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Synthetic biology aims at rationally implementing biological systems from scratch. Given the
complexity of living systems and our current lack of understanding of many aspects of living
cells, this is a major undertaking. The design of in vitro systems can be considerably easier,
because they can consist of fewer constituents, are quasi time invariant, their parameter
space can be better accessed and they can be much more easily perturbed and then analysed
chemically and mathematically. However, even for simplified in vitro systems, following a com-
prehensively rational design procedure is still difficult. When looking at a comparatively simple
system, such as a medium-sized enzymatic reaction network as it is represented by glycolysis,
major issues such as a lack of comprehensive enzyme kinetics and of suitable knowledge on
crucial design parameters remain. Nevertheless, in vitro systems are very suitable to overcome
these obstacles and therefore well placed to act as a stepping stone to engineering living systems.
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1. CURRENT LIMITS IN THE
ENGINEERING OF LIVING BIOLOGICAL
SYSTEMS

The engineering of biological systems to have them fulfil
a useful purpose is a millennia-old human activity, and,
correspondingly, a substantial amount of experience and
‘know-how’ has accumulated. Over time, and of course
in particular since the introduction of the molecular
paradigm into biology, our methods have become
ever more sophisticated, and the recombinant imple-
mentation of entire new pathways in bacteria or yeast
(Nakamura & Whited 2003; Keasling 2008) has become
as realistic as the high yield manufacturing of monoclonal
antibodies with mammalian cells (Wurm 2004).

Nevertheless, the word engineering in this context
suggests a degree of robustness and conceptual sophisti-
cation in the process of achieving the useful trait that is
rarely met in practice. Engineering as the ‘application of
scientific principles to practical purposes, as the design,
construction, and operation of efficient and economical
. . . systems’ (American Heritage Dictionary) puts
specific emphasis on two terms, design and construction,
that are particularly difficult to carry out for biological
systems and thus play only a rudimentary role in the
contemporary use of the word ‘engineering’ in biology.

Many reasons contribute to this. Design is difficult,
because the most basic design requirements are not
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fulfilled in biology. Any recombinant protein that is
synthesized in a bacterial cytoplasm can potentially
interact with any other cytoplasmic protein, catalyse
reactions with any of the several hundreds of metabolites
or otherwise interact with any important physiological
process. In other words, it is rather difficult to predict
the effect of expanding the cellular genome, in any case
quantitatively, but frequently also qualitatively.

One way to substantially simplify this process would
be to develop methods of ‘chemical insulation’, in
which newly introduced functions operate in the same
cytoplasm but no chemical interactions take place. How-
ever, such attempts to orthogonalize cellular function are
only beginning to emerge (Chin 2006; Wang et al. 2006).

Furthermore, very few computational tools exist that
actually support the design process (Marchisio & Stelling
2008; Suarez et al. 2008), and, in general, such tools suffer
from the unavailability of crucial details, such as basic
information on the structure of important equations or
the value of the numerous parameters (see below).

Next, even if an ambitious rational design were avail-
able, it is only since rather recently that we have at least
in principle the means in hand to construct de novo
large segments of genetic information. Examples such
as the re-synthesis of the Mycoplasma genitalium
genome (Gibson et al. 2008) or of Escherichia coli’s
30S ribosomal subunit protein genes (Tian et al. 2004)
indicate that de novo DNA synthesis at the systems
level is currently used to re-synthesize genetic information
of existing biological systems rather than advancing to
the construction of ‘novel’ systems.
This journal is q 2009 The Royal Society
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Finally, one fundamental biological process that has
not yet visibly entered the process of design is evolution.
Even though selection processes are used to tailor the
parameters of certain elements of a design to the
proper size range (Yokobayashi et al. 2002; Anderson
et al. 2006), proper safeguards against evolution as a
process that interferes in particular with the long-term
stability of a designed cell remain to be implemented.
2. ASSEMBLING SIMPLE IN VITRO
SYSTEMS

Given the challenges of rationally engineering systems as
complex as a living cell, it is tempting to reduce the
system complexity. One straightforward way to do this
is to assemble useful systems in vitro: (i) an in vitro
system is relatively stable in time—the system cannot
react to external stimuli by changing its composition,
even though some constituents might degrade over time,
(ii) evolution cannot interfere, and (iii) the number of
parameters that can be influenced in controlled fashion
is greatly enhanced, as the cytoplasmic membrane no
longer separates intra- from extracellular space. Another
important property is that the conditions, under which
the system is operated, can be made much more similar
to the conditions under which crucial parameters of the
system were determined previously. For example, the
parameter set for enzymes is typically determined with
purified enzymes under conditions of high enzyme but
low overall protein concentration, ignoring potentially
important phenomena such as channelling (Savageau
1995). By escaping the requirement of a functional cell,
the number of options to circumvent this caveat is
much larger.

In exchange for these advantages, two problems need
further attention. The first is the inability of the system
to regenerate activities lost due to protein ageing,
which, together with the degradation of crucial small
molecules such as ATP, would be the prime reason for
the system to cease functioning. Here, ageing is used
to include phenomena that are well known to occur
even under favourable circumstances in the living cell,
such as the prolyl residue cis–trans isomerization, de-
amidation of asparaginyl residues, isomerization of
aspartyl residues or oxidative damage to many residues
(Clarke 2003), as well as inactivations brought about by
the unfavourable reaction conditions potentially
applied in the in vitro system, such as accumulating
product. The latter point can be frequently addressed
by reaction engineering strategies such as continuous
process, and the rate of some ageing reactions can be
reduced by carefully selecting proper reaction con-
ditions such as oxygen content and pH. However,
providing optimal reaction conditions for avoiding the
variety of possible covalent amino acid residue modifi-
cations might be much more difficult. Here, the
capacity to identify the most rapidly ageing member
of the system will become crucial. As the rate with
which protein inactivating by such covalent modifi-
cations proceeds is highly dependent on the specific
sequence (Clarke 2003), the half-life of such proteins
can be improved by engineering of the amino acid
sequence. At least for those modifications for which
J. R. Soc. Interface (2009)
repair pathways are known, providing active counter-
measures—such as methyl-transferases to rescue
aspartyl residues enzymes—can be considered, even
though this would of course make the in vitro approach
more complex.

