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Abstract
Three-dimensional microwave tomography represents a potentially very important advance over
2D techniques because it eliminates associated approximations which may lead to more accurate
images. However, with the significant increase in problem size, computational efficiency is critical
to making 3D microwave imaging viable in practice. In this paper, we present two 3D image
reconstruction methods utilizing 3D scalar and vector field modeling strategies, respectively.
Finite element (FE) and finite-difference time-domain (FDTD) algorithms are used to model the
electromagnetic field interactions in human tissue in 3D. Image reconstruction techniques
previously developed for the 2D problem, such as the dual-mesh scheme, iterative block solver,
and adjoint Jacobian method are extended directly to 3D reconstructions. Speed improvements
achieved by setting an initial field distribution and utilizing an alternating-direction implicit (ADI)
FDTD are explored for 3D vector field modeling. The proposed algorithms are tested with
simulated data and correctly recovered the position, size and electrical properties of the target. The
adjoint formulation and the FDTD method utilizing initial field estimates are found to be
significantly more effective in reducing the computation time. Finally, these results also
demonstrate that cross-plane measurements are critical for reconstructing 3D profiles of the target.

Index Terms
Adjoint method; alternating-direction implicit finite-difference time-domain (ADI-FDTD); finite-
difference time-domain (FDTD); microwave tomography

I. Introduction
The electrical properties of normal and cancerous tissues are significantly different across
microwave frequencies [1]–[3]. To exploit this apparent contrast, substantial effort has been
invested in the development of microwave imaging [4]–[8]. Compared to traditional X-rays,
microwave energy is advantageous in several important respects, for example, it does not
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involve ionization, its associated imaging hardware is relatively low in cost and its
absorption and scattering is altered by physiological processes of interest in tissue. These
features make microwave methods an intriguing medical imaging option for situations
where frequent scanning is required, such as in breast cancer screening or therapeutic
monitoring. Within the microwave imaging arena, frequency-domain based tomography
approaches [4]–[7] have been investigated along with time-domain techniques based on
synthetic aperture radar [8]–[10] for breast cancer detection.

In physical realizations of microwave imaging systems, the fields radiate into 3D space.
Nonetheless, initial image reconstruction techniques reported in the literature were largely
developed for 2D cases in order to achieve higher computational resolution at reasonable
compute speeds and to reduce the amount of measurement data required [9], [11]–[14].
Approximations are necessary in order to utilize 2D methods, such as the tissues of interest
being cylindrical in structure, and in most instances, the fields being confined to the
transverse-magnetic (TM) mode. Because of these assumptions, the recovered 2D images
often exhibit artifacts or distortions directly related to the approximations [15]. With the
advent of increased computational power (including parallel computing using graphical
processing units [16]–[18]) along with various algorithmic improvements (such as the
adjoint approach [19]), 3D image reconstruction with clinically relevant spatial resolution
and commensurate computational field and tissue property sampling is now within reach
[20], [21].

In parallel to advances in image reconstruction, 3D microwave data acquisition systems
have been developed by several research groups. A preliminary study of whole body
imaging of a canine conducted by Semenov et al. [22] demonstrated, to a limited degree, the
feasibility of 3D microwave tomography. However, both the data acquisition and image
reconstruction times were unsatisfactory for realistic utility. More recently, a 3D scanning
microwave imaging system reported by Yu et al. [23] has demonstrated respectable spatial
localization for a simple target; however, the recovered microwave property contrast was
relatively low.

