which are
defined in a similar fashion to the general modules pre-
sented in figure 16. The local domains used in each of
the modules ensure that the domains of different gates
do not interfere with each other. Expanded versions of
these modules are shown in figure 17. The expansion
is performed automatically by the compiler, as
described in §3.
J. R. Soc. Interface (2009)
The main species and reactions generated from the
DNA molecules are presented in figure 18. The reac-
tions are similar to those presented in Soloveichik
et al. (2008), except that there are two reversible reac-
tions instead of one for establishing an equilibrium
between species, linker gates and buffer strands. The
additional reactions will not affect the overall dynamics
of the system, provided they are effectively immediate.
According to figure 18, this will require the toehold
unbinding rates involved in all the equilibrium reactions
to be sufficiently rapid. In addition to the reactions rep-
resented in figure 18, a number of other reactions are
generated, which arise from the fact that the toeholds
of some of the intermediate outputs can bind to mul-
tiple gates. For example, toehold A3 of the intermediate
output ,A2 A3 I1 A1 J1 A1. can bind to three dis-
tinct gates, even though it can only displace strands
from one of these gates. This should not significantly
affect the overall dynamics, provided the toehold
unbinding rates are also fast. Nevertheless, it is

A1 A2 A3

I1

A1

J1

A1

A3 I1

A2
A3

A1

A r1 A + A

J1

A2
A3

A1

A2 A3

I2

A1

A3 I2

A2
A2

A1A1 A2 A1

A + A r2 A

A2 A3B1 B2 A1

B + A r3

r4 r4

r6

r7

B + B

I3

B1

J3

B1

A3 I3

B2

B3

B1 J3

B2

B3

B1

C1 C2 C3

I1

C1

J1

C1

C3 I1

C2
C3

C2
C3

C1

C C + C

C + C

J1 C1

C2 C3

I2

C1

C I2

C2

C3

C1C1 C2 C1

C

C2 C3A1 A2 C1

A + C

B1 B2 B3

B

Gate g1 Gate t1

Linker Gate l2

Linker Gate l5

Linker Gate l7

Linker Gate l3

Gate t2

Gate t3

Gate g4

Gate t6

Gate t7

Gate g6

Pg1 * Pt *

A1A2

Buffer b2

Pl2 * Pt * Pb2 *

Pl7 * Pt * C1C2Pb7 *

Pt *Pg6 *

Pl3 * A1B2

Buffer b3

Buffer b5

Buffer b7

Pb2 *

C1A2Pb5 *

Pt *

Pg4 * Pl5*

Figure 17. DNA molecules obtained by expanding the mod-
ules of table 1.

X3X2X1

A1 A2 A3

I1

X11

IN

XN1

INA3 I1

X12

X13

X11 XN1

XN2

XN3

INB3 I1

X12

X13

X11 XN1

XN2

XN3

B2A1 A2 B1 B3

unaryN((A1, A2, A3), Pg, (X11, X12, X13) , ... , (XN1, XN2, XN3))

I1

X11

IN

XN1

species (P, X1, X2, X3)

(I1,..., IN)

(I1,..., IN)

B1A2

Pg* Pt*

Pt*Pl * Pb*

binaryN((A1, A2, A3), (B1, B2, B3), Pl, Pb, (X11, X12, X13) , ... , (XN1, XN2, XN3))

P*

species (P,X1,X2,X3) = P* <X1 X2 X3>

unaryN((A1,A2,A3),Pg,(X11,X12,X13),...,(XN1,XN2,XN3))=
 new (I1,...,IN)
 (Pg * A1:[A2 A3]<I1 X11 ... IN XN1>
 | Pt * A3:[I1 X11]<X12 X13>:...:[IN XN1]<XN2 XN3>)

binaryN((A1,A2,A3),(B1,B2,B3),Pl,Pb
 (X11,X12,X13),...,(XN1,XN2,XN3)) =
new (I1,...,IN)
(Pl * A1:[A2 B1]:[B2 B3]<I1 X11 ... IN XN1>
| Pb * <A2 B1>
| Pt * B3:[I1 X11]<X12 X13>:...:[IN XN1]<XN2 XN3>)

Figure 16. Translation from chemistry to DNA, based on the
approach presented in Soloveichik et al. (2008). The trans-
lation is defined as a collection of modules in the strand displa-
cement language, where each chemical species X is associated
with three distinct domains (X1,X2,X3). The species
module implements an initial population P of the species rep-
resented by domains (X1,X2,X3). The unaryN and
binaryN modules implement unary and binary reactions of
the form A�!ri X1 þ � � � þXN and Aþ B�!ri X1 þ � � � þ XN ,
respectively. The modules rely on a set of local domains
(I1, . . . ,IN) to limit interference between reactions. We
assume that populations Pg, Pl, Pb and Pt are large enough
to remain effectively constant, and that Pt is large enough
to implement reactions that are effectively immediate. The
populations Pg, Pl, Pb are passed as parameters to the mod-
ules, and are chosen to implement accurately the correspond-
ing reaction rates as follows. We let f(X) denote the fraction
of unbound species X and let f(Xg) denote the fraction of
species X bound to a gate g. These populations can be com-
puted beforehand, assuming that an equilibrium between
free and bound species is quickly reached. In the unary case,
r ¼ rA1

. Pg . f(A) and rA3
. Pt� r. In the binary case, r ¼

rB1
. f(B) . f(Ag) and rB3

. Pt, rA1
. Pl, rB1

. Pb, r2B1
, r2A1

� r.
The latter constraints ensure that all intermediate reactions
are fast enough with respect to r to be effectively ignored.

