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Abstract
Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders
have provided unique models to dissect physiologic processes in normal epidermis and the
pathophysiology of more common scaling conditions. In most of these disorders, a permeability
barrier abnormality “drives” pathophysiology through stimulation of epidermal hyperplasia. Among
primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid
storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/
nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar
mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders
of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate
(CSO4) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase
separation. However, in RXLI, the desquamation abnormality is in part attributable to the
plurifunctional roles of CSO4 as a regulator of both epidermal differentiation and corneodesmosome
degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of
glucosylceramides as a result of to β-glucocerebrosidase deficiency). Finally, failure to assemble
both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for
both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The
barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating
epidermal proliferation, but also by inducing inflammation.
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One thing is certain. The sequencing of the genome will soon look like the easiest
thing that biologists ever did. …what the genes actually do—constitutes the real code
of living systems. To crack that code will take centuries, but getting there will be more
than half the fun.
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—Melvin Konner, “Weaving Life’s Pattern,” Nature 418:
279, 2002

Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These
disorders have provided unique models to dissect physiologic processes in normal epidermis
and the pathophysiology of more common scaling conditions. In most of these disorders, a
permeability barrier abnormality “drives” pathophysiology through the stimulation of
epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism,
triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation
provokes a barrier abnormality via lamellar/nonlamellar phase separation within the
extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier
abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For
example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO4) accumulation
also produces a permeability barrier defect through lamellar/nonlamellar phase separation.
However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional
roles of CSO4 as a regulator of both epidermal differentiation and corneodesmosome
degradation (2). Phase separation also occurs in type II Gaucher disease (GD; from the
accumulation of glucosylceramides as a result of β-glucocerebrosidase deficiency) (3). Finally,
failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar
bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in
harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these
disorders not only by stimulating epidermal proliferation but also by inducing inflammation.

RATIONALE
The ichthyoses are rare scaling disorders (disorders of cornification) in which a large number
of unrelated inherited disorders result is excessive visible scale (4–8). All of these disorders
display a prominent permeability barrier abnormality, associated with abnormalities in the
architecture of lamellar membranes in the extracellular spaces of the SC, where the barrier
resides. Abnormal membrane structure can result directly from abnormalities in lipid
metabolism (9–13) (to be discussed in this review) or indirectly from primary abnormalities
in the corneocyte that either impede lipid secretion or alter scaffold function (discussed only
briefly in this review; see Ref. 13). Initial pathogenic studies classified the inherited ichthyoses
as either abnormalities in the structural proteins of the corneocyte “bricks” or as resulting from
inborn errors of lipid metabolism (the “mortar”) (11,12). This approach yielded two key
insights: 1) that disorders of lipid metabolism alone can alter the extracellular matrix
sufficiently to provoke ichthyotic disorders; and 2) that extracellular lipids contribute to the
cohesive properties of normal SC (Table 1). However, it failed to illuminate the functional
interdependence of the bricks and mortar components. Moreover, it also failed to predict the
epidermal homeo-static responses that occur in response to altered SC function, in which the
permeability barrier abnormality leads to epidermal hyperplasia and cytokine signaling of
inflammation. This review focuses on the subcellular pathogenesis of ichthyoses as a result of
disorders of lipid metabolism, using a function-driven model of disease.

ROLE OF THE PERMEABILITY BARRIER IN DISEASE PATHOGENESIS
All of the ichthyoses studied to date, whether primary disorders of lipid or protein metabolism,
have demonstrated a permeability barrier abnormality (9,10,13). Because permeability barrier
requirements generally drive metabolic responses in the underlying epidermis (15,16), the
clinical phenotypes in the ichthyoses almost certainly reflect a best effort attempt by the
epidermis to normalize barrier function (9). These metabolic responses to a flawed barrier,
although only partially successful, usually suffice to allow survival in a dry, terrestrial
environment. For example, in HI, in which few if any lipids are delivered to the SC interstices
(17), the epidermis compensates as well as it can with an intense, hyperplastic response
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(increased cell proliferation in response to a defective barrier) that generates multiple layers
of corneocytes (the “make more cells” imperative) (9) (see below). Even in inherited disorders
that affect the structural proteins of the corneocyte bricks, permeability barrier abnormalities
result from downstream alterations in the extracellular, lipid-enriched matrix (14), although
by divergent mechanisms. For example, transglutaminase 1 (TGM1)-negative lamellar
ichthyosis (LI) and loricrin keratoderma represent disorders in which the primary enzyme and
its principal substrate, respectively, which both are involved in the formation of the corneocyte,
are affected. In both of these disorders, the cornified envelope is attenuated, resulting in an
impaired corneocyte scaffold, leading, in turn, to fragmented and foreshortened lamellar
membranes (18,19). These altered membranes lead to an impaired barrier caused by the leakage
of water via the extracellular pathway. This link between a defective cornified envelope and
the extracellular avenue of increased transepidermal water loss (TEWL) in both LI and loricrin
keratoderma provides definitive proof that the corneocyte provides the scaffold necessary for
the supramolecular organization of the lipid-enriched, extracellular matrix.

Alternatively, in epidermolytic hyperkeratosis, mutated keratins (either keratin 1 or 10) form
abnormal, dominant-negative keratin pairs that disrupt the cytoskeleton, thereby impeding LB
exocytosis (20). Once again, the barrier abnormality is provoked via a defect in the extracellular
matrix (i.e., a reduction in secreted lipids) (20). Thus, in inherited disorders of corneocyte
proteins of diverse etiology, the protein abnormality ultimately provokes a defect in the
extracellular lamellar membranes (mortar) (18–20). This secondary defect in the extracellular
matrix then allows accelerated, extracellular transcutaneous water movement (i.e., the
permeability barrier abnormality), which drives epidermal hyperplasia, resulting in a thickened
(ichthyotic) SC.

Finally, and pertinent for the inflammation that accompanies many of the ichthyoses, abnormal
permeability barrier function inevitably stimulates signaling mechanisms that attempt to
restore barrier function (21), but it also recruits downstream inflammation (i.e., another
example of the “outside-inside” pathogenesis of inflammatory dermatoses) (21,22). Moreover,
if this cytokine cascade is sustained, both epidermal hyperplasia with hyperkeratosis and
inflammation develop (21,23), accounting for clinical features of the inflammatory ichthyoses.