The second challenge is that the system has to be
actively assembled. Depending on the system, this can
be a substantial challenge. In cell-free protein synthesis,
a system was re-constituted from 32 purified protein
components and entire ribosomes (Shimizu et al. 2001).
Similarly, purified multi-enzyme systems, though of a
smaller size, were frequently assembled from purified
components (e.g. Nahalka et al. 2003).

On the other hand, the desired components of a
system can be recruited from cell-free extracts, which
in addition can be engineered (Jewett et al. 2008).
This has the advantage of easy assembly, but might
not allow complete control over the in vitro system.
Undesired constituents of the cell-free extract might
still interfere with system operation, or the precise com-
position of the system might vary as a consequence of
prior cultivation conditions. For example, controlling
all accessory protein components required for cell-free
protein synthesis allows omitting release factor 1,
which in turn allows direct recruitment of an amber
stop codon for assignment of an additional amino acid
(Shimizu et al. 2006). Still, in particular, the cell-free
extract approach was highly successful, most prominently
in cell-free protein synthesis (Jewett et al. 2008).
3. ENGINEERING SIMPLE IN VITRO
SYSTEMS

A crucial test of our engineering ability in simplified in
vitro systems is whether we can formulate the math-
ematical models required to mechanistically describe
the system behaviour and subsequently formulate
meaningful strategies for system modification towards
a specific goal based on the mathematical description.
Of the two major applications for in vitro systems,
cell-free protein synthesis (Shimizu et al. 2006) and
multi-enzyme reaction systems (Meyer et al. 2007),
this was attempted with some success for the former
(Arnold et al. 2005). A model to describe the cell-free
production of GFP protein starting from gene
expression from a T7 promoter could successfully
predict (in some cases with rather good accuracy) quan-
titatively the behaviour of the concentration of a
number of system components such as protein concen-
tration, total mRNA concentration, acetyl phosphate
concentration, adenosine phosphates and the levels of
elongation factors Tu and T.

A part of cellular function that is understood even in
quite some more detail than translation is metabolism
and in particular central metabolism (Neidhardt 1996).
In addition, recruiting the enzymes of central metabolism
could provide access to a number of valuable compounds
that would enable interesting routes to valuable fine
chemicals (see figure 1). Therefore, we will discuss in the
following the glycolysis of E. coli as a model reaction
system and then the extent to which we can actually
implement a mathematical foundation for engineering
glycolysis as an in vitro multi-enzyme system.
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Figure 1. Reactions and enzymes of glycolysis in E. coli and potential for application (grey boxes) for selected metabolites in fine
chemistry. For abbreviations, see the legend of table 1. In vivo systems rely on the PTS system, converting PEP to PYR for
phosphorylation, and in vitro systems rely on Glk, using the conversion of ATP to ADP for phophorylation.
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4. THE E. COLI GLYCOLYSIS REACTION
NETWORK

Glycolysis describes the enzymatic conversion of the
sugar glucose to pyruvate by nine single enzymatic
steps as displayed in table 1. In this pathway, the
C6-sugar is phosphorylated twice and subsequently
split up into two C3 bodies that are further metabolized
to pyruvate. This pathway exhibits both catabolic and
anabolic character as per mole of glucose two moles of
ATP can be gained and many intermediates serve as
building blocks for biosynthesis, e.g. amino acid syn-
thesis. In many organisms, including E. coli, glucose is
the preferred substrate (Monod 1947; Adler et al.
1973) and therefore glycolysis is a carefully investigated
pathway. The glycolytic pathway can also be operated
in reverse (gluconeogenesis) if the ATP-generating
enzymatic steps of the glycolysis are replaced by other
enzymes that remove phosphates by hydrolysis.

In growing E. coli, glucose is taken up by the
membrane-located phosphotransferase system that
consumes a phosphoenolpyruvate to phosphorylate
glucose (Kundig et al. 1964; Postma et al. 1993;
Tchieu et al. 2001). In in vitro systems, this step can
be circumvented by using the soluble glucokinase in
order to carry out the first phosphorylation. Glucoki-
nase is constitutively expressed but growth on glucose
lowers the enzyme level to about 50 per cent (Meyer
et al. 1997).
J. R. Soc. Interface (2009)
Tables 1 and 2 give an overview about available infor-
mation on the glycolytic enzymes of E. coli. They clearly
indicate a number of challenges for the modelling and the
provision of reproducible experimental data, for in vivo as
well as in vitro systems. First, there are isoenzymes
(phosphofructokinases, fructosebisphosphate aldolases,
phosphoglycerate mutases and pyruvate kinases) with
different kinetic parameters. Then, the synthesis of
some enzymes is inducible, that of others not. Most strik-
ingly,many boxes are empty, indicating that the required
knowledge has never been obtained in detail even for a
model system such as E. coli.