These algorithm and hardware advances set the stage for practical 3D microwave
tomography. In this paper, we concentrate our efforts on applying computational innovations
to accelerate the field solution as the forward modeling problem appears to be the bottleneck
for accurate image reconstructions in 3D. We also explore the image quality improvements
attained by adding cross-plane measurement data to co-planar transceiving antenna array
configurations. Two 3D image reconstruction methods are evaluated based on 3D scalar and
vector field models, respectively. Our previously published 2D [11], [19] and quasi-3D
hybrid methods [24] along with the new 3D approaches outlined in this paper represent a
spectrum of algorithms with increasing levels of complexity which have enabled us to
explore trade-offs between model accuracy and computational efficiency. Several strategies
developed for 2D reconstructions have been improved and incorporated into the new 3D
algorithms including an iterative block solver [25] and an adjoint method for constructing
the Jacobian matrix [24]. For the 3D vector field method, an optimized FDTD algorithm
with a uniaxial perfectly matched layer (UPML) technique [26] has been developed to
obtain more accurate forward models within an acceptable computational time. These
algorithms were tested with simulated data and evaluated in terms of their computational
efficiency and accuracy relative to previously developed methods. Four antenna array
configurations that return combinations of in- and cross-plane field data were considered
and the cross-plane measurements were found to be critical for recovering the 3D profiles of
embedded heterogeneities.
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The paper includes a computational methods section (Section II) which describes the
formulations of the two 3D reconstruction algorithms—(1) the FE-based 3D scalar forward/
3D inverse reconstruction (scalar-3D) and (2) the FDTD-based 3D vector forward/ 3D
inverse reconstruction (vector-3D). Key elements, such as the 3D dual-mesh, the nodal
adjoint method and optimization of the 3D vector field solver, are discussed in detail and
algorithmic options are evaluated from a computational complexity perspective. The results
section (Section III) contains reconstructions from synthetic data which evaluate the
performance of the 3D algorithms with respect to our existing 2D methods. In particular, a
parametric study of 4 imaging array configurations is presented and the computational costs
experienced in practice across the suite of imaging algorithms is reported. We conclude the
paper with a summary discussion in Section IV.

II. Computational Methods
The 3D reconstruction algorithms described in this paper exploit non-linear optimization
based on a regularized Gauss-Newton method [27] and dual-mesh scheme [28]. We first
present the dual-mesh configurations for the 3D scalar-field and vector-field reconstructions.
A nodal adjoint method is subsequently derived in general form as a fast approximation to
the original adjoint approach [24], which can be used not only in the two 3D algorithms
presented in this paper, but also in the 2D and semi-3D methods described previously [11],
[19], [24]. This development is followed by a brief discussion of the computational
efficiency of the 3D FDTD algorithm. In the last subsection, enhanced finite-difference
time-domain (FDTD) methods utilizing an alternating-direction implicit (ADI) update
scheme and additional accelerations afforded by incorporating initial field distributions are
discussed, and their overall efficiency improvements are compared.

A. 3D Dual-Mesh
The dual-mesh scheme is a simple and flexible approach to control the problem sizes of the
forward and inverse computations comprising the image reconstruction by utilizing
independent discretizations of the field and parameter representations [28]. In terms of the
imaging system configuration at Dartmouth [6], the dual-meshes associated with the
scalar-3D and the vector-3D methods are illustrated in Fig. 1(a) and (b). The forward (field)
mesh for the scalar-3D method consists of a cylindrical domain (tetrahedrons) concentrically
aligned with a circular monopole antenna array that extends radially beyond the antennas.
The field mesh for the 3D vector reconstruction is a cubic-shaped 3D Yee-lattice [29]
surrounded by several layers of UPML cells. The reconstruction (parameter) grids for both
methods are identical in this instance, consisting of a 3D cylindrical domain centered within
both the antenna array and the respective field meshes. The field and parameter meshes can
be constructed with different and variable nodal densities. For a given target, the bilateral
mappings between the field and parameter meshes can be precomputed and stored resulting
in minimal increases in computational costs.