Table 1. DNA implementation of the chaotic chemical
system due to Willamowsky and Rossle, based on the
implementation of Soloveichik et al. (2008). The reaction
rates are defined as r1 ¼ 0.03, r2 ¼ r7 ¼ 5 � 104, r3 ¼ r5 ¼

105, r4 ¼ 0.01, r6 ¼ 0.0165. The implementation uses
modules unary0, unary2, binary0, binary1 and
binary2, which are defined in a similar fashion to the
general modules unaryN and binaryN presented in figure
16. The populations Pg1, . . . ,Pl7, Pb2, Pb3, Pb, Pb7
and the toehold binding and unbinding rates are chosen to
implement accurately the corresponding reaction rates. The
populations are passed as parameters to the modules, along
with the species A, B, C, where A ¼ (A1,A2,A3), B ¼
(B1,B2,B3) and C ¼ (C1,C2,C3).

no. chemistry DNA molecules

1 A�!r1 2A unary2(A,Pg1,A,A)
2 2A�!r2 A binary1(A,A,Pl2,Pb2,A)
3 B þ A�!r3 2B binary2(B,A,Pl3,Pb3,B,B)
4 B�!r4

unary0(B,Pg4)
5 Aþ C �!r5

binary0(A,C,Pl5,Pb5)
6 C �!r6 2C unary2(C,Pg6,C,C)
7 2C �!r7 C binary1(C,C,Pl7,Pb7,C))

Programming language for composable DNA circuits A. Phillips and L. Cardelli S429
important to take into account these factors when
determining toehold rates and gate populations.

As mentioned previously, the translations assume
that reaction gates are present in sufficiently large num-
bers so as to remain effectively constant over time.
Another way of ensuring constant gate populations is
to introduce a reservoir of inactive gates that become
active each time a gate is used. An example design is pre-
sented in figure 19. The advantage of this design is that
we have a more precise control over the gate populations,
and can use lower population numbers. If needed, we can
continually supply new inactive gates to ensure that the
active gate population is kept constant indefinitely.
J. R. Soc. Interface (2009)
Another issue that needs to be addressed is the fact
that buffer strands continually accumulate after each
execution of a bimolecular reaction. It should be possible
to engineer a more sophisticated collection of molecules

294 5 6

7

10

11
8

gate t

2 3 4

5
6

9

gate g

10

3 4

5
6

9
10

10 11

reserve r

Pg* Pt * Z*

quencher q

211Z*

t = 4:[5 6]<7 8>:[9 10]<11> g = 2:[3 4]<5 6 9 10>
r = 10:[11 2]:[3 4]<5 6 9 10> q = [11]:2
(Pg*g | Pt*t | Z*r | Z*q)

Figure 19. A possible implementation of a replenishable gate.
The gates g and t implement a reaction of the form A�!r B.
The extra reserve r is in excess, so that whenever a reaction
is executed, a new gate with the same function as g is acti-
vated to take the place of the gate that was used.

Figure 18. Main species and reactions for the DNA molecules
of figure 17. The reactions were compiled using the algorithm
of §3.

Table 2. Syntax of the DNA strand displacement calculus
(DSD), defined in terms of molecules D, molecule segments G
and sequences S, L, R. The syntax assumes that 0 , c � 1
and that all toeholds in an upper strand ,_ S _. have a
degree of matching c ¼ 1.

DSD syntax description

D () empty molecule
,_ S _. upper strand with sequence

complementary to S
G molecule segment G
D1 j D2 parallel composition of molecules D1

and D2
new N D molecules D with local domain N
X(n) instance of a module X with

parameters n
G Nˆc toehold domain N with degree of

matching c
,L.[S],R. double strand [S] with left and right

overhangs ,L., ,R.

G1:G2 concatenation of G1 and G2
S N domain N

Nˆc toehold domain N with degree of
matching c

S1 S2 concatenation of S1 and S2
L _ empty sequence

_ S left overhanging sequence S
R _ empty sequence

S _ right overhanging sequence S

S430 Programming language for composable DNA circuits A. Phillips and L. Cardelli
that also recycles excess buffer strands from the system,
so that the population of buffer strands is kept constant.
Finally, in many cases complete sequence independence
between strands may not be necessary, allowing
various optimizations to be introduced, as discussed in
Soloveichik et al. (2008). The use of a concise strand dis-
placement language for describing the interactions
between DNA molecules should facilitate the design
and analysis of such optimizations.
3. METHODS