The latter point also holds true for the kinetic infor-
mation summarized in table 2. In some cases, not even
the multimeric state of the enzymes is clear. Also the
type of mechanism and the eventual order of reactants,
both necessary for the modelling of enzyme kinetics,
is not always clear. Furthermore, some available
information is plainly contradictory, e.g. for phospho-
fructokinase 1 phosphoenolpyruvate is reported as
inhibitor as well as activator. And finally, even though
for some enzymes effectors were reported, it is impor-
tant to bear in mind that this does not mean that the
entire set of possible effectors was comprehensively
tested, as indicated by the late discovery of inhibitory
effects from phosphoenolpyruvate on a number of
glycolytic enzymes including glucokinase and phospho-
glucoisomerase (Ogawa et al. 2007). In addition,
effectors are often not single compounds but rather



Table 1. Reactions of glycolysis from an in vitro systems point of view (soluble gucokinase substitutes for the membrane-bound
PTS system) including the corresponding enzymes of E. coli W3110 as identified by BioCyc (Karp et al. 2005), EC numbers,
the corresponding gene, operon and reported isoenzymes. AMP, ADP, ATP: adenosine mono/di/triphosphate; BPG: 1,3-
bisphosphoglycerate; DHAP: dihydroxyacetone phosphate; F6P: fructose-6-phosphate; FBP: fructose 1,6-bisphosphate; G:
glucose; G6P: glucose-6-phosphate; GAP: glyceraldehyde 3-phosphate; GMP, GDP, GTP: guanosine mono/di/triphosphate;
NAD(H): nicotinamide adenine dinucleotide, oxidized and reduced form; NMP, NDP, NTP: nucleoside mono/di/triphosphate;
PEP: phosphoenolpyruvate; 2PG: 2-phosphoglycerate; Pi: phosphate group; 3PG: 3-phosphoglycerate; PTS: phosphotransferase
system; PYR: pyruvate; R5P: ribose-5-phosphate; succCoA: succinyl coenyzme A.

reaction
EC
number enzyme gene operon expression

G+ATP O G6P+ADP 2.7.1.2 glucokinase glk glk constitutive (Meyer et al. 1997)
G6P O F6P 5.3.1.9 glucosephosphate isomerase pgi pgi
F6P+ATP O FBP+ADP 2.7.1.11 6-phosphofructokinase 1 pfkA pfkA induced during glycolysis (Kotlarz

et al. 1975)
6-phosphofructokinase 2 pfkB pfkB constitutive with 5% activity in

wild-type (Kotlarz et al. 1975)
FBP O DHAP+GAP 4.1.2.13 fructose-bisphosphate

aldolase class I
fbaB fbaB induced by gluconeogenic

substrates with 0–5% of overall
Fba activity during growth on G
(Thomson et al. 1998)

fructose-bisphosphate
aldolase class II

fbaA fbaA-pgk constitutive (Thomson et al. 1998)

DHAPO GAP 5.3.1.1 triosephosphate isomerase tpiA tpiA not reported
GAP+NAD+ Pi O

BPG+NADH
1.2.1.12 glyceraldehyde 3-phosphate

dehydrogenase-A complex
gapA gapA not reported

BPG+ADP O 3PG+ATP 2.7.2.3 phosphoglycerate kinase pgk fbaA-pgk not reported
3PG O 2PG 5.4.2.1 phosphoglycerate mutase 1 gpmA gpmA not reported

phosphoglycerate mutase 2,
cofactor independent

ytjC ytjC

phosphoglycerate mutase 3,
cofactor independent

gpmI envC-
gpmI-
yibQ

2PG O PEP+H2O 4.2.1.11 enolase eno Eno
PEP+ADP O PYR+ATP 2.7.1.40 pyruvate kinase 1 pykF pykF induced by growth on glucose

(Waygood et al. 1975)
pyruvate kinase 2 pykA pykA constitutive (Waygood et al. 1975)
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classes of compounds. Allosteric sites of enzymes recog-
nizing effectors may not have a high specificity resulting
in various compounds with analogue chemical groups
influencing the reaction. Pyruvate kinase 2 is allosterically
activated by various nucleotide monophosphates with
different affinities for the single compounds and adenosine
and guanosine monophosphate showing the strongest
effects (Waygood et al. 1975).
5. MODELLING OF ENZYMATIC SYSTEMS
WITH MECHANISTIC DESCRIPTIONS

Ideally, a mathematical model for a multi-enzyme
system can be composed from comprehensive rate
equations for each enzyme in the system. Using glycoly-
sis as a model system has the advantage that the
involved enzymatic steps have been the subject of
intensive studies since the 1960s. Enzymes from eryth-
rocytes, trypanosomes, Saccharomyces cerevisiae and
E. coli were investigated in quite some detail. However,
despite (or because of) this breadth in scope, none of the
mentioned pathways was investigated comprehensively
for one single organism. Therefore, all mathematical
models that try to predict glycolytic dynamics from
J. R. Soc. Interface (2009)
the properties of the constituting enzymes rely on the
combination of data from several organisms. The data
were usually obtained from purified enzymes (see
above), and it is unclear how the presence of high
protein concentrations or other specific enzymes influ-
ences enzyme kinetics (this argument is more important
for in vivo systems, as in vitro systems can be better
adapted to the conditions under which the parameters
were acquired). And, finally, if the enzymes are com-
bined into a system, members of the system are exposed
to the full set of substrate(s), intermediates and
product(s) that can act as effectors, rather than only
a selected set of (commercially available) compounds
selected by the experimenter. The corresponding com-
prehensive effector studies are, however, not available.
As a result, it is not surprising that even for the arche-
typical model glycolysis, that of S. cerevisiae, it is not
possible to (i) collect a set of equations for all involved
enzymes from detailed prior investigations and (ii) that
even if the missing data are provided from experiments
that mimic a system environment it remains difficult
to accurately predict the dynamic behaviour of the
aggregated system (Teusink et al. 2000).

