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Abstract
Background—Reactive oxygen species (ROS) are generated by cellular metabolism as well as by
exogenous agents. While ROS can promote cellular senescence, they can also act as signaling
molecules for processes that do not lead to senescence. Telomere homolog oligonucleotides (T-
oligos) induce adaptive DNA damage responses including increased DNA repair capacity and these
effects are mediated, at least in part, through p53.

Objective—Studies were undertaken to determine whether such p53-mediated protective responses
include enhanced antioxidant defenses.

Methods—Normal human fibroblasts as well as R2F fibroblasts expressing wild type or dominant
negative p53 were treated with an 11-base T-oligo, a complementary control oligo or diluents alone
and then examined by western blot analysis, immunofluorescence microscopy and various
biochemical assays.

Results—We now report that T-oligo increases the level of the antioxidant enzymes superoxide
dismutase 1 and 2 and protects cells from oxidative damage; and that telomere-based γH2AX (DNA
damage) foci that form in response to T-oligos contain phosphorylated ATM and Chk2, proteins
known to activate p53 and to mediate cell cycle arrest in response to oxidative stress. Further, T-
oligo increases cellular ROS levels via a p53-dependent pathway, and these increases are abrogated
by the NAD(P)H oxidase inhibitor diphenyliodonium chloride.

Conclusion—These results suggest the existence of innate telomere-based protective responses
that act to reduce oxidative damage to cells. T-oligo treatment induces the same responses and offers
a new model for studying intracellular ROS signaling and the relationships between DNA damage,
ROS, oxidative stress, and cellular defense mechanisms.
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Introduction
Human telomeres, tandem repeats of the sequence TTAGGG and its complement that cap the
ends of chromosomes[1], play important roles in DNA damage responses[2–4] and aging[5,
6]. Telomeres exist in a loop structure that is stabilized by telomeric repeat binding factor 2
(TRF2) [7]. Disruption of the loop by a dominant negative construct (TRF2DN)2 leads to
apoptosis of certain mammalian cells[8] and senescence of others[9], a process mediated at
least in part through ATM and p53 activation[8], suggesting that telomere loop disruption
initiates a DNA damage signal.

Interestingly, provision of telomere TTAGGG homolog oligonucleotides (T-oligos), known
to rapidly accumulate in the nucleus[10–12], also stimulates DNA damage signals and adaptive
responses mediated, while control oligonucleotides complementary or unrelated to the
TTAGGG repeat sequence do not[10,13–16]. Specifically, we have shown that exposure of
fibroblasts to T-oligos leads to dose-dependent DNA damage responses, such as increased
DNA damage repair capacity[17,18], S-phase cell cycle arrest, apoptosis[10–12] and
senescence[14,15], mediated at least in part through ATM and p53[13–15,19]. These cellular
responses occur without affecting the cells’ own telomeres[10,14,19] and are independent of
telomerase[15,20]. Most recently, these T-oligo-induced responses were shown to involve
formation of DNA damage foci at the telomere via WRN[19], the helicase and exonuclease
mutated in the cancer-prone progeroid Werner Syndrome[21,22]. Furthermore, p53 is known
to interact with WRN both in vivo and in vitro[23–25] and fibroblasts derived from individuals
with Werner Syndrome display reduced p53-mediated apoptosis, restored by introducing wild
type WRN into the cells, suggesting that WRN is involved in p53 activation[24].

High levels of ROS are procarcinogenic[26,27] and can damage cellular proteins, lipids and
DNA [Reviewed in[28–30]], and a network of antioxidant enzymes has evolved to decrease
ROS levels that would otherwise damage cells [Reviewed in[31–33]. Antioxidant defense
mechanisms include enzymes such as glutathione peroxidase (GPX) [Reviewed in[34,35]],
glutathione reductase [Reviewed in[36,37]], copper and zinc-dependent superoxide dismutase
(SOD)1[38–40], catalase [Reviewed in[41]], and manganese-dependent SOD2[38–40] that
acts preferentially in the mitochondria.