In this section, we formalize the DNA strand displace-
ment language as a process calculus. We give definitions
for the syntax and execution rules of the calculus,
together with its translation to chemical reactions. The
definitions are given in the style of process calculi such
as the pi-calculus (Turner 1996; Milner 1999; Sangiorgi &
Walker 2001), with the addition of a stochastic reduction
semantics along the lines of Phillips & Cardelli (2007).
The formal definitions are used as the basis for an
implementation of the strand displacement language, and
are also used to reason about basic language properties.
J. R. Soc. Interface (2009)
3.1. Syntax of the strand displacement
calculus

The syntax of the DNA strand displacement calculus
(DSD) is defined in terms of molecules D, molecule seg-
ments G and sequences S, L, R, as shown in table 2. A
molecule D can be an upper strand ,_ S _. with a
sequence that is complementary to S. The upper strand
is terminated by an empty sequence _ at both ends, to
allow for potentially empty left and right overhangs
when an upper strand binds to a molecule. The upper
strand can also be abbreviated to ,S. by omitting the
empty sequences. A sequence S is a concatenation of
one or more domains N, where a domain is a name or
number that represents a specific DNA sequence. A toe-
hold domain is represented as N̂ c, where c denotes the
degree of matching, such that 0 , c � 1. Toehold
sequences are assumed to be between 4 and 10 nucleotides
in length. Sequences L and R denote potentially empty
sequences that overhang to the left and right of a
bound upper strand, respectively. A segment G can be
a lower strand with a single toehold domain N̂ c, or a
double strand ,L.[S],R. consisting of an upper
strand ,L S R. bound to a lower strand S. The upper
and lower strands are bound along the double-stranded
region [S], with upper strands ,L. and ,R. overhan-
ging to the left and right. A segment G can also be a
concatenation G1:G2 of two segments G1 and G2. Impor-
tantly, when two segments are concatenated they are
assumed to be joined along a continuous lower strand.
Thus, the syntax only allows a single lower strand per
molecule.

Multiple molecules D1, . . . , DK can be executed in
parallel, written D1 j . . . j DK. A domain N can also be

Table 3. Syntax abbreviations for the strand displacement
calculus.

syntax abbreviation

S _ S
_ S S
Nˆ1 N
,_.[S],R. [S],R.

,L.[S],_. ,L.[S]
new N1 . . . new NK D new (N1, . . . ,NK) D
D j . . . j D|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K

K*D

Programming language for composable DNA circuits A. Phillips and L. Cardelli S431
restricted to molecules D, written new N D. This rep-
resents the fact that domain N is unique to molecules
D and does not occur in any other molecules. Finally,
a molecule can be an instance X(n) of a module X
with parameters n. We assume the existence of a fixed
environment of module definitions X1(m1)¼ D1, . . . ,
XK(mK)¼ DK. The definitions are assumed to be non-
recursive, such that a module cannot invoke itself,
either directly or indirectly via another module.

We define a number of syntactic abbreviations for
the calculus, as summarized in table 3. We omit termi-
nating empty sequences, where S _ and _ S are abbre-
viated to S, and we abbreviate a toehold N̂ 1 with
degree of matching 1 to N. We also omit empty overhan-
ging strands, where ,_.[S],R. is abbreviated to
[S],R . , and ,L.[S],_. is abbreviated to
,L.[S]. We abbreviate successive restrictions new
N1 . . . new NK D to a single restriction new (N1, . . . ,
NK) D. Finally, we abbreviate K identical copies of a
molecule D j . . . j D|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

K

to K*D.

3.2. Semantics of the strand displacement
calculus

We consider a reduction semantics that explicitly rep-
resents toehold binding, toehold unbinding and strand
displacement, as defined in table 4. Each toehold N̂ c
is assigned corresponding binding and unbinding rates
given by rN and r2N, respectively. The rule D�!r D0

means that D can reduce to D0 with rate r. We write

DO
r

r 0
D0 as an abbreviation for D�!r D0 and D0 �!r

0
D. We

also write D �! D0 as an abbreviation for D�!j D0,
where j represents a rate that is significantly faster
than any of the toehold unbinding rates.

Rules (RB) and (RU) model strand binding and
unbinding along a toehold. Analogous rules are also
needed to represent toehold binding and unbinding in
the absence of G1, G2 or both (not shown). Rules
(RDR) and (RDL) model a strand being displaced
from a molecule to the right and left, respectively.
Rule (RE) allows reduction up to re-ordering of mol-
ecules. The re-ordering relation is defined in table 5,
where D ; D0 means that D and D0 are equivalent up
to mixing of molecules and branch migration. We also
allow the following approximation to be made: if

DO
rN

r�N

D0 �! D then D�!rN
D0, since the reverse reaction

at rate r2N will have a negligible rate compared with
the alternative forward reaction at rate j.

As mentioned earlier, a notion of equivalence (;) is
defined in table 5 to allow for mixing and branch
migration of molecules. The relation is assumed to be
reflexive, symmetric and transitive. Essentially, the rules
state that the order of parallel molecules is not important,
since molecules are assumed to be well mixed. In
addition, since branch migration reactions happen very
quickly compared with binding and unbinding reactions,
molecules are considered to be equivalent up to branch
migration. Rule (ENP) ensures that a domain N that is
local to molecules D1 is not used in any parallel molecules
D2. If there are any name clashes, the domain N is
renamed locally inside D1. The set fn(D) denotes the
J. R. Soc. Interface (2009)
set of free domain names that are used by molecules D,
where new N D acts as a binder for name N in D. Rule
(ED) allows an instance of a module to be replaced
with its definition, where the parameters m are replaced
with n in molecules D, written Dfm: ¼ ng.