To fully appreciate the challenge, it might be worth
taking a closer look at the state of the underlying
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modelling basics. Traditionally, an important approach
to describe the kinetics of enzymatic reactions is the
Michaelis–Menten equation (Michaelis & Menten
1913). Despite the widespread use of this description,
it was originally developed for a one-substrate reaction
under starting conditions (product concentration negli-
gible and therefore reverse reaction and any product
inhibition effects negligible). These conditions do not
apply in a multi-enzyme system such as an in vitro ver-
sion of the central metabolism, where many reactions
have more than one substrate and all intermediates of
the reaction pathway are available. An extended version
of the Michaelis–Menten description that describes
reversible one-substrate reactions can be useful for the
isomerization reactions involved in glycolysis (figure 1)

v ¼ VfðcA=KM;AÞ �VrðcP=KM;PÞ
1þ ðcA=KM;AÞ þ ðcP=KM;P)

; ð5:1Þ

where v is the product formation or reaction rate, V is the
limiting reaction rate of either the forward or the back
reaction of substrate A and product P, ci describes the
concentrations of the involved species and KM,i describes
the Michaelis constants of the enzyme for substrate and
product. This equation can be made easier to evaluate
experimentally by combining it with the Haldane
relationship

K eq ¼ ceq
P

ceq
A
¼ VfKM;P

VrKM;A
; ð5:2Þ

where the superscript eq indicates equilibrium conditions
and Keq is the equilibrium constant of the isomerization.

As pointed out, most enzymatic reactions occur
between a higher number of compounds with not necess-
arily the same number of substrates and products, but
the majority of biochemical reactions are of the two sub-
strates and two products type (bi–bi) (Karp et al. 2007).
Through the higher number of metabolites, different
reaction schemes become theoretically possible, differing
in the sequence with which the various substrates associ-
ate themselves with the enzyme and with which the
products are released. The available possibilities that
arise already for a bi–bi reaction are summarized in
figure 2. The different mechanisms obey individual
rate laws considering the different interactions of
enzyme, reactants and their complexes, introducing
new terms and parameters. The structure of the
equations changes depending on the assumptions
made—for example, whereas the classical one-substrate
Michaelis–Menten equation remains mathematically
the same irrespective of whether the rapid equilibrium
assumption or the steady-state assumption was used to
derive it—this is not true for reactions with more than
one substrate or product, and frequently both assumptions
are used in one equation. Consequently, intimate exper-
imental knowledge is required to select the correct rate
equation and model the rate correctly (Liebermeister &
Klipp 2006), in particular if competitive, uncompetitive
or non-competitive inhibition needs to be taken into
account that can influence V and/or KM values.

Another limitation of the Michaelis–Menten
mechanism can be seen from the rate law: a change from
10 to 90 per cent of the maximum enzyme activity
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requires a substrate concentration change by the factor
81 (Segel 1975). Under in vivo conditions, such strong
concentrations have not been reported (Theobald
et al. 1993, 1997; Chassagnole et al. 2001, 2002; Rais
et al. 2001), suggesting that reaction rate control is
exerted to a large extent by a different type of mechanism
that makes use of cooperativity and allostery.

The formation of oligomers required for cooperativity
is a frequent phenomenon in biochemistry—for example,
most glycolytic enzymes form complexes of two or four
identical subunits (homodimers or homotetramers).
Here, binding of a substrate to one binding site of one
polypeptide influences the affinity of another subunit
for the substrate, giving rise to the cooperativity—
positive if the affinity for the substrate increases for
the other subunits and negative if it decreases. Such
behaviour can be described by the empirical Hill equation

v ¼ V
cnH

KnH
0:5 þ cnH

; ð5:3Þ

where K0.5 is the half saturation constant at which
v ¼ 0.5V and nH is the Hill coefficient, an empirical con-
stant capturing the effects of cooperativity (larger than 1
for positive cooperativity) (Hill 1910, 1913).

The resulting plot shows a sigmoid curve that,
depending on the value of n, requires much less change
in substrate concentrations for a substantial change in
reaction rate. Allostery, in turn, describes the existence
of a special binding site or sites on an enzyme for a metab-
olite that is not part of the enzyme-catalysed reaction but
affects it. However, the two phenomena of cooperativity
and allostery are conceptually closely related to each
other (Monod et al. 1963), which led to the development
of the symmetry model by Monod, Wyman and
Changeux (Monod et al. 1965), who assumed the follow-
ing statements: the oligomer is made up of n identical
subunits keeping equivalent properties in the bound
form and ligands only interact with their specific binding
site on each subunit. Subunits interact in such a way that
J. R. Soc. Interface (2009)
each monomer as well as the oligomeric assembly has at
least two reversibly accessible states. A change from
one to another state affects all subunits symmetrically
and the affinities between ligands and binding sites are
altered. The two states are called R for relaxed and T
for tense and they are assumed to be in equilibrium
with the constant L. The T state is stable but has only
a low substrate affinity, whereas the R state has a high
substrate affinity but is rather unstable. Through the
uptake of substrate, the binding energy stabilizes the R
state. The mathematical description of the fractional
saturation �Y (which is the ratio of binding sites occupied
by the ligand and the total number of binding sites) of
such a system is