B. Nodal Adjoint Method
The adjoint method for Gauss-Newton parameter estimation is critical to achieving
computational time reduction relative to the traditional sensitivity equation approach [30].
The Jacobian matrix for the dual-mesh configuration using the adjoint formulation [24] can
be written in terms of a summation over field mesh elements

(1)
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where (s, r) represents the measurement index between the sth source and rth detector; Ωτ
denotes the region within which the basis function of the τth parameter node is non-zero,
Σe∈Ωτ indicates summation over the field mesh elements which are located within Ωτ.  is a
square matrix with each coefficient defined by

(2)

where ϕ and φ are the basis functions over the field and parameter mesh elements,
respectively, ie = 1, 2, ⋯, M and le = 1, 2, ⋯, M are the local node indices and M is the total
node number for a single field mesh element (for linear elements, M = 3 in 2D and 4 in 3D).
Ωe is the spatial domain occupied by the eth mesh element and r ⃗ is a 3D position vector.

 and  are the fields at the vertices, , of the selected
mesh element due to source antennas at s and r, respectively. Equation (1) is referred to as
the element-based form of the adjoint formula.

For cases where the boundaries of the field mesh elements do not precisely match those of
the parameter mesh elements, the evaluation of (2) becomes more difficult because it
involves integrations over partial elements of the field mesh. A nodal adjoint method is
introduced to simplify the integration for a given dual-mesh pair under the assumption that
the average size of the field mesh elements is significantly smaller than that of the parameter
mesh elements (discussed at the end of the subsection).

Within domain Ωe where e ∈ Ωτ, the parameter basis function φτ can be expanded as a linear
combination of the field basis functions

(3)

Inserting (3) into (1), yields

(4)

where  is an M × M matrix defined as

(5)

and 〈•〉 denotes volume integration over Ωe. Note that the nonzero off-diagonal elements in
 result in cross-multiplication terms of the fields at different nodes when expanding (4).

To simplify the evaluation of (4), the weighting matrix, , is approximated by summing
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each column (or row) and adding the off-diagonal elements to the diagonal while
simultaneously zeroing the off-diagonal terms such that

(6)

It is not difficult to prove that

(7)

where , Ve is the volume of the eth field element (in 2D,
Ve is the area of the element) and I is an M × M identity matrix. The weighting matrix Wτ
can be further approximated by W ̃τ = (M + 1)diag({φτ(p⃗κ)}κ). By substituting W ̃τ back into
(7) and then (4), the reorganized equation can be written as

(8)

where Σn∈Ωτ indicates summation over the field mesh nodes which fall inside Ωτ and Σe∈Ωn
signifies summation over the field mesh elements that share the nth node. The term (Σe∈Ωn
Ve/M) is a scalar expression associated with the nth node which can be symbolized as Vn,
and referred to as the effective volume of node n. The nodal adjoint formula (8) allows the
Jacobian matrix to be easily computed: Es(p⃗n) and Er(p⃗n) are the nodal electrical field values
obtained directly from the field problem; Vn and φτ(p⃗n) require only simple algebraic
operations and can be calculated on-the-fly. This is important for forward techniques which
dynamically generate their meshes, such as FDTD and some adaptive methods [31]. Note
that the reconfiguration of the weighting matrix  is only valid when the field mesh
elements are substantially smaller than the parameter mesh elements such that the field
values at their nodal vertices are approximately equal.

To validate this derivation, we compute the Jacobian matrices using the nodal adjoint
formula over a series of dual-meshes with different parameter/field element area ratios. The
maximum relative error between the nodal adjoint and the true adjoint Jacobian is plotted as
a function of the ratio of the averaged parameter and field element sizes (Fig. 2). From this
plot, it is reasonable to conclude that when the forward element is small compared to the
parameter element, the nodal adjoint Jacobian is a good approximation to an accurate
Jacobian matrix (less than 2% difference for a 10:1 ratio in parameter to field element size).