DISORDERS OF NONPOLAR LIPID PROCESSING
Neutral lipid storage disease (Chanarin-Dorfman syndrome)

Neutral lipid storage disease with ichthyosis (NLSDI), or Chanarin-Dorfman syndrome
[OMIM, Online Mendelian Inheritance in Man (OMIM) 275630], is a rare, recessive disorder
often caused by mutations in a gene encoding for a putative lipid hydrolase, ABHD5 (also
known as CGI-58) (24–27), that leads to an accumulation of cytosolic triacylglycerides
(TAGs). Although the presence of ichthyosis indicates an ABHD5 mutation, kindreds with a
lipid storage myopathy but no ichthyosis have been linked instead to mutations in desnutrin
(PNPLA2, ATGL, or TTS-22), for which ABHD5 serves as a coactivator largely restricted to
adipose tissue (28). CGI-58/ABHD5 is located on chromosome 3p21; it has seven exons and
is expressed in many tissues, including skin. Affected patients are almost all homozygous,
although a few cases of compound hetero-zygosity have been reported. CGI-58/ABHD5
encodes for a 349 amino acid protein that coactivates a newly identified lipase, ATGL, that
hydrolyzes TAGs into diacylglycerides for phospholipid and free fatty acid production (29).
However, the pathway that leads to cytosolic TAG accumulation in NLSDI has not been fully
characterized. Labeling studies suggest that diacylglyceride is used for phospholipid synthesis,
but excess substrate in NLSDI is stored in tissues as TAG (30,31). Whether the lack of lipase
activity results in a lack of phospholipid loading into LBs is likely but not yet investigated (Fig.
1). Alternatively, the protein encoded by CGI-58/ABHD5 may affect epoxide hydroxylation,
but this remains to be confirmed experimentally (see below). One important consequence of
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the lack of phospholipids would be a downstream deficiency of free fatty acids (in epidermis,
all secreted phospholipids are hydrolyzed normally into a large pool of nonessential FFAs that
is an important constituent of the extracellular lamellar bilayers in SC) (32).

TAG accumulation in cytosolic droplets in multiple tissues allows for the rapid clinical
diagnosis of NLSDI by Oil Red O staining of frozen skin biopsies, which demonstrate
diagnostic lipid droplets in both the epidermal basal layer and in appendageal epithelia (33),
or by visual inspection of leukocytes on blood smears (33,34) (Table 2). Although the
ichthyosiform phenotype in NLSDI is non-diagnostic, it most closely resembles the nonbullous
congenital ichthyosiform erythroderma (CIE) variant of autosomal recessive congenital
ichthyosis (ARCI; see below) (33,35). However, NLSDI patients also often experience
pruritus, with or without atopic features (34,35), an erythrokeratoderma variabilis-like
dermatosis (24), or a severe “oily” (seborrheic) type of ichthyosis (36).

Neutral lipid-positive storage vacuoles likely do not account for the ichthyosiform phenotype
in NLSDI, because these large, cytosolic inclusions eventually become entombed within
corneocytes, where they likely are unavailable to influence extracellular functions, such as
permeability barrier homeostasis or desquamation. Moreover, comparable cytosolic lipid
droplets occur as a nonspecific response to toxic insults, as in many hyperplastic dermatoses
(37–41). More pertinent instead to disease phenotype in NLSDI could be amorphous, lipid
microinclusions that occur within epidermal LBs (33). These organelle contents are secreted,
along with normal-appearing lamellar membranes, at the stratum granulosum (SG)/SC
interface (33). Accordingly, LBs normally encapsulate several types of lipase activity (42–
44), including the coactivator encoded by CGI-58/ABHD5 (26,45). Therefore, the enzyme
mutation and the lipid microinclusions in NLSDI are likely linked to disease pathogenesis
through their colocalization within LBs.

Barrier function, assessed as abnormalities in TEWL, is markedly abnormal in NLSDI, with
basal TEWL levels up to 3-fold higher than in age-matched, normal controls (35). These levels
are comparable to those reported for other ichthyoses with a similar phenotype, such as
nonbullous CIE and TGM1-negative LI (46,47).

Recent studies suggest that it is the persistence of secreted, “unprocessed” TAG, coupled with
decreased FFA caused by the lack of phospholipid precursors, that likely accounts for the
permeability barrier abnormality in NLSDI (35). In normal epidermis, LBs are replete with
lamellar membranes that show no evidence of nonlamellar discontinuities. After secretion,
secreted lamellar contents transform into “mature” lamellar membrane structures that regulate
permeability barrier homeostasis, which again fill the SC interstices (48). Thus, in normal
human epidermis, a uniform lamellar phase that completely fills the SC interstices equates with
permeability barrier competence (48). In NLSDI, LBs display lipid microinclusions that
transform into electron-lucent, lipid-filled “clefts” after secretion (33). To delineate whether
these clefts contain phase-separated (nonlamellar) lipid, we assessed tissue samples after
ruthenium tetroxide postfixation, a method that allows for the visualization of hydrophobic
lipid structures, such as the extracellular lamellar membranes (49), coupled with embedding
in a lipid-retaining resin (LR White). Using this method, the clefts did not appear empty but
rather filled with an amorphous, electron-dense material adjacent to arrays of lamellar
membranes (35). Moreover, these new images provide additional insights into the pathogenesis
of NLSDI, which can be ascribed to lamellar/nonlamellar phase separation within the SC
interstices (Fig. 1). Phase separation occurs in lipid-based, membrane bilayers when the amount
of nonpolar lipid exceeds the capability of this lipid to incorporate into polar lipid-based,
lamellar membranes (50–52). These results suggest that ceramide (Cer)-based membrane
bilayers of the SC interstices, like their phospholipid-based counterparts, display a limited
capacity to incorporate non-polar species, such as triacylglycerols.
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To assess whether an inhomogeneous extracellular matrix forms an inherently less effective
permeability barrier than interstices that are uniformly replete with lamellar membranes, we
perfused the SC of NLSDI with a water-soluble, electron-dense tracer, lanthanum nitrate.
Whereas the interstices of normal human SC completely exclude water-soluble molecules,
lanthanum permeates through nonlamellar domains in the extracellular spaces at all levels of
the SC in NLSDI (35). In summary, these studies show that lamellar/nonlamellar phase
separation underlies the permeability barrier abnormality in NLSDI.