One of the key assumptions of the language is that
two single-stranded molecules can only interact with
each other via complementary toehold domains. This is
enforced at a syntactic level, by ensuring that a molecule
with a lower strand is either a single-stranded toehold
domain N̂ c or a double-stranded sequence with left and
right overhangs. Thus, in order to ensure that single
strands can only ever interact on toeholds, it is sufficient
to show that the syntax of the language is preserved by
reduction. This property is captured by proposition 2.1.

Proposition 3.1. 8D [DSD if D�!r D0 then
D0 [DSD.

Proof. By induction on the derivation of reduction,
according to table 4. By inspection of the reduction
rules, we observe that none of the rules results in the
liberation of a single-stranded, non-toehold region of a
lower strand. Since reduction is also defined up to struc-
turally equivalent molecules, we prove a similar prop-
erty for the structural equivalence rules of table 5. B
3.3. Compiling DNA molecules to reactions

Given a collection of DNA molecules, we generate a cor-
responding set of reactions by repeated application of
the reduction rules of table 4, where each application
of a reduction rule corresponds to a single reaction.
The generated reactions can in turn generate new mol-
ecular species, where molecules are assumed to be equal
up to branch migration, as defined in table 5. This is
implemented by defining a standard form for segments,
where a segment G is in standard form if all of its
branches are migrated as far as possible to the right.
In order to show that two segments are equal up to
branch migration, it is sufficient to show that they
have the same standard form. We also define a standard
form for molecules, where molecules D are in standard
form if all local domains are at the top-level and all
module definitions are expanded with their respective
parameters. The standard form is presented in
definition 3.1, where all segments and molecules admit
a standard form, as stated in proposition 3.2.

Table 5. Structural equivalence rules of the strand displacement calculus.

rule condition before equal after

EZ D j () ; D
EC D1 j D2 ; D2 j D1
EA D1 j (D2 j D3) ; (D1 j D2) j D3
ED X(m) ¼ D X(n) ; Dfm: ¼ ng
ENP N � fn(D2) (new N D1) j D2 ; new N (D1 j D2)
EP D1 ; D10 D1 j D2 ; D10 j D2
EN D ; D0 new N D ; new N D0

EM ,L1.[S1],S2 R1. : ,L2.[S2 S3],R2. ; ,L1.[S1 S2],R1. : ,L2 S2.[S3],R2.

EL G ; G0 G1:G ; G1:G0

ER G ; G0 G:G2 ; G0 : G2

Table 4. Reduction rules of the strand displacement calculus.

rule condition before reduce after

RB ,L N R. j G1:N ĉ:G2 �!ðrNÞ:c G1:,L.[N ĉ],R.:G2
RU G1:,L.[N ĉ],R.:G2 �!ðr�NÞ=c

,L N R. j G1:N ĉ:G2
RDR ,L1.[S1],S2 R1.:,L2.[S2],R2. �! ,L1.[S1 S2],R1. j ,L2 S2 R2.

RDL ,L1.[S1],R1.:,L2 S1.[S2],R2. �! ,L1 S1 R1. j,L2.[S1 S2],R2.

RGR G�!r G0 G:G2 �!r G0:G2
RGL G�!r G0 G1:G �!r G1:G0

RP D1�!r D10 D1 j D2 �!r D10 j D2
RN D�!r D0 new N D �!r new N D0

RE D1 ; D2�!r D20 ; D10 D1 �!r D10

Table 6. Syntax of the DSD compiler, where a term T
consists of a set of local domains N, upper strands S,
segments G and reactions R.

DSDC syntax description

T (N, S, G, R) local domains N, upper strands
S, segments G, reactions R

S f,S1., . . . ,,SN.g set of N upper strands
G fG1, . . . , GNg set of N segments
R fu1, . . . , uNg set of N reactions
u (,S., G, r, G0) reactants ,S. and G, rate r,

product G0

(G, r,,S.,G0) reactant G, rate r, products
,S. and G0

S432 Programming language for composable DNA circuits A. Phillips and L. Cardelli
Definition 3.1. A segment G is in standard form if
all of its branches are migrated as far as possible to
the right. A collection of molecules D is in standard
form if it consists of a set of parallel upper strands
and segments, with a top-level set of local domains:

new N1 . . .new NK ð, S1 . j . . . j , SI . jG1j . . . jGJÞ:

Proposition 3.2. All segments G and molecules D
admit a standard form.