�Y ¼ Lcað1þ caÞn�1 þ að1þ aÞn�1

Lð1þ caÞn þ ð1þ aÞn ð5:4Þ

with the parameters a ¼ cA/KR,A and c ¼ KR,A/KT,A,
and the equilibrium constants of substrate A binding
for the R and T states, KR,A and KT,A, respectively.
Under rapid equilibrium conditions, the fraction of
binding sites occupied is equivalent to v/V (Segel 1975)
and therefore the rate law can be derived from v ¼ V �Y .
Under the assumption that the T state has no affinity
for the substrate, which is equal to the R state binding
the substrate exclusively, then c ¼ 0 and equation (5.4)
simplifies to

�Y ¼ að1þ aÞn�1

Lþ ð1þ aÞn : ð5:5Þ

Effectors act by changing the equilibrium constant L
between the two enzyme states. For the assumption
that an inhibitor I binds exclusively to enzyme in the
T state with the equilibrium constant KT,I and an acti-
vator F to the R state with KR,F and both of them have
a stabilizing effect on their state, then effectors change
the apparent L value according to

L0 ¼ L
ð1þ bÞn

ð1þ gÞn ð5:6Þ

with b ¼ cI/KT,I and g ¼ cF/KR,F.
Alternative models for regulatory enzymes have been

suggested by Koshland et al. (1966). In their proposal,
subunits can be at individual states, which is the
main contrast to the symmetry model of Monod,
Wyman and Changeux (Monod et al. 1965). In total,
four models for tetrameric regulatory enzymes differing
in their geometries and hence the possible subunit
interactions have been suggested. As in the case for
the symmetry model, two subunit states have been
considered with one of them having no affinity for the
substrate. Unfortunately, the developed models just
reflect the cooperative behaviour but miss the allosteric
consideration of effectors (Koshland et al. 1966).

Although the presented models are the most fre-
quently used ones for regulatory enzymes, there are
clear limitations following from the original model pur-
pose. In both cases, the goal was to describe binding
kinetics of oxygen to haemoglobin (Monod et al. 1965;
Koshland et al. 1966), and therefore, assuming one sub-
strate, irreversibility, no effectors and rapid equilibrium
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assumption of enzyme states was sufficient. Later, the
symmetry model of Monod, Wyman and Changeux
was generalized to reversible monosubstrate reac-
tions (Popova & Sel’kov 1975) and multi-substrate
reactions (Popova & Sel’kov 1976).
6. MODELLING OF ENZYMATIC SYSTEMS
BY LINLOG KINETICS

An alternative approach to modelling dynamic behav-
iour of enzyme networks which has gained importance
in recent years is the linlog kinetics approach intro-
duced by Visser and Heijnen (2003). It is an extension
of metabolic control analysis (Kacser & Burns 1973;
Heinrich & Rapoport 1974) based on steady-state
fluxes and concentrations. Therefore, all concentrations
of enzymes, metabolites and effectors are normalized to
their steady-state values.

Inspired by linear non-equilibrium thermodynamics,
reaction rates are set as proportional to the free Gibbs
energy DG with a logarithmic dependence on reactants
and effectors (Visser and Heijnen 2003; Bulik et al.
2009). Such a rate law has the general description

v
v0 ¼

cE

c0
E

1þ
X

i

10
ci

ln
ci

c0
i

 !
; ð6:1Þ

where v is the reaction rate, E is the enzyme, ci describes
concentrations of reactants and effectors and the super-
script 0 indicates the steady-state value. The elasticities
10

ci
are parameters that quantify the relative change in

the reaction rate due to a relative change in metabolite
level, while maintaining everything else constant
(Visser & Heijnen 2003). Elasticities can be gained
from experiments (Kresnowati et al. 2005) or from
mechanistic models (Visser et al. 2004). By definition,
elasticities are only local properties of enzymes or enzy-
matic systems and in consequence linlog models are
approximations of pathway dynamics around a specific
steady state. For an application, mainly in the context
of improving bacterial or fungal microorganisms for the
formation of chemicals or investigating limited pertur-
bations in in vitro systems, this might be sufficient, and
the more detailed mechanistic kinetic modelling can be
replaced by the linlog approach where covering the full
concentration space is not necessary. This results in a
lower experimental and mathematical effort as also the
number of necessary parameters decreases (Visser &
Heijnen 2003). Within the given constraints, required
changes in enzyme level can be calculated, giving targets
for the design of recombinant organisms. Visser et al.
(2004) proved the validity of the linlog kinetics by appli-
cation of and comparison with a mechanistic model for
E. coli (Chassagnole et al. 2002). Here, flux control
coefficients and changes in enzyme and metabolite
levels were evaluated but unfortunately no time series
of metabolites were published.

Bulik et al. (2009) compared, among others, the
linlog approach with mechanistic modelling with
respect to describing the dynamics of the purine salvage
pathway of hepatocytes and the energy and redox
metabolism of erythrocytes, and the linlog approach
did not reproduce the behaviour well (relative to the
J. R. Soc. Interface (2009)
mechanistic approach). However, hybrid models com-
posed of detailed mechanistic rate equations for central
regulatory enzymes and simplified ones for the majority
of enzymes showed a good improvement in simulation
(Bulik et al. 2009). Nevertheless, there were still signifi-
cant deviations compared with the full mechanistic
model.