Given the derivation above, the nodal adjoint formulation for the vector-3D method is
straightforward. In the 3D FDTD grid, the effective volume Vn for all interior field nodes is
identical, and is equal to the volume of a single voxel, i.e., Vn = ΔxΔyΔz. The nodal adjoint
formula in this case is correspondingly written as
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(9)

C. Computational Complexity Comparison
In this subsection, the computational complexity of the 3D FDTD and 3D FE methods are
compared by summing the total floating-point operations (FLOPs) for obtaining one field
solution. The purpose of this comparison is to estimate how the computational complexity
scales with increasing mesh densities and how the FE and FDTD methods perform in their
generic forms. A uniform grid with Nx = Ny = Nz = N is used to assess both approaches (each
cube in the FE mesh is split into 6 tetrahedral elements). The total node number for both
meshes is N3. After assembling the FE matrix for the weak form of the simplified scalar
model, the size of the matrix is N3 × N3. The minimum half-bandwidth for the finite element
approach is N2 when numbering the nodes sequentially in each layer. If a boundary element
matrix is incorporated to account for the far-field boundary conditions as in the hybrid
method (FE/BE) [11], the minimum half-bandwidth increases to 6N2 which is essentially the
total number of the boundary nodes. Solving this matrix equation with a Cholesky
factorization algorithm [32], the total FLOP count for the FE/BE hybrid approach is 36N7 +
42N5 + 27N3 while that for the FE method with absorbing boundary conditions is N7 + 7N5

+ 2N3 (here, we ignored the computations for assembling the FE/BE matrices).

With the strategy described in [19], the total FLOP count for obtaining a 3D FDTD steady-
state solution can be decomposed into a two-term expression

(10)

where Fsteady is the number of time steps needed to reach steady state (Fsteady is estimated as
the time-steps required for the radiated wave to travel round-trip through the domain since
the background medium is highly lossy), and Fiter is the number of operations within a
single time step. Fiter can be easily computed by counting the algebraic operations in the
update equations for all E and H components which is approximately 84(N + 2NPML)3 using
a UPML medium [33]. Assuming the mesh is isotropic, i.e. Δx = Δy = Δz = Δ, the Courant-
Friedrichs-Lewy (CFL) number [34] is given by

(11)

If the wave speed in the background medium is cbk and the maximum wave speed among all
inhomogeneities is cmax, the number of time steps required to reach steady state can be
estimated as

(12)

Consequently, the total FLOP count for the 3D FDTD method (with UPML for lossy
medium) is given by
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(13)

A plot of the total FLOP counts for the two methods over a range of N is shown in Fig. 3
where , CFLN ≈ 1 and NPML = 5 are used in the calculations. From the graph,
the 3D FDTD appears to be more efficient than the generic 3D FE method with increasing
mesh sizes. Note that the implementation of iterative solvers can significantly reduce the
computational expense associated with the FE or FE/BE field equations. In Section III, we
tabulate the forward field computation time for a 3D FE method with an iterative solver and
the 3D FDTD method.

D. Computational Acceleration for the 3D FDTD Vector Field
From the FLOP count analysis in Section II-C, the total FLOP number for the FDTD
method is proportional to the number of time steps required to reach steady-state. We have
found that the steady-state time step number Fsteady is related to the initial field distribution:
if the FDTD time-stepping starts from a null field distribution (i.e. all components are zero),
it takes considerably longer to reach steady state than from a field distribution that resembles
the final solution.

A simple 2D forward problem is computed to illustrate this finding. A 2.5 cm × 2.5 cm
square dielectric object is located at the center of the antenna array, where the object
properties are εr = 10 and σ = 0.5 S/m and those of the background are 25 and 1.0 S/m,
respectively. Utilizing polar coordinates, and the transmitter operating at f = 900 MHz and
located at (r = 7.6 cm, θ = 0°), the amplitudes of the receivers at θ = 90° and θ = 180° are
recorded and plotted versus the number of time steps in Fig. 4 in comparison to the
responses computed from the initial values of a similar field distribution, i.e. previously
computed fields due to the presence of a similarly sized object that has εr = 12, σ = 0.7 S/m.
In both cases, the time step Δt is set to 1.64 × 10−11 s to ensure stability. From the plot, it is
evident that the second approach leads to significantly fewer time steps to achieve steady-
state. The sharp oscillations in the solid lines are referred to as “spurious modes” induced by
the jump in dielectric properties.