Interestingly, after UV irradiation, a DNA damaging agent that leads to the formation of DNA
photoproducts and ROS, the activities of the anti-oxidant enzymes GPX, SOD1 and particularly
SOD2 are induced[42], suggesting an adaptive or protective response of fibroblasts to UV-
induced oxidative DNA damage. Continuous exposure to the damaging agent precipitates the
fibroblast response of stress-induced premature senescence (SIPS) [43], a response similar or
identical to the induction of senescence following serial cell division with critical telomere
shortening[44,45], activation of tumor supressors such as p53[46] or overexpression of Ras
[47] or Raf[48] oncogenes. Oxidative stress preferentially targets guanine (G) residues, leading
to formation of 8-oxo-G[49], and telomeres are particularly sensitive to oxidative stress
because of their high G content. ROS exposure is well-documented to cause telomere
shortening and SIPS in fibroblasts[50].

Cellular ROS can be produced by enzymatic and non-enzymatic mechanisms[51]. ROS are
generated in the mitochondria through the electron transport chain and in other electron
transferring cellular systems, a non-enzymatic mechanism. In contrast, ROS are also generated
by the plasma membrane-associated NAD(P)H oxidase (NOX), an enzyme complex with
multiple components[52–54] and thought to have a regulatory role, stimulated by growth
factors and cytokines[30,55]. Although the cellular responses mediated by NOX-generated
ROS are not completely understood, it is speculated that ROS generation may enhance cell
survival through upregulation of anti-oxidant defense mechanisms[56]. Thus, it has been
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suggested that ROS such as superoxide and hydrogen peroxide (H2O2) are utilized by cells as
signaling molecules for processes that do not necessarily lead to cellular senescence or result
in detectable oxidative damage[56,57]. Rather, they propagate signaling through tyrosine
phosphorylation of effector proteins, mitogen activated protein (MAP) kinase activation, DNA
synthesis, and chemotaxis[58,59]. It is speculated that lower ROS levels lead to adaptive
cellular responses, while higher levels result in senescence[33,57,60,61]. It has also been
reported that over-expression of p53 leads to cellular ROS elevation, as well as to transcription
of redox-associated genes[62].

We now report that T-oligos, known to induce a variety of DNA-protective and anti-cancer
responses, also induce the level of antioxidant enzymes, specifically SOD1 and SOD2.
Furthermore, T-oligos protect fibroblasts against oxidative challenge by H2O2. Finally, T-
oligos upregulate ROS levels, consistent with T-oligo induced ROS signaling, a process
mediated by p53 and NAD(P)H activation.

Materials and Methods
Materials

Hydrogen peroxide (30% w/w, with 0.5 ppm stannate and 1 ppm phosphorus as preservatives)
was obtained from Sigma (USP grade, St. Louis, MO). The stock solution was stored at 4°C
and all dilutions were made in DMEM immediately before use. 2′,7′-
dichlorodihydrofluorescein diacetate (DCF) from Molecular Probes, Inc., (Eugene, OR) was
dissolved in DMSO to a stock concentration of 1 mg/ml and stored under nitrogen at −20°C.
Propidium iodide (PI) was obtained from Sigma. Diphenyliodonium chloride (DPI) powder
was obtained from A.G. Scientific, Inc. (San Diego, CA), dissolved in DMSO to a stock
concentration of 5 mg/ml and frozen at −20°C until use. 5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside (X-gal) was dissolved in dimethylformamide and added to a citric acid/NA
phosphate buffer at pH 6.0 immediately before use for a final concentration of 1 mg/ml[63].

Purified 5′-phosphorylated oligonucleotides with phosphodiester linkages (Midland Certified
Reagents, Inc., Midland, Texas) were obtained in lyophilized form, resuspended in sterile
dH2O to generate a 2 mM stock solution and frozen in aliquots at −20°C as previously described
[17]. The stock solution was further diluted to 40 μM in cell culture medium immediately
before use.

Fibroblast cell culture
Normal newborn human dermal fibroblasts were cultured from foreskin specimens and
maintained in DMEM supplemented with 10% calf serum (CS) as previously described[64].
In experiments using the DCF assay, cells from three different donors were combined.

R2F fibroblasts were a kind gift from Dr. J. Rheinwald (Harvard Medical School, Brigham
and Women’s Hospital) The retroviral vector pL(p53DD)SN, that expresses a dominant-
negative fragment of p53 (p53DN) [65,66] was used to transfect newborn foreskin fibroblasts
as described[67]. p53DN cells and isogenic wild-type p53 R2F cells were maintained in a 1:1
mixture of DMEM and Ham’s F12 medium and supplemented with 15% FBS.