ARCI
The ARCIs comprise a group of disorders of cornification with congenital presentation. On
clinical, biochemical, and morphological grounds, it has long been recognized that this group
is clinically heterogeneous, likely comprising multiple disease entities (53–56). Indeed, these
patients reveal a remarkable diversity of underlying genetic mutations (57–65). Before this
genetic diversity became known, the LI phenotype, with large dark, plate-like scaling, had been
distinguished on clinical grounds from nonbullous congenital erythroderma (CIE or nonbullous
CIE), with fine scaling involving flexural sites, and often with prominent erythema (54), but
many intermediate phenotypes also have been described (5,6).

Although a functional barrier abnormality is present in all ARCI subtypes studied to date
(19,46), structural and biochemical differences between the LI and the CIE phenotypes
provided initial clues about the heterogeneity within this group of ichthyoses (54,56,66). The
major distinguishing feature of the LI phenotype is abnormal cornified envelope cross-linking
attributable to TGM1 deficiency, resulting in attenuated cornified envelopes (19). In contrast,
the CIE phenotypes (in which cornified envelopes are normal) display prominent abnormalities
in LBs and SC extracellular lamellar membranes. Although the number of LBs is increased in
CIE, many of these organelles are smaller than normal and show abnormal internal organization
(i.e., fragmented lipid lamellae), often giving them a vacuolated appearance (56). The SC of
CIE individuals also retains large amounts of exogenous n-alkanes, whereas TAG and FFA
levels decrease (54). Together, disorganized lamellar arrays and nonpolar nonlamellar/lamellar
phase separation account for the barrier abnormality (56). However, in CIE, several variable
ultrastructural features were observed only in subsets of patients. These variable findings
include the following: 1) an absence of electron-lucent lamellae; 2) abnormal spacing and
interruptions of lamellar structures; and 3) intracellular lipid droplets and vesicular complexes,
within both the SC and the SG (10,46,56,66,67). An alternative classification of the variable
ultrastructural findings in ARCI is widely applied in Europe: type I is characterized by abundant
lipid droplets within corneocytes; type II shows polygonal clefts within the SC; type III shows
vesicular and membranous structures in the SG; and type IV is characterized by lentiform
swollen areas within corneocytes and perinuclear accumulation of curved membranes in the
SG (55,66). Because this classification preceded the use of ruthenium tetroxide to evaluate
membrane structures, it is of limited utility.

Today, the variability of ARCI morphology can be explained by the genetic heterogeneity that
is now becoming apparent, although some ultrastructural findings most likely reflect
nonspecific sequelae of disturbed cornification. Subsequently, it became clear that newly
discovered gene mutations do not always correlate well with or explain the observed clinical
and morphological phenotypes (e.g., the LI phenotype is frequently, but not exclusively, caused
by TGM1 deficiency). The same TGM1 mutation can cause both LI and CIE phenotypes, and
the LI phenotype can result from mutations other than TGM1 (68–71).

Several of the newly discovered mutations causing ACRI govern the synthesis of enzymes
directly involved in the production, transport, or assembly of lipid components of the SC (Table
1). In an intense, ongoing effort, detailed genotype-phenotype relationships, including
structural correlations, are being established. Best studied for their consequences for the
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epidermal permeability barrier are mutations in ichthyin on chromosome 5q33, which
putatively encodes for a transmembrane receptor. By electron microscopy, the SG of patients
with ichthyin mutations contains many empty or partially filled vacuolar and vesicular
structures, which are thought to represent defective LB (71). In one study, 85% of patients with
this morphologic pattern were found to have mutations in ichthyin (71). Because ichthyin
mutations do not result in decreased mRNA levels, the responsible mutations likely alter the
function, rather than the expression levels, of the putative receptor.

It has been proposed that the endogenous ligands for the putative ichthyin receptor are
hydroxyepoxyalcohols (69), presumably generated in normal epidermis (72) and reportedly
esterified at high rates into phospholipids (73). Epidermal hydroxyepoxyalcohols are metabolic
products of 12R-lipoxygenase (LOX) and hydroperoxide isomerase (epoxyalcohol synthase)
eLOX3 (74,75) (Fig. 2). Mutations in ALOX12 (for arachidonate lipoxygenase) and
ALOXE3 on chromosome 17p13, which result in the complete loss of enzymatic activity as a
result of abnormal protein folding, are relatively common (>10%) among patients with ARCI
(60,61,70,76). Thus, these enzymes and the putative ichthyin receptor may function in concert
along the same metabolic pathway, catabolizing leukotriene derivatives of arachidonic acid to
hydroxyepoxyalcohol end products, specifically 12(R)-hepoxilin A3 and 12(R)-hydroperoxy-
eicosatetraenoic acid (75,76) (Fig. 2). Additional evidence for the relevance of LOX deficiency
for the permeability barrier derives from mouse models that display increased TEWL, resulting
in death within 3–5 days after birth (77,78). Ultrastructural examination of the SC of these
animals revealed vesicular structures in the upper SG cell layers that are comparable to the
structural abnormalities in the SC of human ARCI subjects with ichthyin mutations. In mouse
epidermis, these findings also correlate with an increase in protein-bound, ester-linked lipid
species (77). Corneocytes isolated from LOX-deficient animals are more fragile and show
abnormal filaggrin processing, features that have not yet been identified in affected human
skin.