To exploit this result, we have derived an iterative FDTD approach which utilizes the field
distributions from the previous parameter estimate iteration to reduce the field modeling
time. Implementation of this scheme is straightforward. Extra memory is required to store all
field components and the accumulated elapsed time at the end of each iteration for each
source. At the subsequent iteration, the fields are initialized by the stored values from the
previous iteration of the corresponding source and continues the FDTD time-stepping. We
demonstrate in Section III-A that it is possible to reduce the steady-state time step number
by 1/2 to 2/3 by supplying initial field estimates which do not compromise either
convergence or image quality.

One must be careful when selecting the time step, Δt, which must be a fixed number in this
situation to avoid spurious waves. As a result, we can not determine the optimal Δt based on
the CFL condition per iteration, rather, a minimum permittivity, εmin, should be estimated,
and then a uniform Δt determined for all iterations from (11). Overall, the acceleration
provided by using an initial field distribution makes the iterative FDTD approach
significantly faster.
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E. ADI FDTD With Lossy UPML
As discussed above, a constant time-step in the iterative FDTD scheme may result in some
computational redundancy during the first few iterations. To avoid this, we implemented an
unconditionally stable FDTD scheme, the alternating direction implicit (ADI) FDTD
method, for forward field modeling of lossy media.

In the update equations of the ADI FDTD method, the target time step fields appear on both
sides of the update equation; thus, this method yields an implicit difference update scheme.
Based on this principle, the ADI form of the UPML update equation for a lossy medium is
not difficult to derive. We have used a symbolic software package, Mathematica, to perform
the derivation and the full formulation can be found in Appendix A in [35].

With this ADI technique, the time step size Δt is not constrained by the CFL stability
condition (11). Instead, the dispersion error becomes the limiting factor. A detailed study of
the impact of the dispersion error from various Δt's in the ADI FDTD is given by Zhao [36].
The unconditional stability of the ADI FDTD allows for simultaneous use with the iterative
FDTD field initialization approach introduced in the previous subsection.

To estimate the computational efficiency, the total FLOP count is calculated for this method.
Assuming the 3D grid size is Nx = Ny = Nz = N, the floating-point operations per iteration for
the ADI approach can be written as

(14)

where the number “2” results from the two sub-steps of the ADI FDTD, “177” is the FLOP
count required to assemble the right-hand-side for the implicit update equation at each sub-
step (optimized by Mathematica), “5” is the number of back substitutions needed to solve
the system of tri-diagonal equations and “66” is related to the contributions from the
remaining update equations. The total number of time steps required to reach steady-state
for the ADI FDTD method can be written as

(15)

where Fsteady and CFLN are the steady time step and CFL number defined in (12) and (11),
respectively. Combining (14) and (15), the total FLOP count for the ADI FDTD with lossy
UPML ABC is

(16)

Based on (16) and (13), the CFL number for the ADI FDTD approach should be at least 6
times that used in the traditional FDTD in order to achieve faster computations.

III. Results and Discussion
In this section, we present image reconstructions from simulated data to assess the
performance of the proposed methods under ideal conditions. The antenna array
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configurations were not chosen to produce optimal images in each case, but rather to
examine the influences of different array perturbations. The computational efficiency of the
algorithm enhancements, for example, when incorporating initial field estimates and the
ADI FDTD, are studied with these simulations. Finally, five dual-mesh based algorithms are
compared including the 2D, semi-3D and 3D methods, with benchmark reconstructions to
profile their computational complexity with respect to increasing accuracy in the forward
field modeling.