Experimental Design
All telomere homolog phosphodiester-linked oligonucleotides (T-oligos) 2–20 bases in length
tested to date have been demonstrated to induce genome-protective responses in human cells,
with molar efficacy determined by the inter-related parameters of length, percent telomere
homology, guanine (G) content and lack of cytosine (C) residues{Ohashi, 2007 #10}.
Experiments reported here were performed with the 11-base 100% telomere homolog
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GTTAGGGTTAG (40 μM) or, in the case of the immunofluorescence microscopy studies,
with a 16-base 100% homolog at half the concentration (20 μM), previously shown to be
equipotent in standard T-oligo assays.

ROS induction and resistance to oxidative stress
To determine the effect of T-oligo on ROS induction, cells were stimulated once with
GTTAGGGTTAG (T-oligo), the complementary control sequence CTAACCCTAAC (Cont-
oligo) and/or diluent alone and were harvested at different intervals after treatment.
Oligonucleotide concentrations were based on previous experiments establishing that these
concentrations elicit DNA damage-like responses[17,19,68,69]. To determine T-oligo
protective effect, 3 × 105 fibroblasts were plated in two 100 mm dishes. Seventy-two hours
after plating cells were stimulated with T-oligo (40 μM) or diluent for 72 hours. Cells were
then harvested and replated at 1 × 105 cells/dish in 35 mm dishes. Twenty-four hours later,
cells were treated with 25 μM fresh H2O2 or diluent for 1 hour and then were provided fresh
DMEM supplemented with 10% CS. Cell numbers were determined up to 48 hours after
medium change.

Dichlorofluorescein diacetate assay
DCF stock solution (1 mg/ml) was diluted in Hanks’ Balanced Salt Solution without phenol
red (GIBCO Invitrogen, Carlsbad, CA) to a working concentration of 100 uM immediately
before use[70] Fibroblasts were incubated for 30 minutes with 100 uM DCF solution,
trypsinized and processed for FACScan analysis. The DPI stock solution was added directly
to the DCF solution to achieve a final concentration of 50 μM[70]. Positive controls were
fibroblasts exposed to 1 mM H2O2 for 15 minutes following the DCF incubation to rule out
saturation of the DCF probe.

Western blot analysis
Total cellular proteins were harvested in RIPA buffer consisting of 0.25 M Tris HCl (pH 7.5),
0.375 M NaCl, 2.5% sodium deoxycholate, 1% Triton X-100, 25 mM MgCl2, 1 mM
phenylmethyl sulfonyl fluoride, and 0.1 mg/ml aprotinin as described previously[71]. Protein
concentrations were determined by the Bradford method and 35–65 ug protein/lane was
separated over 10%–15% PAGE and processed for western blot analysis[71].

Membranes were probed with antibodies to SOD1 (1 ug/ml, BD Biosciences Franklin Lakes,
NJ), SOD2 (1:1000 dilution, The Binding Site, Birmingham, UK); catalase (1:1000 dilution,
Calbiochem, San Diego, CA) glutathione peroxidase (1:1000 dilution, Biodesign, Saco ME)
and actin (1:1000 dilution, Santa Cruz Biotechnology, Santa Cruz, Ca) followed by the
appropriate secondary antibodies diluted 1:2000. Antibody binding was detected with an ECL
kit (NEN Life Science Products, Inc.) and exposure to XAR film (Eastman Kodak Co.).

Immunofluorescence microscopy
Normal neonatal fibroblasts were cultured on glass coverslips and always re-fed one day before
treating with either 20 μM T-oligo (GTTAGGGTTAGGGTTA) or an equal volume of diluent
(water). After two days, the cells were fixed and stained for γH2AX and either phosphoserine
1981-ATM or phosphothreonine 68-Chk2 using standard immunofluorescence protocols[72,
73]. γH2AX was detected using a mouse anti-γH2AX antibody (cataglog # ab18311, Abcam,
Cambridge, MA) and a FITC-conjugated goat anti-mouse IgG (catalog# 115-095-146, Jackson
Immunoresearch Laboratories, West Grove, PA). Phospho-ATM and phospho-Chk2 were
detected using rabbit antibodies (phospho-ATM: catalog # ab2888, Abcam; phospho-Chk2:
catalog # 2661, Cell Signaling Technology, Danvers, MA) and a Rhodamine Red-X-
conjugated goat anti-rabbit IgG secondary antibody (catalog #111-295-144, Jackson
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Immunoresearch, West Grove, PA). Total nuclear DNA was stained with DAPI. The cells were
examined under 1000× magnification using a Nikon Eclipse E400 microscope equipped with
a RTke SPOT digital camera (Diagnostic Instruments, Inc.). FITC, TRITC and DAPI images
were overlapped using the Advanced SPOT software.