The initial transformation of arachidonic acid into epoxyalcohols and the downstream effects
on the putative ichthyin receptor have been proposed to provide a framework for several
intermediate metabolic steps that could, when disturbed, cause an ARCI phenotype and
permeability barrier abnormalities (14,70) (Fig. 2). First, pedigrees with ARCI linked to the
ALOX12/ALOXE3 chromosomal region on 17p13 but lacking mutations in these genes indicate
that there may be at least one additional gene in this region coding for a protein within the same
pathway (70). Second, in other ARCI kindreds, mutations in cytochrome P450, family 4,
subfamily F, polypeptide 22 (Cyp4F22) on chromosome 19p12 encode a putative fatty acid
ω-hydroxylase and may perturb a late enzymatic event in the epoxyalcohol oxidation and
hydroxylation cascade (79). Yet, information on SC structure and barrier function is lacking
in these patients. Third, fatty aldehyde dehy-drogenase, which is deficient in Sjögren-Larsson
syndrome (SLS) (see below), could have the ability to oxidize trioxilin products within the
above pathway. However, the prominent central nervous system abnormalities that are present
in SLS, but lacking in the ARCI phenotypes, indicate that the pathophysiological consequences
of blockade at this step are broader in scope. Moreover, differences in the cutaneous phenotype
of SLS (a “lichenified” rather than a “scaly” pattern accompanied by prominent pruritus)
suggest that other substrates may be affected. Finally, CGI-58/ABHD5, which is mutated in
neutral lipid storage disease (see above), has also been proposed to function as an epoxide
hydroxylase in the same biochemical pathway (79). However, there is no reason to suspect that
the activities of this lipase are restricted to these epoxide metabolites. Indeed, labeling studies
suggest a broader effect on acyl-lipid metabolism (see above). Finally, although a unitary
pathway hypothesis always is attractive (70), it should be recalled that mutations in disparate
genes, such as TGM1 (see above), cause identical phenotypes. More likely is the hypothesis
that any derangement of epidermal lipid metabolism can provoke an ichthyosiform phenotype.
Finally, it still remains to be seen how many distinct clinical, morphological, and biochemical
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disease subsets will be distinguished among these patients, or whether most will converge into
a common phenotype.

Although a lack of peroxidated lipid metabolites may be the common pathogenetic basis in
ARCI phenotypes that are not caused by TGM1 deficiency (Fig. 2), the mechanism whereby
this abnormality provokes disease is unknown. The pathogenesis of the barrier abnormality
could be related to essential fatty acid deficiency, in which a lack of substrate for the ω-
esterification of Cers to acylceramide is known to provoke a barrier abnormality (80–83).
Alternatively, some of the accumulating hydroxyepoxyalcohol substrates are potent and
selective activators of peroxisome proliferator-activated receptor (PPAR) α (84), a ligand-
activated nuclear hormone receptor with prodifferentiating and anti-inflammatory activity in
the epidermis (85,86) (Fig. 2). In addition, Cyp4F22 activity also likely generates potent
PPARα agonists, because it is a homolog of the leukotriene B2-ω-hydroxylase and ω-
hydroxylation of other eicosanoids enhances PPAR-activating properties (79,87). Yet, the
biological significance of this association remains unclear, because PPARα deficiency results
only in transient developmental defects in fetal mouse epidermis (85), presumably as a result
of redundancy in other epidermal nuclear hormone receptors. Finally, one or more of these
metabolites could mobilize intracellular calcium, thereby altering permeability barrier
homeostasis by downregulating LB secretion (88,89). This last possibility is consistent with
the LB secretory defect that has been described in preliminary studies of this group of
ichthyoses (e.g., ichthyin mutations; see above).

OTHER DISORDERS OF NONPOLAR LIPID METABOLISM
SLS

Several other primary disorders of nonpolar lipid metabolism display an ichthyotic phenotype
with additional systemic abnormalities (Table 2). In at least one of these disorders, SLS,
lamellar/nonlamellar phase separation could provoke both a barrier abnormality and the
distinctive clinical phenotype. SLS is a recessively inherited disorder of the brain and skin,
attributable to the accumulation of free and esterified long-chain aliphatic alcohols (90) as a
result of defective peroxisomal oxidation of long-chain aliphatic alcohols. A variety of
mutations in the ALDH3A2 gene, encoding the microsomal enzyme fatty aldehyde
dehydrogenase, have been described (91,92). Patients with SLS display a characteristic triad
of mental retardation, spastic diplegia or quadradiplegia, and ichthyosis (91,93). The epidermal
phenotype is quite characteristic, exhibiting a ridge or lichenified pattern with fine, brown
desquamation and prominent pruritus, which may be caused by coaccumulation of the
proinflammatory leukotriene metabolite, leukotriene B4 (91,94). Although the pathogenesis of
the putative barrier abnormality is still unknown, epidermal LB contents are abnormal (95) and
extracellular lamellar bilayers exhibit structural abnormalities consistent with lamellar/
nonlamellar phase separation (95,96).

Disorders of peroxisomal fatty acid metabolism
In two recessively inherited, nonpolar disorders of peroxisomal lipid metabolism, Refsum
disease (RD) and rhizomelic chondrodysplasia punctata (RCDP; OMIM 21508), similar
pathomechanisms to SLS could be operative2 (Table 2). RD (OMIM 266500) is a rare disorder
caused by a defect in the first step in peroxisomal β-oxidation of phytanic acid, a C16 saturated
fatty acid with four additional methyl groups at C3, C7, C11, and C15 (96). This branched

2An additional pathomechanism could also be operative in CHILD (for congenital hemidysplasia with ichthyosiform erythroderma and
limb defects) and Conradi-Hünermann syndromes; that is, an accumulation of distal sterol precursors (7-dehydrocholesterol/zymosterol)
could result in lamellar membranes that are deficient in cholesterol. Cholesterol is one of the key lipids (with Cers and free fatty acids)
that are required to form mature lamellar membranes, and such cholesterol-deficient membranes provide a suboptimal barrier (Ref. 1; p.
74).
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chain fatty acid is enriched in tissues of ruminant animals (97). Accumulation of phytanic acid,
although characteristic of RD, is not pathogenic, because increased phytanic acid levels occur
in other disorders of peroxisomal biogenesis, including SLS and RCDP (97). In RD,
peroxisomal β-oxidation of phytanic acid is blocked by the presence of the methyl group at the
3-position. Mutations in the gene encoding phytanoyl-CoA hydroxylase (PAHX, PHYH) occur
in up to 80% of RD patients (98), but some patients do not have PAHX mutations but rather
mutations in peroxin 7 receptor (PEX7) (99). PEX7 mutations underlie the more severe
phenotype, RCDP, in which severe skeletal defects predominate (99,100). A mild
ichthyosiform phenotype, albeit poorly described, can also be present. In all RD cases,
multisystem accumulation of phytols, predominantly phytanic acid, occurs, sometimes in
millimolar concentrations (97). Severely affected patients can die in childhood, but most do
not become symptomatic until adolescence, from a disease complex that includes retinitis
pigmentosum, deafness, cerebellar ataxia, anosmia, and ichthyosis (98). The initial symptom
is often night blindness, which can progress to blindness. Death usually results from cardiac
arrhythmia, but these as well as other disease symptoms improve with the implementation of
a phytol-free diet (97,98). The pathogenesis of the disease complex in RD could be explained
in part by the high affinity of phytanic acid for the retinoid X receptor and PPARα (100,101).
Although purely speculative, the symptoms of RD mimic several features of hypervitaminosis
A, which include visual, neurological, and desquamatory abnormalities. In addition, phytanic
acid can induce apoptosis in cardiac and neuronal cells and can mobilize Ca2+ from
mitochondrial stores (97). The relative roles of these mechanisms in disease pathogenesis
remain unknown.