In order to perform fair comparisons across these approaches, we applied a set of common
parameters for all experiments unless otherwise noted. For instance, the background medium
was a 0.9% saline solution having εr = 77 and σ = 1.7 S/m at 900 MHz. The cylindrical
reconstruction meshes for the two 3D methods were identical, comprised of 1660 nodes and
7808 tetrahedral elements. In this case, the origin of the Cartesian coordinate system was
located at the center of the reconstruction mesh with the z-axis aligned along the cylinder. A
circular antenna array located on a radius r = 7.62 cm and comprised of 16 equally spaced
antennas was placed in the central x − y plane. Each antenna in the array was modelled as an
infinitely small z-oriented dipole. For cases where multiple layers of antennas were used,
schematic diagrams are provided to illustrate the positions of the array elements. For each
iteration of the Gauss-Newton reconstruction, a Tikhonov regularization was imposed with
the regularization parameter computed by the empirical method discussed in [37]. All
reconstructions commenced from an initial property parameter estimate equal to the
homogeneous background medium.

A. Measurement Configuration Study
The imaging target was a sphere (εr = 20, σ = 0.5 S/m) with center location (x = 0.0 cm, y =
−2.5 cm, z = 0.0 cm) and radius r = 2 cm. For the scalar-3D reconstructions, the field mesh
was a cylinder consisting of 56,636 nodes and 312,453 tetrahedral elements. It had a radius r
= 12 cm and extended vertically from z = −5 cm to z = 5 cm. For the vector-3D
reconstructions, the interior grid was comprised of 70 × 70 × 35 nodes (in the x, y and z
directions, respectively) and was surrounded by 5 layers of a UPML (the final node size of
the data array was 80 × 80 × 45). The FDTD cells were cubes with a uniform node spacing
of Δx = Δy = Δz = 2.47 mm. The simulated measurement data was generated using an FDTD
3D vector solution over a much finer field mesh (40 nodes per wavelength with respect to
the background medium compared with 15 nodes per wavelength in the reconstruction
problem) and the Ez components were extracted at the receiver sites.

Four antenna array configurations (Fig. 5) were investigated. For scheme A, all antennas
resided in the x − y plane. Data was collected at the nine antenna sites opposing each
transmitter for the total of 16 antennas (16 transmitters by 9 receivers). In schemes B and C,
the antennas resided in two planes 1.5 cm above and below the central x − y plane and
signals were transmitted from all 32 antennas. In scheme C, the signals were received by the
18 opposing antennas (nine in each plane), while for scheme B, the signals were only
received by the opposing nine antennas in the same plane as the transmitters. The amount of
measurement data for schemes B and C was 288 (32 transmitters by 9 receivers) and 576 (32
transmitters by 18 receivers), respectively. For scheme D, the antennas resided in 3 planes,
one in the central x − y plane and two 1.5 cm above and below it, respectively. Signals were
transmitted only by antennas in the central plane and received at the 27 opposing antennas
for a total of 432 pieces of measurement data (16 transmitters by 27 receivers). The
reconstructed 3D dielectric profiles for both scalar (scheme A only) and vector methods are
shown in Fig. 6. Because the x − y cross-sectional images are less effected by the antenna
array configurations evaluated here, we only include sample x − y cross-sectional images in
Fig. 6 and omit them for the rest of the results.

Fang et al. Page 9

IEEE Trans Antennas Propag. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Several important observations can be made here as follows.

1. The permittivity images have fewer artifacts than their conductivity counterparts,
similarly to that observed in [24].

2. The images reconstructed utilizing the scheme A antenna configuration from both
the scalar (scalar-3D) and vector-3D methods have pronounced artifacts above and
below the recovered object, particularly in the conductivity images. However, the
vector-3D algorithm artifacts are noticeably reduced and the estimated object
position appears to be more accurate in both the horizontal and vertical planes.

3. The permittivity contours for the single-layer receiving array (scheme B) are
relatively accurate in the plane where the array is located. However, artifacts occur
above and below the object making the permittivity appear elongated in the z-
direction whereas the conductivity images contain elevated zones above and below
the actual target location.

4. The images acquired from the two-layer [scheme C—Fig. 7(b)] and three-layer
[scheme D—Fig. 7(c)] receiving antenna configurations recover the target very
well in terms of its shape, location and dielectric properties. These results
demonstrate that more measurements, especially out-of-plane and cross-plane data,
improve the quality of the 3D reconstructions.