Senescence-associated (SA) β-galactosidase assay
Cells were fixed with a 2% formaldehyde and 0.2% glutaraldehyde solution, washed, and
stained overnight in X-gal solution[63]. The percentage of SA-β-galactosidase-positive cells
was determined by counting four representative fields at 10× magnification (a minimum of 42
and up to 514 cells per field) while blinded to the identity of the treatment condition.

Statistical Analyses
FACScan results of the DCF assay were analyzed using Cellquest software (Becton-Dickinson,
CA). The position on the X-axis of the peak of each fluorescence histogram plot was determined
visually (using the software). The numbers at the peak for each condition were then compared
using one-way ANOVA with Scheffe or LSD post-hoc analysis (SPSS 14.0). In studies
examining T-oligo protection against oxidative stress, univariate analysis of variance was used
with Bonferroni post-hoc analysis.

Results
T-oligo induces intracellular ROS

To determine T-oligo effect on intracellular ROS levels, fibroblasts were stimulated with T-
oligo (40 μM) or diluent as a control, and ROS levels were determined at different intervals
after stimulation (Figure 1A). T-oligo induced intracellular ROS as early as 36 hours and the
effect was maximal at 72 hours when the experiment was terminated. To determine the optimal
T-oligo dose for ROS induction, fibroblasts were stimulated with increasing T-oligo
concentrations and intracellular ROS level was determined 72 hours after stimulation (Figure
1B). Maximal ROS induction was observed with T-oligo dose of 40 μM, the dose also found
to be optimal for inducing other genome protective responses[10, 12–14, 16], and no additional
effect was observed at a higher dose. To assure that the result was not due to DCF fluorescence
saturation, fibroblasts were stimulated with T-oligo as above and paired cultures were
stimulated with H2O2 (10 mM, Figure 1C). H2O2 induced a detectably higher ROS level than
T-oligo, confirming that the assay was not saturated (Figure 1C). To assure that the T-oligo
effect was specific, fibroblasts were stimulated with T-oligo (40 μM), diluent, or a
complementary oligonucleotide (Cont-oligo, 40 μM) as an additional control (Figure 1D). Only
T-oligo induced intracellular ROS levels (p<0.02, T-oligo vs Cont-oligo).

T-oligo-stimulated ROS production is p53-dependent
Because p53 mediates many T-oligo effects and can induce ROS accumulation[62] we
investigated whether p53 is causally related to T-oligo-induced ROS increase in fibroblasts.
p53DN R2F fibroblasts that lack p53 activity and normal p53 wild type (p53WT) isogenic R2F
cells (positive control) were stimulated with T-oligo as above. Increased intracellular ROS
levels were observed only in p53WT cells, but not in p53DN cells (Figure 2), strongly suggesting
that ROS production in response to T-oligo is p53-dependent.

T-oligo stimulated ROS induction is NAD(P)H dependent
To determine if p53-dependent ROS production in fibroblasts is mediated, at least in part, by
NAD(P)H oxidase activity, a specific NAD(P)H oxidase inhibitor, DPI[74,75], was added to
fibroblasts stimulated with T-oligo and ROS levels were determined. DPI treatment
consistently abrogated the increase in ROS stimulated by T-oligo (Figure 3), suggesting that
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T-oligo-induced ROS production is mediated by NAD(P)H oxidase and further confirming the
role of p53 in T-oligo-mediated ROS increases.

T-oligo induction of ROS is not accompanied by fibroblast senescence
We have reported that treating fibroblasts with T-oligo (40uM) for 7 days induces senescence
as indicated by positive staining for SA β-galactosidase in >60% of the cells, comparable to
cultures rendered senescent by serial passage[14]. To determine the effect of briefer T-oligo
exposure, sufficient to induce ROS production, fibroblasts were stimulated with T-oligo and
the SA β-galactosidase assay was performed 72 hours after stimulation. Within this time frame,
< 1 % of the cells were blue, and their number did not differ between T-oligo and diluent-
treated dishes (data not shown), demonstrating that within the 72 hours required for ROS
generation T-oligo does not induce fibroblast senescence.