Proof. Any branches in a segment G can be migrated
to the right by application of rule (EM). Any local
domains new N in molecules D can be moved to the
top-level by application of rule (ENP), while any
module instances X(n) can be replaced with their cor-
responding definitions by application of rule (ED). This
results in a set of parallel upper strands and segments,
with a top-level set of local domains. B

We implement a translation from DNA molecules to
chemical reactions by defining the syntax and execution
rules of a corresponding compiler. The syntax of the
DSD compiler is defined in table 6, where a term T of
the compiler consists of a set of local domains N,
upper strands S, segments G and reactions R. A
reaction can be either unary or binary, where a unary
reaction (G, r, ,S., G0) consists of a segment G that
can reduce with rate r to an upper strand ,S. and a
segment G0. A binary reaction (,S., G, r, G0) consists
J. R. Soc. Interface (2009)
of an upper strand ,S. and a segment G that can
reduce with rate r to a segment G0.

The execution rules of the DSD compiler are
defined in table 7. The rules are of the form D �
(N,S,G,R), which adds molecules D to a term
(N,S,G,R) of the compiler. Initially, molecules D are
added to an empty compiler term (ø, ø, ø, ø). Each
time a new molecule is added, the set R is augmented
with the set of all possible reactions between the new
molecule and the existing molecules in the compiler.
Each time a new reaction is added, any new molecules
generated by the reaction are themselves added to the
compiler. This process continues until no new mol-
ecules can be generated. The result is a compiler
term containing the set of all strands S, segments G
and reactions R that are generated from the initial

Table 7. Adding molecules to a term of the DSD compiler. We start by adding molecules D to an empty compiler term
(ø,ø,ø,ø), written D � (ø,ø,ø,ø). The result is a compiler term containing the set of all strands S, segments G and reactions R
that are generated from the initial molecules D. The rules assume that all molecules D and segments G are in standard form.

rule conditions before def after

CR fu1, . . . , uNg �T W u1� . . . � uN �T
CU (G, r,,S., G0) � T W ,S.�G0 � T
CB (,S., G, r, G0) � T W G0 � T
CN (new N D) � (N, S, G, R) W D � (fNg< N, S, G, R)
CP (D1 j D2) � T W D1 � D2 � T
CSZ ,S. [S ,S.�T W T
CGZ G [G G � T W T
CS ,S. � S

G ¼
[

i[I
Gi R0 ¼

[
i[I

Ri

Ri ¼ fð,S.;Gi; r;G0Þ j ,S. jGi �!
r
G0g

,S.� (N, S, G, R) W R0 � (N,f,S.g< S, G, R < R0)

CG G � G

S ¼
[

i[I
,Si . R0 ¼

[
i[I

Ri < R0

R0 ¼ fðG; r;,S.;G0Þ jG�!r ,S. j G0g

Ri ¼ fð, Si.;G; r;G0Þ j,Si. jG�!
r
G0g

G � (N, S, G, R) W R0 � (N, S, fGg< G, R < R0)

Programming language for composable DNA circuits A. Phillips and L. Cardelli S433
molecules D. The rules of the compiler are summarized
as follows.

(i) (CR) A set of reactions is added to a term by
adding each reaction individually.

(ii) (CU) A unary reaction (G, r, , S . , G0) is
added to a term by adding the products ,S.

and G0.
(iii) (CB) A binary reaction (,S., G, r, G0) is

added to a term by adding the product G0.
(iv) (CN) A local domain is added to the set of local

domains of the compiler. Since molecules are
assumed to be in standard form, the domain
will be globally unique.

(v) (CP) Parallel molecules are added one at a
time.

(vi) (CSZ) A strand ,S. is discarded if it is
already present in the compiler.

(vii) (CGZ) A segment G is discarded if it is already
present in the compiler.

(viii) (CS) If a strand ,S. is not already present,
then it is added to the set S. For each segment
Gi in the compiler, we compute the set Ri of
reactions between ,S. and Gi, written
fð,S.;Gi;r;G0Þ j,S. j Gi�!

r
G0g. The result-

ing reactions are then added to the compiler.
(ix) (CG) If a segment G is not already present,

then it is added to the set G. For each strand
,Si. in the compiler, we compute the set Ri

of reactions between G and ,Si . , written
{ð,Si .;G; r;G0Þ j,Si . j G�!r G0}. We also
compute the set R0 of reactions involving G alone,
written fðG; r;, S .;G0Þ j G�!r ,S. j G0g.
The resulting reactions are then added to the
compiler.
J. R. Soc. Interface (2009)
3.4. Compiling to DNA sequences

One important issue that we have deliberately not
addressed is the automatic compilation of domains to
nucleotide sequences. This is a challenging problem
that requires a detailed theoretical treatment, and is
therefore beyond the scope of this paper. Instead, we
propose to adopt the semi-automated approach
described by Zhang et al. (2007). The approach uses
sequences composed of A,C,T and A,G,T for upper
and lower strands, respectively, assuming Watson–
Crick base pairing between A,T and between G,C. As
discussed in Zhang et al. (2007), the restricted alphabet
for upper and lower strands reduces potential secondary
structure, assuming that specificity domains on the
lower strands are never exposed, as stated in proposition
3.1. The approach first chooses random sequences
composed of only A,C,T for the domains in the upper
strands, and then constructs the complementary
domains for the lower strands accordingly. Sub-
sequences known to be problematic are altered by
hand, such as GGGG, which causes to G-quadruplex-
ing, or AAAAA, which causes synthesis difficulties.
The remaining sequences are then concatenated as
appropriate to form DNA strands, which are folded
using the mFold webserver (Zuker 2003) to check for
the presence of undesired interactions. If necessary,
some of the domains in the upper strands are changed
by hand to G, and the corresponding domains in the
lower strands are updated accordingly.