Disorders of distal sterologenesis with ichthyosiform phenotypes
Two multisystem syndromes with ichthyosis, X-linked dominant chondrodysplasia punctata
type 2 (CDPX2) (Conradi-Hünermann-Happle syndrome; OMIM 302960) and CHILD
syndrome (OMIM 308050), are caused by mutations in genes encoding enzymes of the
postsqualene cholesterol biosynthetic pathway. CDPX2 is caused by mutations in the EBP (for
emopamil binding protein) gene that encodes 3β-hydroxysteroid-Δ8,Δ7-isomerase, catalyzing
the conversion of 8(9)-cholestenol to lathostero1 (102,103), resulting in diagnostic deviations
of the sterol precursors 8-dehydrocholesterol and 8(9)-cholestenol (104). Mutations either in
EBP or in NAD(P)H steroid dehydrogenase-like protein, encoding a member of the enzyme
complex that removes the C-4 methyl group in the next-most proximal step of the pathways,
have been reported to underlie CHILD syndrome [104,105; D. K. Grange et al., cited in
(106)]. Given the close approximation of the metabolic blockages, the striking phenotypic
similarities and genetic overlap are not surprising (reviewed in Ref. 106). Both are X-dominant,
proposed male-lethal traits associated with asymmetric skeletal malformations and a variety
of other deficits. Cutaneous features in CDPX2, the more common of the two conditions, are
most striking in the neonate, in which linear bands of scaling are distributed in a morphogenic
pattern (the lines of Blaschko), postulated to conform to regions in which the mutant X
chromosome is the active X (107,108), accompanied by a generalized erythroderma. The
cutaneous features resolve after infancy, leaving atrophy (follicular atrophoderma and
alopecia) and, in some instances, a mild ichthyosis on the extremities (108). Disease severity
is dependent on both the specific mutations and the extent to which the mutant X chromosome
is active in affected tissues (109–112). The resolution of the cutaneous phenotype presumably
reflects the dilution of effects as a consequence of the diminished viability of keratinocytes
bearing the mutant X (113). The cutaneous phenotype in CHILD syndrome differs in its
distribution, which is typically limited to one side of the body (104,105). Resolution also
occurs, but usually it is only partial. The skeletal defects and internal organ involvement are
also restricted to the same, usually right, side.
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The pathophysiologic basis for the ichthyosiform phenotype, like the manifestations of the
syndromes, is unclear. The multisystem malformations that characterize disorders of
postsqualene sterologenesis have been attributed to the following: 1) deficiency of bulk
cholesterol in membrane function; 2) toxic effects of accumulated precursors; and/or 3)
developmental effects of altered Hedgehog pathway signaling (114). In skin, it seems likely
that cholesterol deficiency per se is the major contributor, because a cutaneous phenotype does
not occur in either Smith-Lemli-Opitz syndrome (OMIM 270400), attributable to 7-
dehydrocholesterol reductase deficiency, or in hairless mice treated with the 7-
hydrocholesterol inhibitor AY9944 (115). In contrast, blockade of the Δ24 reductase,
converting desmosterol to cholesterol, through the inhibitors triparanol and 20,25-
diazocholesterol, is associated with ichthyosis in both rodent models and human (115,116). It
is likely, therefore, that 7-dehydrocholesterol, but not desmosterol, can substitute for
cholesterol in the formation of SC lamellar membranes.

Before the identification of primary sterologenesis defects in CDPX2 and CHILD syndromes,
these disorders were thought to be related to the peroxisomal biogenesis disorders. Deficient
peroxisomal function in cultured fibroblasts has been described in both CDPX2 and CHILD
syndromes (113,117–120) and in the murine homolog of EBP deficiency, the bare patches
mouse (113), which displays cutaneous defects that, like the phenotype in CDPX2, resolve
over time (113,121). The clinical phenotypes of the postsqualene sterologenesis and
peroxisome biogenesis disorders bear some striking resemblances (121), including skeletal
defects (chondrodysplasia punc-tata), central nervous system and/or hepatic involvement, and
ichthyosis in the PEX7 disorders (rhizomelic chondrodysplasia punctata) and adult RD.
Although their contribution to cellular cholesterol synthesis overall is unclear, the localization
of the postsqualene enzymes in the sterol biosynthetic pathway to peroxisomes likely explains
these phenotypic convergences.

DISORDERS OF POLAR LIPID PROCESSING
RXLI

Molecular genetics and biochemistry—RXLI is caused by null mutations in the gene
encoding the microsomal enzyme, steroid sulfatase (SSase) (122,123). Because of its location
on the distal tip of the short arm of the X chromosome (124–128), the SSase gene has been the
subject of considerable research. The gene mutations/deletions in RXLI (129–133) provoke
ichthyosiform skin changes, with occasional extracutaneous organ system involvement, as a
result of contiguous gene syndromes (134–136).