5. Although the number of measurements is doubled in scheme B compared with
scheme A, the artifacts along the z-axis remain visible until the cross-plane
measurements are included in Fig. 7(b) and (c).

In Fig. 7(d), we compressed scheme B antenna array spacing from 3 cm to 2 cm. The
vertical plane images from the two cases are quite distinct. The target reconstructed from the
data acquired with the 3 cm array spacing appears elongated in the permittivity images,
whereas it is recovered with very nearly the correct size, location and property values when
the 2 cm array is used but with pronounced elevated property zones above and below. The
corresponding conductivity images exhibit elevated property artifacts above and below the
target in both cases.

We also studied the impact of plane number on 3D image recovery for scheme A when the
array was spaced in 1 cm increments by reconstructing the same target with the vector-3D
algorithm utilizing three and five planes of data. Overall, a progression of image quality
improvement occurs with an increase in the number of planes of data. It is interesting to note
that the images from three planes of data which utilize cross-plane recordings [scheme D,
Fig. 7(c)] are still better than five sets of in-plane measurements, especially with respect to
the artifacts above and below the target.

B. Comparison Between Semi-3D and Scalar-3D Reconstructions
Additional numerical simulations were performed to compare semi 3D and scalar 3D
reconstructions. In these experiments, a cylindrical reconstruction mesh was constructed by
vertically (z-axis) extending a 2D horizontal circular mesh. Only the 2D profile is updated at
each iteration in the semi-3D reconstruction, while the scalar-3D reconstruction calculates
updates for all parameter nodes.

For the single array, we found the semi-3D reconstruction produced better results than the
scalar-3D approach. The relative residual, the residual normalized by that of the first
iteration, was reduced to 13% after 10 iterations compared with 23% for the latter case. This
finding can be understood by the low axial sensitivity of the given source configuration and
the degradation of the field solution accuracy in the scalar 3D model. However, for the two-
plane arrays, opposite results were observed, i.e., the scalar-3D reconstruction reduced the
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relative residual to 16% which was 3 times lower than the residual (44%) for the semi-3D
reconstruction. This indicates that the scalar-3D reconstruction is advantageous when the
measurements support the recovery of 3D profiles. In this case, the improvements associated
with better geometric modeling outperformed the approximations introduced by the 3D
scalar field model.

C. Computation Time Improvements From Initial Field Estimation
Utilizing simulated data from scheme A, the computational time reduction achieved with the
initial field estimation approach was investigated. We first set the minimum dielectric
property value to 1/5th that of the background and used CLFN = 0.86 to compute the time
step for all iterations. The values of all field vectors and the accumulated time-steps were
recorded starting from the second iteration. Additionally, we reduced the steady-state time
step number estimate from (12) by factors of 2 and 3. For these simulations, the
reconstructed images (not shown) demonstrate no obvious degradation. The relative errors
in these reduced computation time reconstructions are plotted in Fig. 8 as a function of
iteration number compared with those from the unenhanced version which confirms the
benefits of the technique.

D. Computational Cost for All Dual-Mesh Based Algorithms
Using the previous reconstructions as a benchmark, we tested five dual-mesh methods, i.e.
the scalar-2D method [11], FDTD-2D method [19], semi-3D method [24], scalar-3D and
vector-3D methods, and summarized the problem size and computational times in Table I.
All computations were performed on an Alpha ES40 workstation with 4× 600 MHz CPUs.
From the table, we observe predictable trends when the problem size increases and when the
reconstruction transitions from 2D to 3D. Independently of the increasing levels of
computational complexity, implementation of the iterative block solver and initial field
estimates seems capable of maintaining the 3D model computation time to be within
acceptable limits even for the full vector approach. The adjoint techniques also deserve
special mention because of the significant computational time reductions which make all of
these approaches viable.