For specificity domains, the sequences are long
enough to be chosen to avoid interferences between
domains while also avoiding secondary structures. For
toehold domains, however, the number of unique
sequences is limited, since toeholds are only between 4

S434 Programming language for composable DNA circuits A. Phillips and L. Cardelli
and 10 nucleotides in length. As a result, a check on the
total number of distinct toeholds will need to be made
before attempting to implement a given DNA circuit.
This can be achieved by converting the circuit to
standard form, according to definition 3.1, and then
counting the total number of distinct toehold domains.
Circuits where this number exceeds the given limit will
not be implementable, which can be signalled by a
compilation error.

As a rough estimate, we can use the results presented
in Marathe et al. (2001) to obtain approximate upper
and lower bounds on the number of distinct toehold
domains. For example, if we assume that toehold domains
are DNA sequences of length 10 that differ from one
another by at least three letters, then the number of
distinct sequences that do not interfere with each
other on complementary strands, denoted by
A4

R(10,3), is calculated to be between 1184 and
16 912. Note that further work is needed to reduce the
gap between the upper and lower bounds, and the esti-
mate does not take into account the constraint that
secondary structures should be avoided, which further
reduces the number of suitable sequences. Given that a
single mismatch along a nucleotide sequence is sufficient
to disrupt toehold binding significantly, it may be suffi-
cient for toeholds to differ by only two letters, in which
case the number of distinct sequences A4

R(10,2) is
131 072. As with the previous calculation, this also
includes sequences that exhibit secondary structures,
which will need to be removed. Note also that there is
a trade-off between the number of distinct toeholds
and the extent to which the degree of matching of a
given toehold can be varied. A more drastic approach
for reducing the secondary structure of toeholds is to
use sequences composed of only A,C,T for upper strands,
as discussed previously. For three-letter sequences of
length 10 that differ by at least two letters, this gives a
lower bound of A3(10,2) � 2811.

In spite of these limitations, it is worth noting that
we do not need a large number of distinct toeholds in
order to implement a large-scale DNA circuit. This is
because the toehold is just a starting sequence for a
strand displacement reaction: if the toehold binds but
the adjacent branch migration region does not, then
the branch migration is going to bounce back at the
site of the first major disagreement, and the toehold
will unbind. Although these reactions will potentially
slow down the system, they will not result in major
interferences. This allows the same toehold domain to
be used in combination with a potentially unlimited
number of specificity domains. Thus, a limit on the
number of distinct toeholds should not significantly
limit the size of a circuit. For example, if we consider
the gate motifs in §2.3 for designing large-scale logic
circuits, only a single toehold domain T was used.
4. DISCUSSION

This paper presents a programming language and
compiler for designing and simulating DNA circuits in
which strand displacement is the main computational
mechanism. Starting from an initial set of molecules,
J. R. Soc. Interface (2009)
the compiler computes the set of all possible reactions
together with the set of all possible molecules that can
be produced. The generated reactions can then be simu-
lated using standard approaches in order to evaluate
the circuit design. This greatly simplifies the design
and testing of DNA circuits prior to their subsequent
implementation. The language was developed to take
into account recent experimental and theoretical results
on the design of large-scale, efficient, modular DNA cir-
cuits. There are a number of areas for future work, as
outlined below.

The strand displacement language differs from tra-
ditional imperative languages such as Pascal or C in
that the main primitives of the language are geared
towards an implementation in physical DNA molecules.
In particular, the language supports concurrent
execution of molecules by means of a parallel compo-
sition primitive, and parallel molecules can interact
with each other via specific toehold domains. Although
the language also features more traditional primitives
such as parametrized modules and local variables, it is
much closer to concurrent programming languages
such as Phillips & Cardelli (2007) than to traditional
imperative languages. Furthermore, instead of compil-
ing the program to a sequence of binary digits for
execution by a computer, programs will ultimately be
compiled to sequences of letters A,C,G,T that code
for specific DNA molecules. For testing purposes, pro-
grams are compiled to a set of chemical reactions by
the compiler of §3, and the resulting reactions are
simulated using standard tools.

In this paper, we have presented the core primitives
of the strand displacement language, but additional
programming constructs can be added as straightfor-
ward extensions. For example, conditionals can be
used to check whether two domains are equal, while
loops can be used to iterate over a collection of
molecules. Arithmetic expressions can also be used to
express the initial populations of molecules. In all
cases, the result of these computations will be a set of
DNA molecules, which will then be compiled to phys-
ical DNA sequences or to a set of chemical reactions
for simulation.

Developing a language that is tailor-made for model-
ling a particular class of DNA circuits has advantages in
terms of the clarity of the models and their close resem-
blance to physical implementations. From a theoretical
perspective, however, it would also be interesting to
investigate whether the strand displacement calculus
can be encoded using more general calculi such as
kappa calculus (Danos et al. 2007) or stochastic pi-
calculus (Priami 1995; Phillips & Cardelli 2007). Initial
attempts suggest that such encodings are non-trivial
and worthy of future investigation.