SSase is a classic microsomal enzyme that further localizes to coated pits in the plasma
membrane (137,138), where it hydrolyzes the 3β-sulfate esters from both CSO4 and sulfated
steroid hormones. In epidermis, SSase activity is low in the basal and spinous layers, whereas
enzyme levels peak in the SG (10–20 times higher) and persist into the SC, where it is
concentrated in membrane domains (2) (Fig. 3). In cytochemical studies, SSase activity
localizes not only within the cytosol (i.e., microsomes) but also within LBs, and SSase is
delivered to the interstices of the lower SC by LB secretion (2). Thus, SSase, like other lipid
hydrolases that are involved in the extracellular processing of secreted polar lipids (48), uses
the LB secretory system to reach sites where it participates in the regulation of permeability
barrier homeostasis and desquamation.

As a result of enzyme deficiency in RXLI, CSO4 accumulates in the epidermis (139–141), in
erythrocyte cell membranes (140,142), and in the LDL (β-lipoprotein) fraction of plasma,
where it produces diagnostic alterations in electrophoretic mobility (140,143). But CSO4 levels
in epidermis/SC are 1 order of magnitude higher than the levels in blood (140,142,144), likely
explaining the prominence of skin versus other organ involvement in RXLI. Normally,
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CSO4 constitutes ~5% of the total lipid of human SG, declining to ~1% of lipid mass in the
outer SC, through ongoing hydrolysis of CSO4 by SSase during SC transit (145,146) (Fig. 3).
However, as a result of absent SSase activity, the SC typically contains 10–12% CSO4 (by dry
weight) in RXLI (144). Like other SC lipids, CSO4 is concentrated in the SC interstices, but
in contrast to other barrier lipid precursors, it is not delivered by LB secretion (147). Rather,
its mode of delivery to the SC interstices can be explained by its amphilicity, which allows it
to diffuse readily across the cell membrane (148). Thus, in the absence of a lipid milieu within
corneocytes, CSO4 likely partitions preferentially to the highly hydrophobic, extracellular
domains of the SC.

CSO4 “cycle” and its regulatory significance—Because cholesterol sulfotransferase
activity, which generates CSO4, predominates in the lower nucleated cell layers of the
epidermis, whereas SSase peaks in the outer epidermis, Epstein et al. (149) proposed that an
“epidermal CSO4” exists in the epidermis, in which cholesterol is first sulfated in the lower
epidermis and then desulfated back to cholesterol in outer epidermal layers (Fig. 4). Disruption
of this CSO4 cycle accounts for both the abnormal desquamation and the permeability barrier
abnormality in RXLI (see below).

Sulfation of cholesterol by cholesterol sulfotransferase is a step that is intimately linked to
keratinization (150–152), including cornification in the epidermis (153–155). For example,
CSO4 levels are several orders of magnitude higher in keratinizing than in mucosal epithelia
(150), and reversal of keratinization, through the induction of mucous metaplasia in
keratinizing epithelia (e.g., by the application of exogenous retinoids), dramatically reduces
tissue CSO4 levels (156,157). Moreover, cholesterol sulfotransferase expression is linked to
epidermal development in utero (158,159), and CSO4 levels increase late in fetal development
(160).

CSO4 is a potent regulatory molecule in many extracutaneous tissues (161,162). For example,
whereas retinoic acid inhibits cholesterol sulfotransferase expression, PPARα and liver X
receptor activators stimulate its expression (163). CSO4 stimulates epidermal differentiation
by at least two related mechanisms (Fig. 4): 1) it activates the η isoform of protein kinase C
(164–166), which in turn stimulates the phosphorylation of differentiation-linked proteins,
assessed as increased cornified envelope formation (167); and 2) it is also a transcriptional
regulator of proteins involved in cornified envelope formation, such as TGM1 and involucrin,
operating through an activator protein-1 binding site in the promoter region (168,169). It is
likely that these two mechanisms are linked, as shown in Fig. 4: protein kinase C activation
by CSO4 could phosphorylate activator protein-1, leading to enhanced transcriptional
regulation of TGM1 and involucrin. Together, these observations provide an explanation for
the biological significance of the CSO4 cycle.

Basis for the permeability barrier abnormality in RXLI—Patients with RXLI display
only a minimal basal barrier abnormality (170,171) but a pronounced delay in recovery kinetics
after acute perturbations (171), suggesting that excess CSO4 destabilizes permeability barrier
homeostasis. To assess this hypothesis, we performed both in vitro and in vivo studies,
showing, first, that CSO4 fails to form eutectic mixtures with other SC lipids, with excess
CSO4 apparently segregating within nonlamellar domains in model lipid mixtures (51) and in
diseased SC (52). Accordingly, ultrastructural images of SC in RXLI show frequent but focal
nonlamellar domains, with disruption of the extracellular lamellae (2,172). Yet, the barrier
abnormality could be attributable not only to excess CSO4 but also to decreased cholesterol
(the cholesterol content of the SC in RXLI is reduced by ~50%) (144), and a discrete decrease
in cholesterol produces abnormal extracellular lamellar membranes (173). To varying extents,
the decrease in cholesterol in RXLI could be caused by (Fig. 3) the following: 1) reduced
generation of cholesterol from CSO4 as a result of the enzyme deficiency (172,174); and/or
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2) CSO4-mediated inhibition of HMG-CoA reductase, the rate-limiting enzyme of cholesterol
synthesis (174). CSO4, like oxygenated sterols, is a potent inhibitor of cholesterol synthesis
(174), consistent with the reduced levels of cholesterol in the SC of RXLI (144). Finally,
CSO4 inhibits the TGM1-mediated attachment of ω-hydroxyceramides to the cornified
envelope in vitro, a step that forms the corneocyte lipid envelope (175). Yet, the cornified
envelope/corneocyte-bound lipid envelope scaffold does not appear abnormal in RXLI (P. M.
Elias et al., unpublished observations). Thus, the dominant mechanisms that account for the
barrier abnormality in RXLI appear to be lamellar/nonlamellar phase separation of excess
CSO4 and reduced cholesterol content of the SC lamellar membranes (2).