T-oligo-induced γH2AX foci contain phosphorylated ATM and Chk2 proteins
ATM and its effector protein Chk2 play a role in the phosphorylation of p53 (serine 15) and
activation of p53 in response to oxidative stress [76] and also in cell cycle arrest in response
to oxidative stress[77,78]. Because these proteins are recruited to γH2AX foci in cells
experiencing DNA damage, for example in response to ionizing radiation (IR), we asked
whether the γH2AX foci induced by T-oligo treatment also contained phosphorylated
(activated) ATM and Chk2. Within 48 hours, fibroblasts treated once with T-oligo and then
processed for immunofluorescent staining showed co-localization of phospho-ATM and
phosphor-Chk2 with γH2AX (Figure 4). These data are consistent with WRN-T-oligo
interactions[19] initiating a signaling casade that involves ATM, Chk2 and p53 and that serves
to protect cells from oxidative stress.

T-oligo induces the level of antioxidant enzymes
Because we and others have shown that antioxidant enzymes are induced after oxidative DNA
damage due to various agents[42,79], we investigated whether T-oligo treatment also induces
antioxidant enzyme levels.

Compared to diluent and control oligo, T-oligo induced the levels of SOD1 and SOD2 as most
strikingly observed 16 hours after stimulation, in light of superimposed “feeding effects”
following addition of fresh medium at time 0 and 24 hours before the 96 and 168 hour
timepoints; GPX and catalase were not modulated (Figure 5).

T-oligo protects fibroblasts from oxidative damage
Because T-oligo induced the levels of SOD1 and SOD2, we investigated its capacity to protect
against oxidative damage. Fibroblasts were processed as per Materials and Methods, and cell
yields following an H2O2 challenge were determined (Figure 6). H2O2 (25 μM) reduced
fibroblast yield in all cultures, as expected. However, 48 hours after H2O2 challenge, cell yields
in T-oligo pretreated cultures were significantly higher than in diluent pretreated cultures
(p<0.007, Figure 6), 75 ± 3% vs 52 ± 1% of their respective diluent-challenged controls,
demonstrating that T-oligo pretreatment protects against oxidative stress.

Discussion
Our data demonstrate substantial effects of T-oligo on redox status and resistance against
oxidative stress in normal human fibroblasts. We found that T-oligo induces ROS levels in
fibroblasts and that the effect is dependent on the tumor suppressor and transcription factor
p53. Using a colorectal cell line transfected with a p53 expression vector, Polyak et al identified
14 transcripts that were markedly increased in p53-expressing cells. Interestingly, several of
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these p53-induced genes (PIGs) encoded proteins that generate ROS or function as antioxidants
[62].

The authors concluded that p53 transcriptionally induces redox-related genes, followed by
upregulation of ROS in the cells. Our data are consistent with the above observation, as T-
oligo supplementation induces and activates p53 in fibroblasts within 24 hours[14],
approximately 12 hours prior to ROS elevation. Furthermore, in fibroblasts with inactive p53,
we show that ROS are not generated in response to T-oligo, demonstrating the requirement for
this transcription factor in T-oligo-stimulated ROS upregulation.

We have shown in both normal and malignant cells of several lineages that T-oligos induce
DNA damage-like responses[10–17,19]. In fibroblasts, T-oligo-induced responses include
formation of DNA damage foci at the telomere without associated loss of the single-stranded
telomere overhang, followed by p53 induction and phosphorylation[19]. These respones
require the presence of WRN protein, a 3′ → 5′ exonuclease and helicase mutated in Werner
syndrome[19]. In the present study, we expand this observation by documenting the presence
of phosphorylated (activated) ATM and its effector protein Chk2 in these foci, strongly
suggesting that the T-oligo signal is transduced at these sites to p53. This would provide a
mechanism for the presumed role of ATM in protecting against oxidative stress[80].

ROS are continuously generated by normal cellular metabolism and appear to contribute to the
development of senescence[81–83]. However, recent evidence suggests that ROS can also
mediate cellular signaling by growth factors such as PDGF and EGF[58,59]. In this context
ROS, specifically H2O2, was shown to induce protein phosphorylation, MAP kinase activation,
DNA synthesis, and chemotoxis of cells[58,59], suggesting that ROS can mediate outcomes
other than senescence.