The design of the strand displacement language is
still in its early stages, and there are many ways in
which the language can be extended, such as allowing
molecules to contain multiple lower strands. There is
also scope for defining additional syntactic constraints
on molecules, in order to limit interference between
molecular domains. Another issue that we have deliber-
ately avoided relates to secondary structures in DNA
molecules. We have already mentioned how

Programming language for composable DNA circuits A. Phillips and L. Cardelli S435
DNA sequences can be selected in order to eliminate
such structures, but in future we may wish to include
simple features such as hairpin motifs, as used by
Yin et al. (2008).

Rather than translating DNA molecules to chemical
reactions and then simulating the reactions in a separ-
ate tool, we can use our definition of reduction to
implement a simulator that executes the DNA mol-
ecules directly. This will allow us to manually progress
through the simulation step by step, observing how
the molecules interact with each other and change
their configurations over time. Such tools would be
useful for debugging the design of a particular set of
DNA molecules, since we can directly observe how the
molecule changes configuration as a result of a particu-
lar interaction, and then intervene during the debug-
ging cycle to try new molecular designs.

The last case study illustrated how we can translate a
set of chemical reactions to DNA molecules. Each reac-
tion was translated to populations of gate molecules
that needed to remain constant over time, which
required excess molecules and pre-computation of equi-
librium conditions. Rather than translating chemical
reactions to DNA, it would be interesting to define an
alternative high-level language that still retains an
explicit notion of a DNA molecule as a finite resource,
while abstracting away from individual domains in the
DNA sequence. An example of such a language is
described by Cardelli (2009), as a means of simplifying
the circuit design process.

As a proof of concept, we have implemented a proto-
type compiler for the DNA strand displacement
language, which will be made available in Phillips
(2009). Essentially, the tool can be used to program a
collection of DNA molecules and to check whether
they conform to the syntax of the language. If not, an
error is raised. Otherwise, a text file is produced con-
taining the full set of molecules and reactions that are
generated from the initial set of molecules. The gener-
ated reactions can then be simulated using standard
techniques. In the longer term, we hope to extend our
language to automate further the process of designing
DNA circuits, by including a compilation step that
translates toehold and specificity domains to nucleotide
sequences. In this case, the translation would rely on a
set of precomputed sequences that are sufficiently
distinct from each other, and that do not exhibit
secondary structures, using appropriate DNA coding
of the regions (Kari et al. 2005; Zhang et al. 2007).
The ultimate goal as described by Yin et al. (2008) is
to be able to design and simulate arbitrarily complex
DNA circuits on a computer, and automatically compile
these to a corresponding set of nucleotide sequences,
ready for synthesis.
REFERENCES

Adleman, L. M. 1994 Molecular computation of solutions to
combinatorial problem. Science 226, 1021–1024. (doi:10.
1126/science.7973651)

Amos, M. 2005 Theoretical and experimental DNA compu-
tation. Berlin, Germany: Springer.
J. R. Soc. Interface (2009)
Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z.
& Shapiro, E. 2001 Programmable and autonomous
computing machine made of biomolecules. Nature 414,
430–434. (doi:10.1038/35106533)

Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro,
E. 2003 DNA molecule provides a computing machine with
both data and fuel. Proc. Natl Acad. Sci. USA 100,
2191–2196. (doi:10.1073/pnas.0535624100)

Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E.
2004 An autonomous molecular computer for logical con-
trol of gene expression. Nature 429, 423–429. (doi:10.
1038/nature02551)

Cardelli, L. 2009 Strand algebras for DNA computing. 15th
Int. Meeting on DNA Computing. Berlin, Germany:
Springer.

Danos, V., Feret, J., Fontana, W., Harmer, R. & Krivine, J.
2007 Rule-based modelling of cellular signalling. In
Int. Conf. on Concurrency Theory. Lecture Notes in
Computer Science, vol. 4703, pp. 17–41. Berlin, Germany:
Springer.

Green, C. & Tibbetts, C. 1981 Reassociation rate limited
displacement of DNA strands by branch migration.
Nucleic Acids Res. 9, 1905–1918. (doi:10.1093/nar/9.8.
1905)

Kari, L., Paun, G., Rozenberg, G., Salomaa, A. & Yu, S. 1998
DNA computing, sticker systems, and universality. Acta
Inform. 35, 401–420. (doi:10.1007/s002360050125)

Kari, L., Konstantinidis, S. & Sosik, P. 2005 On properties of
bond-free DNA languages. Theor. Comput. Sci. 334, 131–
159. (doi:10.1016/j.tcs.2004.12.032)

Marathe, A., Condon, A. E. & Corn, R. M. 2001 On combina-
torial DNA word design. J. Comput. Biol. 8, 201–219.
(doi:10.1089/10665270152530818)

Milner, R. 1999 Communicating and mobile systems: the
p-calculus. Cambridge, UK: Cambridge University Press.

Paun, G. & Rozenberg, G. 1998 Sticker systems. Theor.
Comput. Sci. 204, 183–203. (doi:10.1016/S0304-3975(98)
00039-5)

Paun, G., Rozenberg, G. & Salomaa, A. 1998 DNA
computing: new computing paradigms. Berlin, Germany:
Springer.