Mechanisms proposed to cause abnormal desquamation in RXLI—Kinetic studies
have demonstrated that the hyperkeratosis in RXLI reflects delayed desquamation (12,176).
The basis for this classic, retention type of ichthyosis is the persistence of corneodesmosomes
at all levels of the SC (cited in Ref. 2). Two key serine proteases, kallikrein (KLK) 7 [stratum
corneum chymotryptic enzyme (SCCE)] and KLK5 [stratum corneum tryptic enzyme (SCTE)],
are primary mediators of desquamation that degrade corneo-desmosomes in vitro (177).
CSO4 may increase SC retention through the known ability of this lipid to function as a serine
protease inhibitor (2,12). Moreover, although the activities of these enzymes are restricted by
the acidic pH of normal SC (SCCE and SCTE exhibit neutral pH optima), the pH of the SC in
RXLI is even lower than that of normal SC (178). As a result, serine protease activity in RXLI
is reduced below the levels in normal SC (2). An unrelated mechanism, which could contribute
to increased SC cohesion in RXLI, posits that Ca2+, if present in sufficient quantities, could
stabilize highly anionic SO4 groups (from the persistence of CSO4) on adjacent lamellar
bilayers (179). Indeed, CSO4-containing lipo-somes aggregate avidly in the presence of
calcium (180,181). Moreover, the lower SC in RXLI demonstrates abundant Ca2+ in
extracellular domains, which preferentially localize along the external faces of opposing
corneodesmosomes (2). Thus, the delayed degradation of corneodesmosomes in RXLI could
be attributable in part to leakage of Ca2+ into the lower SC (caused by the barrier defect), with
the formation of Ca2+ bridges between adjacent corneodesmosomes (2).

Sphingolipidoses
In its most severe form, the sphingolipidosis, type 2 GD can present with a neonatal “collodion
baby” phenotype ichthyosis (182–184). Studies in patients, transgenic murine analogs, and
inhibitor-based models have shown that substantial reductions in lysosomal β-
glucocerebrosidase (EC 3.2.1.45) can provoke GD, a profound barrier abnormality (3,183); in
contrast, diminished activity of another key Cer-generating enzyme, acidic sphingomyelinase,
the causative enzyme of Niemann-Pick disease, although also provoking barrier abnormalities
(4,185), rarely, if ever, causes ichthyosiform skin changes. The distinct cutaneous phenotypes
may reflect the generation of the full spectrum of all nine human SC Cer species from
glucosylceramides, whereas acidic sphingomyelinase generates only two SC Cers from
corresponding sphingomyelin precursors (186). Cers constitute 50% of the extracellular
lamellar membranes in SC; as such, they are absolutely required for normal barrier function
(186). When β-glucocerebrosidase levels are very low (<90% of normal), ichthyotic signs can
emerge (182–184,187), attributable to both hyperplasia consequent to a severe permeability
barrier abnormality (188) and direct mitogenic activity of excess glucosylceramides (189) (Fig.
5). The persistence of glucosylceramides in extracellular lamellar membranes also imparts an
“immature” appearance that is quite distinctive and potentially diagnostic of GD (3,187).
Decreased Cer in relation to cholesterol and FFA in GD (185,188) also likely results again in
lamellar/nonlamellar phase separation caused by altered molar ratios of the three key lipids,
analogous to the effects of excess CSO4 in RXLI (2) (see above). This conclusion is based
upon the observation that topical Cers normalize barrier function in severe glucocerebrosidase
deficiency (4), but the cause of the barrier abnormality in GD is more complex, because topical
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Cers do not normalize barrier function in the face of enzymatic blockade (183). Hence, it is
likely that both decreased Cers and excess glucosylceramides contribute to the barrier
abnormality in GD (Fig. 5). The metabolic production and fate of epidermal Cer is the topic
of a subsequent review in this series by Drs. W. Holleran and Y. Uchida.

FAILURE OF LB ASSEMBLY OR SECRETION
HI

HI is a rare, recessively inherited disorder that presents at birth with a thick, plate-like
encasement of the entire skin surface that has life-threatening consequences. In neonates who
survive the perinatal period, the plate-like encasement is shed, and the phenotype shifts to a
severe ichthyosiform erythroderma (9,190). Transcutaneous water loss rates remain extremely
high (47), explaining at least in part the prominent epidermal hyperplasia and hyperkeratosis
that are presumably driven by the permeability barrier abnormality, as described above. The
barrier defect in HI is a primary disorder of the LB secretory system (191). Specifically, LBs
with replete lamellar contents are found only rarely in HI. Instead, the cytosol of the SG layer
contains numerous, small vesicular structures (192), which presumably represent nascent LBs
that lack internal contents. It is likely that these nascent organelles undergo exocytosis, because
the cornified lipid envelope, a structure thought to derive from the fusion of LB with the plasma
membrane, is normal in HI (192). Nevertheless, the extracellular spaces of the SC are largely
devoid of lamellar membranes (192).

ABCs are a large group of proteins that mediate the transport of a variety of different substrates
across cellular membranes. These proteins contain two transmembrane sequences and two ATP
binding domains, which undergo conformational changes that facilitate first the binding and
then the dissociation of attached lipids (193). To date, 48 ABC genes have been identified,
which have been further divided into seven subfamilies, based on sequence homology and
supramolecular organization of the nucleotide binding folds (194–197). The ABCA subfamily
comprises 12 functional transporters that all mediate lipid transport (198), with the exception
of one pseudogene (ABCA11). ABCA transporters function as components of highly
specialized cellular lipid-transporting organelles in major physiological systems, in which
defects cause severe inherited diseases in the cardiovascular, visual, and respiratory systems.
Accordingly, gene mutations of ABCA proteins are linked to several recessive disorders of
lipid metabolism, including ABCA1 [Tangier disease (156,157)], ABCA4 [Stargardt disease
(158–160)], and surfactant deficiency in newborns, which has been linked to ABCA3
deficiency (161,162). Further study has revealed that ABCA3 regulates lipid transport into the
LBs of alveolar type 2 cells (199,200).