Both approaches, mechanistic modelling and the
linlog approach, are in principle able to reflect well
the highly nonlinear character of enzyme kinetics.
However, both approaches require the availability of
large sets of accurately quantified parameter sets,
which are not trivial to acquire, as will be discussed in
the next section.
7. MODELLING OF LARGER ENZYME
NETWORKS

From the beginning of metabolic modelling, the central
carbon metabolism was the focus of research due to its
dominating function in anabolism and catabolism
(Richter et al. 1975), and it maintained its important
role until today (Bali & Thomas 2001; Helfert et al.
2001; Hynne et al. 2001; Lambeth & Kushmerick 2002;
Albert et al. 2005; Conant & Wolfe 2007; Hardiman
et al. 2007; Schuetz et al. 2007; Maier et al. 2008). Next
to modelling the central carbon metabolism, additional
pathways, especially of amino acids biosynthesis, are
increasingly described by models (Chassagnole et al.
2001; Bhartiya et al. 2003; Yang et al. 2005; Caldara
et al. 2008). The available models are then connected to
larger scale models (Vaseghi et al. 1999; Chassagnole
et al. 2002), but the overall scale of the models has
hardly changed over the last 30 years as database research
underlines (Rizzi et al. 1997; Le Novere et al. 2006;
Chalhoub et al. 2007). Hence, the largest scale dynamic
model for E. coli metabolism (Chassagnole et al. 2002)
includes 30 reaction rates and 18 balanced metabolites
in contrast to the more than 1000 enzymatic reactions
encoded and more than 1000 compounds detected in
E. coli (Karp et al. 2007). These observations already
indicate that metabolic modelling is constrained by
severe limitations. One of these limitations is that model
parameter space grew faster than computing power and
the formulation of rate laws alone is not sufficient for
simulation purposes as first values for the parameters
introduced must be provided. Publications that describe
in detail the biochemistry of relevant enzymes include
measuredvalues forparameters.But even if these enzymes
were obtained from the same organism for which the
model is to be derived, it is unclear how the parameters
change when the enzymes are used under different
environmental conditions or in a systems context (see
above; Teusink et al. 2000; Hadlich et al. 2009). Therefore,
an adaptation of the model parameters is unavoidable
to simulate system behaviour, and this adaptation has to
be carried out by computationally intensive parameter
estimation algorithms.

The estimation of model parameters describing the
dynamics of the enzymatic system requires special
experiments to gain reliable values. Measurements of
metabolite concentrations under different steady-state
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conditions are still essential but require a complement.
The dynamic parameters of the model describe in which
manner a transition between different steady-state con-
centrations of the system occurs, so an observation of
concentration change over time is mandatory to identify
concrete values. In order to gain such metabolite concen-
tration time series, the enzymatic system has to be
stimulated to perform the desired transition and concen-
trations have to be recorded. Both operations are
problematic and clearly limited in the case of living
systems as will be pointed out in §7.1.

Given the model character of E. coli, it has—like the
yeast S. cerevisiae—assumed a central role in exper-
iments directed at modelling large enzyme networks. So
far, the focus was on analysing metabolic networks in
vivo, and the available methods were designed to
obtain time-series data for in vivo systems. The most
comprehensive kinetic model for E. coli was developed
by the Reuss group (Chassagnole et al. 2002). The goal
was to describe quantitatively the system behaviour of
the central carbon metabolism of the organism. It
includes the sugar transport through the phosphotrans-
ferase system into the cell, the subsequent glycolysis
and the pentose phosphate pathway. As many of the cen-
tral questions for in vitro modelling are very similar, we
will use this model to analyse current possibilities and
limitations of modelling dynamic enzymatic reaction
systems, the identification of model parameters and
the experimental setup required.
7.1. Reaction system, perturbation, sampling,
and quantification

To guarantee the reproducibility of the obtained cellular
status and the resulting measurement of metabolites,
well-defined protocols are necessary for the growth of
cells, as otherwise different protein profiles will lead to
arbitrary cellular states and concentrations of metab-
olites. This requires chemostat cultivations (Novick &
Szilard 1950) with synthetic media. The chemostat
mode allows the reproducible implementation of a
steady state at a selected specific growth rate. Because
of its control properties, the chemostat is the typical reac-
tor type for dynamic experiments (Rizzi et al. 1997;
Theobald et al. 1997; Vaseghi et al. 1999; Chassagnole
et al. 2002), and the continuous reactor (usually in the
form of an enzyme membrane reactor) is its counterpart
for in vitro systems. A disturbance of the growth
conditions enforces a dynamic reaction of the enzymatic
network and the metabolite concentrations. Recorded
time series of metabolite concentrations as a consequence
of changing extracellular concentrations can then be
used for the in vivo parametrization of a dynamic
model describing the enzymatic reaction rates (Rizzi
et al. 1997; Theobald et al. 1997; Vaseghi et al. 1999;
Chassagnole et al. 2002). However, for in vivo systems—
but not for in vitro systems—the array of possible
perturbations is limited. To gain a strong response, the
intervention should be as direct as possible, ideally with
an involved compound. For in vivo systems, the com-
pound needs to cross the cytoplasmic membrane, so
compounds for an effective perturbation must either be
able to diffuse easily through the cell membrane or the
J. R. Soc. Interface (2009)
cell must possess a transporter. Effectively, this has lim-
ited the applied perturbations to glucose pulsing from a
highly concentrated glucose solution to a glucose-limited
culture in a steady state (Theobald et al. 1993, 1997;
Weuster-Botz 1997; Schaefer et al. 1999; Chassagnole
et al. 2002).