Not surprisingly, the 2D algorithms demonstrate substantial speed advantages over their 3D
counterparts. For the 3D reconstructions, the scalar technique based on the FE method
together with the iterative block solver provides an efficient approach for modeling 3D field
distributions with the understanding that the underlying scalar model imposes various
approximations (and concomitantly important limitations). The 3D FDTD algorithm used in
the vector-3D method is promising because of 1) the accuracy in field modelling, 2) the
advantages being able to exploit parallel computing and 3) the flexibility in accommodating
various optimizations as discussed in Sections II-E and II-D. From columns 5–7 of Table I,
it is evident that the 3D FDTD method can compute the full vector field solution within 9
seconds, which is less than twice that required for the scalar technique, even when utilizing a
mesh that is three times larger for the field problem and computing the additional vector
field components.

IV. Conclusion
We have developed two 3D image reconstruction approaches including a 3D scalar field/3D
reconstruction technique based on the FE method and a 3D vector field/3D reconstruction
algorithm based on the FDTD method. The adjoint scheme devised in [24] was extended to
a nodal-based approximation which significantly simplified the Jacobian matrix calculation
and also led to an associated reduction in computation time. Additional enhancements in the
3D FDTD algorithm with respect to the image reconstruction problem were investigated
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including the use of initial field estimates and the ADI FDTD method. Despite that both
proposed methods are capable of modeling the scattering field of arbitrary 3D structures,
utilizing the initial field estimates can achieve significant acceleration only when the
background medium is lossy. Reconstructions were performed to validate the proposed
algorithms utilizing synthetic data. In most cases, the target objects were successfully
recovered in both location and dielectric property values with the permittivity images
exhibiting fewer artifacts than their conductivity companions.

We compared this series of algorithms within the dual-mesh and iterative reconstruction
framework. The 2D algorithms were superior in speed due to their considerably smaller
problem size, while the 3D algorithms were generally superior in terms of image quality.
Within the 2D methods, the 2D FDTD technique is promising and may facilitate quasi-real-
time imaging applications because of its fast computation time. The 3D reconstructions are
also promising and showed progressive improvements in terms of artifact reduction as the
amount of measurement data was increased. The most significant improvement in image
quality appeared to result from the use of cross-plane data in this regard. The investigations
into these 3D image reconstruction algorithms are still preliminary and substantial work
remains in order to make them viable in practice. At the same time, with the rapid increase
in computing power, particularly with the availability of graphics processing unit-based
(GPU) parallel computing, the use of vector field techniques such as the FDTD method
becomes increasingly important for producing accurate field representations and
consequently improved reconstructed image quality.
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Fig. 1.
Forward and reconstruction mesh orientations for (a) the scalar-3D and (b) the vector-3D
methods.
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Fig. 2.
Plot of the maximum relative error of the nodal adjoint Jacobian as a function of parameter/
field element area ratio. Sample parameter (solid lines) and field (dashed lines) mesh pairs
are shown as insets.
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Fig. 3.
Comparison of the total floating-point operation counts between the 3D FE/BE and 3D
FDTD methods for different mesh sizes.
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Fig. 4.
Amplitudes at different time-steps for receivers located at (a) θ = 90° and (b) θ = 180°.
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Fig. 5.
Source configurations for 3D simulated reconstructions: (a) scheme A, (b) scheme B, (c)
scheme C, and (d) scheme D. In each diagram, the star represents a transmitter and the
triangles represent the corresponding receivers for that specific transmitter (Open circles
represent non-receiving antennas for that transmitter).
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Fig. 6.
Cross-sectional relative permittivity (top row) and conductivity (bottom row) images of the
reconstructed dielectric profiles using the scheme A antenna configuration (scalar-3D
algorithm) for the (a) scalar-3D and (b) vector-3D algorithms. Circles show the exact
location of the embedded heterogeneity in each cross-section.
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Fig. 7.
Vertical cross-sectional relative permittivity (left column) and conductivity (right column)
images of the reconstructed dielectric profiles using the vector-3D algorithm and (a) scheme
B, (b) scheme C, (c) scheme D and (d) scheme B with 2 cm separation.
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Fig. 8.
Relative error plot of the reconstructions with and without the initial field estimates.
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