Phillips, A. 2009 The DNA strand displacement language and
simulator. See http://research.microsoft.com/dna.

Phillips, A. & Cardelli, L. 2007 Efficient, correct simulation of
biological processes in the stochastic pi-calculus. In Com-
putational methods in systems biology. Lecture Notes in
Computer Science, vol. 4695, pp. 184–199. Berlin,
Germany: Springer.

Priami, C. 1995 Stochastic p-calculus. Comput. J. 38,
578–589. (doi:10.1093/comjnl/38.7.578)

Qian, L. & Winfree, E. 2008 A simple DNA gate motif for
synthesizing large-scale circuits. 14th Int. Meeting on
DNA Computing. Berlin, Germany: Springer.

Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama,
S., Yokomori, T. & Hagiya, M. 2000 Molecular com-
putation by DNA hairpin formation. Science 288,
1223–1226. (doi:10.1126/science.288.5469.1223)

Sangiorgi, D. & Walker, D. 2001 The p-calculus: a theory of
mobile processes. Cambridge, UK: Cambridge University
Press.

Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. 2006
Enzyme-free nucleic acid logic circuits. Science 314,
1585–1588. (doi:10.1126/science.1132493)

Soloveichik, D., Seelig, G. & Winfree, E. 2008 DNA as a uni-
versal substrate for chemical kinetics. 14th Int. Meeting on
DNA Computing. Berlin, Germany: Springer.

Turner, D. N. 1996 The polymorphic pi-calculus: theory and
implementation. PhD thesis, Edinburgh University.

http://dx.doi.org/doi:10.1126/science.7973651
http://dx.doi.org/doi:10.1126/science.7973651
http://dx.doi.org/doi:10.1038/35106533
http://dx.doi.org/doi:10.1073/pnas.0535624100
http://dx.doi.org/doi:10.1038/nature02551
http://dx.doi.org/doi:10.1038/nature02551
http://dx.doi.org/doi:10.1093/nar/9.8.1905
http://dx.doi.org/doi:10.1093/nar/9.8.1905
http://dx.doi.org/doi:10.1007/s002360050125
http://dx.doi.org/doi:10.1016/j.tcs.2004.12.032
http://dx.doi.org/doi:10.1089/10665270152530818
http://dx.doi.org/doi:10.1016/S0304-3975(98)00039-5
http://dx.doi.org/doi:10.1016/S0304-3975(98)00039-5
http://research.microsoft.com/dna
http://research.microsoft.com/dna
http://dx.doi.org/doi:10.1093/comjnl/38.7.578
http://dx.doi.org/doi:10.1126/science.288.5469.1223
http://dx.doi.org/doi:10.1126/science.1132493

S436 Programming language for composable DNA circuits A. Phillips and L. Cardelli
Venkataraman, S., Dirks, R. M., Rothemund, P. W. K.,
Winfree, E. & Pierce, N. A. 2007 An autonomous
polymerization motor powered by DNA hybridization.
Nature Nanotechnol. 2, 490–494. (doi:10.1038/nnano.
2007.225)

Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. 2008
Programming biomolecular self-assembly pathways.
Nature 451, 318–322. (doi:10.1038/nature06451)

Yurke, B. & Mills Jr, A. P., 2003 Using DNA to power nanos-
tructures. Genet. Program. Evolvable Mach. 4, 111–122.
(doi:10.1023/A:1023928811651)
J. R. Soc. Interface (2009)
Yurke, B., Turberfield, A. J., Mills Jr, A. P., Simmel, F. C. &
Neumann, J. L. 2000 A DNA-fuelled molecular machine
made of DNA. Nature 406, 605–608. (doi:10.1038/
35020524)

Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. 2007
Engineering entropy-driven reactions and networks cata-
lyzed by DNA. Science 318, 1121–1125. (doi:10.1126/
science.1148532)

Zuker, M. 2003 Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic Acids Res. 31,
3406–3415. (doi:10.1093/nar/gkg595)

http://dx.doi.org/doi:10.1038/nnano.2007.225
http://dx.doi.org/doi:10.1038/nnano.2007.225
http://dx.doi.org/doi:10.1038/nature06451
http://dx.doi.org/doi:10.1023/A:1023928811651
http://dx.doi.org/doi:10.1038/35020524
http://dx.doi.org/doi:10.1038/35020524
http://dx.doi.org/doi:10.1126/science.1148532
http://dx.doi.org/doi:10.1126/science.1148532
http://dx.doi.org/doi:10.1093/nar/gkg595

	A programming language for composable DNA circuits
	INTRODUCTION
	RESULTS
	A language for DNA strand displacement
	Simple examples
	Main syntax and execution rules

	Case study: entropy-driven catalytic gate
	Case study: gate motif for large-scale circuits
	Case study: compiling chemical reactions to DNA

	METHODS
	Syntax of the strand displacement calculus
	Semantics of the strand displacement calculus
	Compiling DNA molecules to reactions
	Compiling to DNA sequences

	DISCUSSION
	References