The time frame after which the first sample can be
withdrawn after perturbation is given by two processes.
First, the time span between the disturbance and the
first sample of the transition must be long enough to
allow for ideal mixing of the reactor contents, which is
necessary to obtain a reproducible sample (Buziol et al.
2002). The second limiting process is the dynamics of
cell internal reactions, which is at the time scale of subse-
conds (Harrison & Maitra 1969; de Koning & van Dam
1992; Chassagnole et al. 2002). These opposing objec-
tives for the sampling of fast metabolic changes can
hardly be satisfied for the first samples but indicate the
requirement to resolve the time courses of concentrations
on the subsecond scale (Mashego et al. 2007). Conven-
tional sampling strategies such as sampling valves,
sampling from a bypass or the usage of filtration modules
are not even able to resolve a few seconds (de Koning &
van Dam 1992; Theobald et al. 1993) (figure 3). By mini-
mizing the dead space of the sampling device relative to
the sampling volume, time scales of seconds can be
achieved and the process can be automated (Theobald
et al. 1997; Schaefer et al. 1999). An alternative sampling
method is the stopped-flow technique that is especially
suited to access subsecond time scales (Chance 1964)
(figure 3). A continuous flow of fermentation broth is
transferred into an external turbulent mixing chamber
where the perturbation is performed. In the effluent
pipe after the chamber, the reaction time is then defined
by the residence time required to reach the next sampling
valve (Buziol et al. 2002; de Koning & van Dam 1992;
Visser et al. 2002). The main advantages of the
stopped-flow technique are the decoupling of sampling
and reaction time, enabling sampling below 100 ms, the
maintenance of the steady state of the culture in
the master reactor, and the possibility to collect different
sample volumes (Buziol et al. 2002). Chassagnole et al.
(2002) combined both approaches, stopped-flow for the
first second and negligible dead space for subsequent
sampling. Whereas the end time for sampling is deter-
mined by the investigated question for in vitro systems,
for in vivo systems it is determined by the time constant
with which the cells can react to the perturbation by
re-adjusting their enzyme concentrations (which is of
the order of a few minutes).

A crucial step in analysing reaction systems is to
effectively stop the reaction at the time of sampling
(figure 4). This is particularly difficult for in vivo sys-
tems as the metabolite concentrations need to be
measured intracellularly and the intervention taken to
stop the reaction during sampling must not lead to a
mixing of intra- and extracellular contents. However,
the chemical diversity of the intracellular metabolites
makes this rather challenging. Furthermore, the
method to stop the reaction (‘quenching’) needs to
be compatible with the subsequent extraction and
analysis procedure. Standard methods of quenching
include a rapid temperature and/or pH change
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(Winder et al. 2008) and for extraction treatment of the
cells with boiling ethanol, boiling water, cold perchloric
acid, potassium hydroxide or chloroform (Mashego
et al. 2007) leading to different recovery profiles for
compounds of different chemical properties (Maharjan
& Ferenci 2003; Winder et al. 2008).

The next critical issue is the quantification of metab-
olites. The concentrations for internal and external
metabolites can easily vary over three orders of magni-
tudes from millimolar to nanomolar. At the same time,
available sample volumes are typically low, of the order
of a few to a few hundred microlitres. A large spectrum
of analytical platforms is currently used, including
enzymatic assays, NMR, GC-MS and LC-MS (Schaub
et al. 2006; Mashego et al. 2007) (figure 4). In general,
the effort required to obtain concentration data of
sufficient accuracy is considerable (Buchholz et al. 2001)
(figure 5). To our knowledge, there is no study that tries
to quantify the aggregate error that stems from sampling,
quenching, extraction and analysis, but it seems safe to say
that this error is not negligible. Another essential point is
the time required to acquire a set of concentrations. The
typical arrangement of sample preparation and (where
J. R. Soc. Interface (2009)
required) sample derivatization, chromatographic sepa-
ration and subsequent MS-based analysis takes about 1 h
per time point (Meyer et al. 2007). This severely limits
the number of analyses that can be evaluated per time
series, and thus the quality of the parameterization effort.

Many of the limitations discussed above can be
circumvented by investigating cell-free systems. In
particular, the absence of a cell membrane removes
many obstacles, as it allows system perturbation with
compounds that cannot cross the membrane. Further-
more, many sources of error in the chemical analysis
are removed—in exchange for a limitation to water-
soluble metabolites in the system analysis. In addition,
the composition of the in vitro system can be validated
before and after the experiment, again increasing the
reliability of the analysis. In summary, a substantial
part of the difficulties in system analysis can be
circumvented by analysing in vitro systems.
7.2. Parameter estimation

The large kinetic model assembled by Chassagnole et al.
(2002) shows the full diversity of kinetic rate equations.
For glycolyis, reversible Michaelis–Menten-type
kinetics derived from both rapid equilbrium and
steady-state assumption with or without inhibition
and allosteric activation were used as well as the empiric
Hill equation or the allosteric model of Monod, Wyman
and Changeaux with extensions. The oxidative part of
the pentose phosphate pathway was modelled with
mass action kinetics, and anabolic synthesis reactions
have been implemented either as zeroth-order mass
action rate laws or as irreversible Michaelis–Menten
kinetics. The irreversible steps in glycolysis restrict the
model to describe glycolytic behaviour and exclude
the gluconeogenic direction. One potentially difficult
problem in analysing the system is the presence of iso-
enzymes, which refers to different enzymes that catalyse
the same reaction, typically with different parameters
to satisfy different cellular requirements under different
physiological circumstances. Only three such cases
were explicitly considered in the model under study, by
either lumping the isoenzymes into one rate equation
(glucose-6-phophate isomerase and pyruvate kinase
reactions) or consciously ignoring one enzyme based on
literature data (phosphofructokinase 2). In summary,
the model uses 88 parameters, which need to be opti-
mally estimated, and already the numbers from smaller
metabolic networks are substantial (Rizzi et al. 1997;
Teusink et al. 2000). This requires the restriction of
the parameter space to a physiologically meaningful
interval, e.g. to constrain KM values to values between
0 and a few millimolar, and a good first estimate
improves quality and convergence of parameter esti-
mation strongly. In particular, the usage of in vitro
determined values is helpful. To obtain an idea of the
scope of the problem, consider 100 parameters with
only 10 discrete values, and 10100 combinations need
to be evaluated, which cannot be effectively searched
even by a computational brute force approach with an
estimated 1000 evaluations per second.