Although sustained (7 day) exposure to T-oligo induces senescence in more than 60% of
fibroblasts as determined by SA β-galactosidase activity, induction of senescence-associated
proteins and failure to resume growth following serum stimulation[14,15], at the time of
maximal T-oligo-induced cellular ROS (72 hours) there were very few cells positive for SA
β-galactosidase activity and the number of occasional SA β-galactosidase positive cells did not
differ between T-oligo-treated and diluent-treated cultures, demonstrating that within 72 hours
T-oligo does not irrevocably commit fibroblasts to senescence and suggesting that this ROS
elevation may mediate other cellular processes.

Several studies show that exposure to DNA damaging agents in sublethal doses induces
adaptive DNA damage responses in the cells[84–89], and reviewed in[90,91]. It is tantalizing
to speculate that T-oligos, known to concentrate in the nucleus[10,12], induce a telomere-based
DNA damage signal and lead to upregulation of antioxidant enzymes, as well as DNA repair
enzymes[18], to reduce DNA damage from future insults[90]. Of note, the enzymes
upregulated by T-oligo, SOD1 and SOD2, catalyze the conversion of O2

•− to H2O2, shown to
be the key signaling molecule among all ROS[58,59], suggesting that T-oligo induces H2O2-
mediated signaling.

Our studies show that T-oligo-induced ROS elevation is p53-mediated. This is consistent with
studies by Macip et al. [92], who showed that over-expression of the p53-inducible protein
p21, also induced by T-oligos[14,18,93], in normal human fibroblasts increases ROS levels in
the cells.

DNA damage responses include increased DNA repair mediated by p53 itself, as well as by
p53-upregulated repair proteins[94–102], and in the case of overwhelming damage,
upregulation of pro-apoptotic proteins and eventual elimination of the cell through apoptosis
[97,103–105]. The same responses of increased DNA repair and apoptosis are induced by T-
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oligo[10–12,16,18,84], acting through p53 or in the absence of p53 through its homolog p73
[10]. At least in fibroblasts, activation of p53 by T-oligo also induces antioxidant enzymes,
but in a time course expected to transiently downregulate potentially damaging ROS. At low
levels, these ROS appear to serve as additional signal transducers[58,59], although the precise
downstream events are as yet unclear; while at high levels, the ROS and particularly H2O2 can
drive cells toward senescence[50], again removing them from the proliferative pool, an
outcome understood to be, like apoptosis, an anti-cancer defense mechanism[106].

The three major enzymes that catalyze the formation of cellular ROS are mitochondrial
oxidases, primarily NADH oxidase[107], the cell surface-associated p53-regulated NAD(P)H
oxidase[108] and 5-lipoxygenase that catalyzes ROS production from arachidonic acid[108–
111]. In this study we show that both p53DN and the specific inhibitor of NAD(P)H oxidase
DPI[74,75] abrogate T-oligo-mediated ROS induction, demonstrating that T-oligo stimulates
ROS production through the activation of p53-dependent membrane-associated NAD(P)H
oxidase.

Our results demonstrate the existence of a p53-dependent NAD(P)H-mediated redox response
to telomere homolog oligonucleotides that mimic the effect of telomere disruption in cells
[12,14], suggesting an innate telomere-based genome-protective response. These data provide
the strongest demonstration of T-oligo-induced antioxidant defenses complementing the
observation that chronic topical T-oligo treatment reduces the level of 8-oxoG in chronically
irradiated mouse skin[112]. The inducible antioxidant responses complement the previously
demonstrated cell cycle arrest, adaptive differentiation, enhanced repair of DNA photoproducts
and chemical adducts, and reduced mutation frequency[13,17,18,84,93] that together reduce
carcinogenesis in the face of repeated carcinogenic insults[113]. The data also imply that T-
oligo signaling involves generation of ROS. Our data suggest that cells have evolved to respond
to DNA damage by upregulating proteins that protect against possible future damage in a
manner at least functionally analogous to the bacterial SOS response[90]. Because telomere
homologs presumptively mimic the DNA damage signal selectively, in contrast to UV
irradiation or oxidative stress that are expected to also damage cell membranes and other
cellular constituents, they provide a unique tool for analyzing such protective mechanisms.
Finally, by inducing protective response in the absence of initial damage, T-oligos may provide
a novel approach to the prevention and treatment of diseases due to oxidative stress.
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Figure 1. T-oligos stimulate intracellular ROS levels
(A) Normal newborn human fibroblasts were stimulated with T-oligo or diluent and ROS levels
were determined using the DCF assay[70,74,114,115]. Within 36 hours intracellular ROS
levels were induced only in T-oligo-treated cultures and the levels increased up to 72 hours