A solution for this problem is the usage of strategies
implemented to an optimizer program that minimizes
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the error between simulation and experiment. Because of
the strong nonlinearity of mechanistic enzyme kinetics,
no a priori knowledge about the behaviour of the error
function is given and gradient-based optimization can
be expected to yield local minima and thus suboptimal
solutions. Global optimization algorithms are required,
such as evolution strategies and parameter swarm
searches (Streichert & Ulmer 2005; Vaz & Vicente
2007; Draeger et al. 2009). Because of the properties of
such global search algorithms, local optimizers can be
used for a terminal refinement of the solution.

In order to cut the computational cost as a conse-
quence of the previously demonstrated combinatorial
explosion, the estimation process can be divided into
smaller subproblems for single enzymes as suggested
and applied by Rizzi et al. (1997) and by Chassagnole
et al. (2002). For the estimation of the limiting reaction
rates V of the rate equations, an interesting approach
has been chosen by Chassagnole et al. (2002), which
was based on previous works (Rizzi et al. 1997; Vaseghi
et al. 1999). If at a steady state (superscript 0) the
reaction rate v0 of an enzyme

v0 ¼ V f ð~c 0; ~pÞ ð7:1Þ

is defined by the limting rate V and a function (the kinetic
equation) depending on the steady-state concentrations
~c 0 and the parameter set~p, then the maximum reaction
velocities can be calculated from the equation

V ¼ f ð~c 0; ~pÞ
v0 : ð7:2Þ

As a consequence, one parameter less per rate
equation needs to be estimated as it can be calculated
and the observed steady-state reaction rate is
J. R. Soc. Interface (2009)
automatically fulfilled. The required steady-state fluxes
can be calculated by metabolic flux analysis (for in vivo
systems) or from continuous reactor experiments (for in
vitro systems), whereas the steady-state concentrations
of metabolites can be gained from measurements
(Theobald et al. 1997; Winder et al. 2008) or, if not avail-
able, calculated by the use of near-equilibrium constants
(Schauer et al. 1981; Vaseghi et al. 1999; Chassagnole
et al. 2001). The last set of missing values for the
determination of the limiting reaction rates are then
the parameters p themselves, which are unknown or at
least biased in the case of known in vitro parameters.

Despite the availability of such powerful algorithms,
the solutions of the optimization problem continue to
be local and the search for them potentially very time
consuming. Furthermore, the result of the parametriz-
ing effort can only be as good as the model for which
the parameters are estimated. Consequently, whereas
acceptable fits of simulations to experimental data can
be obtained for specific regions (Chassagnole et al.
2002; Arnold et al. 2005), the predictive power of the
model remains limited. Here, it is particularly encoura-
ging that in vitro systems allow at least in principle a
much more detailed and comprehensive approach to
system analysis. The same reaction system can be
exposed to carefully selected combinations of sub-
strates, metabolites and effectors to expose limitations
of the model previously overlooked. Even though the
corresponding experimental effort will be substantial,
it will be much less than manipulating in vivo systems
via knock-outs or recombinantly tailored protein
levels, which are likely to provoke additional changes
in other parts of the system. In other words, with
in vitro systems, there is a straightforward path to
improve the underlying model assumptions and thus
improve the usefulness of the model for engineering.
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8. SUMMARY

One way to define the mission of synthetic biology is to
implement the foundations of system engineering for
biological systems. This is a highly ambitious goal,
based mainly on the development of techniques to
provide de novo synthesized DNA fragments of
considerable length and on the hope that the new
discipline of systems biology will ultimately provide
the knowledge framework that will enable rational
engineering rather than on a current detailed systems
understanding. When focusing on one of the best under-
stood simple systems available in biology, the glycolysis
of the model bacterium E. coli, it becomes clear that
obstacles remain. Basic information is missing for a
number of enzymes, some kinetic mechanisms are
unknown (and, therefore, the proper formulation of
rate equations remains difficult), and the effector
profiles of the enzymes have not been investigated
comprehensively. Therefore, assembly of a mathematical
model from the kinetic equations of the separate enzymes
is not fully possible, and the structure of the single
equations and the parameter values need to be inferred
from dynamic experimental data. However, the cyto-
plasmic membrane limits the capacity to systematically
perturb the intracellular system. In addition, the current
analysis methods that were developed for the determi-
nation of intracellular metabolite concentrations have
limitations in accuracy and, more importantly, through-
put. Finally, the parameter sets are usually so large that
obtaining the best set remains a challenge.

Although most of these obstacles apply to both
in vivo and in vitro systems, each of these obstacles
can be addressed more easily in in vitro systems: these
systems can be made substantially simpler and more
tightly controlled and they are not prone to evolution.
They can be investigated with a much larger degree of
experimental freedom, allowing a much broader appli-
cation of optimal experimental design to validate and
correct model structure, and they allow a much more
diverse series of experiments for parametrization, such
as more variable perturbations and different pertur-
bation functions. Therefore, we propose that in vitro
systems are very suitable model systems to advance
our capacity in all aspects of biological systems
engineering, including design.

This work was supported by the EU (FP6-NEST Pathfinder
Synthetic Biology, project Eurobiosyn no. 12749).
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