Lee-Bellantoni et al. Page 18

J Dermatol Sci. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



when the experiment was terminated. One of five representative experiments is shown. (B)
Fibroblasts were stimulated as above with increasing T-oligo concentrations and ROS levels
were determined 72 hours after stimulation. Maximal induction of ROS was observed at T-
oligo concentrations of ≥ 40 μM. One of two reproducible experiments is shown. (C)
Fibroblasts were stimulated with T-oligo as above or with 1 mM H2O2 for 15 minutes to
examine the possibility of DCF probe saturation. H2O2 increased fluorescent intensity beyond
that of T-oligo-induced fluorescence, confirming that DCF fluorescence was not saturated.
One of three reproducible experiments is shown. (D) Fibroblasts were stimulated with T-oligo
(40 μM), Cont-oligo (40 μM) or diluent as above and ROS level was determined 72 hours after
treatment. Only T-oligo induced intracellular ROS levels. One of five experiments with
comparable results shown.
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Figure 2. T-oligo induced ROS levels are p53-mediated
p53DN mouse fibroblasts and isogenic p53 wild type cells were stimulated with T-oligo or
diluent for 3 days and ROS levels were examined. Only p53WT cells displayed increased ROS
levels, confirming that functional p53 is required for T-oligo-mediated ROS induction. (One
of two representative experiments is shown.)
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Figure 3. T-oligo-induced ROS production is NAD(P)H-dependent
Fibroblasts were treated with T-oligo in the presence or absence of the specific NAD(P)H
inhibitor DPI for 3 days as per Material and Methods and DCF fluorescence was examined.
DPI, added to DCF assay medium, completely abrogated T-oligo mediated ROS induction,
verifying that T-oligo induced ROS is NAD(P)H-dependent. (One of six experiments with
comparable results is shown.)
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Figure 4. T-oligo-induced γH2AX foci contain phospho-ATM and phospho-Chk2
Normal neonatal fibroblasts were grown on glass coverslips and treated for 2 days with 20
μM T-oligo (GTTAGGGTTAGGGTTA). Cells were then fixed in paraformaldehyde and
prepared for immunostaining as described in Experimental Procedures. Representative cells
are shown. Top row: γH2AX. Middle row: phospho-ATM (left) or phospho Chk2 (right).
Bottom row: merged images with DAPI nuclear stain.
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Figure 5. T-oligo induces the levels of SOD1 and SOD2 in fibroblasts
Newborn fibroblasts were plated and processed as per Materials and Methods. Total cellular
proteins were harvested 16, 24, 48, 72, 96 and 168 hr after oligonucleotide stimulation at time
0. Cultures were provided fresh medium lacking oligonucleotides immediately after the 72
hour timepoint and after 144 hours. Proteins were processed for western blot analysis and the
blot was reacted with the following antibodies: SOD1, SOD2, Catalase, GPX and actin,
followed by appropriate secondary antibodies. Compared to diluent (D) and control oligo (C),
within 16 hours T-oligo (T) induced the levels of SOD1 and SOD2 and the induction persisted
through 96 hours. GPX and catalase were not modulated. Differences in SOD1 and SOD2 band
intensity between control oligo and diluent appear largely to reflect loading differences as
demonstrated by the actin bands.
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Figure 6. T-oligo protects fibroblasts from oxidative damage
Newborn fibroblasts were processed as per Materials and Methods, and cells were then treated
with 25 μM fresh H2O2 or diluent for one hour and then provided fresh medium without T-
oligos. Cell yields were determined 8, 16, 24 and 48 hours later. Fibroblasts pretreated with T-
oligo and then diluent proliferated more slowly than diluent pretreated cells (p< 0.0001), as
expected, given the initial T-oligo induced S-phase arrest[13], but both showed exponential
growth after the first 24 hours. Interestingly, fibroblasts pretreated with T-oligo and then
challenged with H2O2 proliferated significantly better than diluent pretreated H2O2-challenged
fibroblasts (p< 0.006). Data points are the mean ± SEM for 3 separate experiments with
different donor cells.
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