ABCA12 is a recently characterized member of the ABC transporter superfamily, which serves
as a putative transporter for glucosylceramides from the Golgi apparatus (201) into epidermal
LBs. In HI [and in some cases of ARCI with a LI phenotype (202)], truncation or deletion
mutations in both alleles of the gene that encodes ABCA12 (203) result in a failure to deliver
newly synthesized glucosylceramides into nascent LBs (194,204). As a result, few if any
lamellar lipids are delivered to the SC interstices (192), and as noted above, a profound barrier
abnormality results (205). Recent studies in HI keratinocytes have demonstrated not only
defective glucosylceramide transport into LBs but also that corrective transfer of the ABCA12
gene into HI keratinocytes restores normal glucosylceramide loading into LBs (194). In those
HI patients with residual ABCA12 expression, it is possible that topical treatment with either
PPARγ or PPARδ activators could be beneficial, because our recent studies show that these
two nuclear hormone receptors upregulate ABCA12 expression in normal keratinocytes
(198). Mutations in the lipid transporter ABCA12 place HI into a disease spectrum with ARCI
(202). Although in HI the genetic ABCA12 abnormalities are truncations or deletions, the
ABCA12 mutations reported in ARCI to date have been solely missense mutations (202).
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Because HI is characterized not only by a profound barrier abnormality but also by striking
hyperkeratosis (thickening of the SC), the lipid transporter defect likely underlies the
desquamation abnormality as well, but by an indirect mechanism. Because lipid delivery to
LBs is required for the subsequent or concurrent importation of proteins into these organelles
(206), it is likely that a failure of lipid delivery also impairs the delivery of hydrolytic enzymes
to LBs in HI; therefore, little or no enzymes are delivered to the SC interstices (Fig. 6). Because
an array of LB-derived proteases is required for normal desquamation (207–209), the failure
of protease delivery could result in corneodesmosome retention, explaining (along with the
intense hyperplastic response to the barrier abnormality) the extreme hyperkeratosis in
neonates with HI.

Cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma syndrome
A noncongenital neurocutaneous syndrome with microcephaly, mental retardation, generalized
ichthyosis, and palmoplantar keratoderma was recently ascribed to mutations in the SNAP29
gene, encoding for the SNARE29 protein involved in intracellular vesicle fusion (210). Aside
from normal-appearing LBs, the epidermis of these patients exhibits numerous vesicular
structures of varying size in the SG and SC layers that contain glucosylceramide, KLK5, and
KLK7 (210). As the SNARE proteins are known to mediate neuromediator secretion (211),
SNAP29 mutations could cause a permeability barrier abnormality by impairing LB secretion.
The defect is possibly limited to a subset of LBs in the skin, explaining the selective enrichment
of glucosylceramide, KLK5, and KLK7 in the retained vesicular structures seen by electron
microscopy.

SYSTEMIC CONSEQUENCES OF BARRIER ABNORMALITIES IN THE
ICHTHYOSES

The importance of calories lost through evaporation has been long recognized in the treatment
of children with thermal burns and in premature infants who have immature skin barriers
(212), but this factor has not been addressed previously in children with extensive inflammatory
or genetic skin diseases. Short stature has been reported in some ichthyoses, such as Netherton
syndrome (213), HI (214), and trichothiodystrophy (214–216), but growth failure is present at
times in other forms of ichthyosis, suggesting that common pathogenic mechanism(s) could
be operative. Although epidermal inflammation and hyperproliferation have been proposed to
explain growth failure in adults with exfoliative erythroderma (217), negative nitrogen balance
does not occur until losses exceed 17 g/m2/day (218). Therefore, nutrient drain from a
hyperplastic epidermis alone is unlikely to account for the growth failure in these children.
Alternatively, recent studies have shown that caloric losses from an impaired permeability
barrier is the most likely cause of growth failure in severe ichthyosis phenotypes (47). Because
transcutaneous evaporation is necessarily accompanied by a loss of heat (0.58 kcal/ml) (219),
excessive rates of TEWL can constitute a significant caloric drain. All of these pediatric
subjects displayed impaired barrier function with a marked increase in TEWL rates, resulting
in large daily volumes of evaporative water loss, but TEWL rates ranged widely among study
patients, as may be expected in view of the genetic heterogeneity included under the umbrella
term “ichthyosis” (220).

The number of kilocalories lost from daily total TEWL ranged from 84 to 1,015 kcal (8–42
kcal/kg/day, with a mean of 433 ± 272 kcal/day) in this cohort, in contrast to expected rates of
41 to 132 kcal/day for age-matched children with competent barriers. In patients with moderate
to severe barrier abnormalities, the consequent caloric drain from heat evaporation appeared
sufficient to account for growth failure. Moreover, and alternatively, evaporative caloric losses
could be compounded by caloric expenditures from cutaneous hyperplasia, chronic
inflammation, which would be expected to increase metabolic rates, and/or anorexia
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accompanying systemic inflammation. Indeed, in the subject in whom resting energy
expenditure was measured, it was 19% or higher than predicted; patients with the highest rates
of TEWL also displayed the highest resting expenditure, suggesting that the severity of the
barrier defect correlates with increased metabolic demands. Some patients were in positive
caloric balance at the time of study, but they had dropped below normal growth patterns early
in life (221). Hence, their current positive caloric balance likely reflected that they had now
reached a steady state of growth, but they remained below normal body weights. A significant
number of these patients were in negative energy balance, suggesting how precariously these
patients maintain energy balance.

As noted above, both possession of the correct type and quantity of lipid and their organization
into lamellar sheets are required for the formation of a competent barrier (222–224). Indeed,
ultrastructural assessment of permeability barrier-related structures predicted the severity of
the functional defect in ichthyosis patients with growth failure (47). The most severe barrier
defects were observed in patients with HI and Netherton syndrome, and assessment of the LB
secretory system and evaluation of cutaneous barrier function by measurement of TEWL
correlated well with the magnitude of caloric drain from cutaneous water losses in these
patients.
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Abbreviations

ALOX arachidonate lipoxygenase

ARCI autosomal recessive congenital ichthyosis

CDPX2 X-linked dominant chondrodysplasia punctata type 2

Cer ceramide

CHILD congenital hemidysplasia with ichthyosiform erythroderma and limb defects

CIE congenital ichthyosiform erythroderma

CSO4 cholesterol sulfate

GD Gaucher disease

HI harlequin ichthyosis

KLK kallikrein

LB lamellar body

LI lamellar ichthyosis

LOX 12R-lipoxygenase

NLSDI neutral lipid storage disease with ichthyosis

OMIM Online Mendelian Inheritance in Man

PPAR peroxisome proliferator-activated receptor

RCDP rhizomelic chondrodysplasia punctata

RD Refsum disease

RXLI recessive X-linked ichthyosis
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SSase steroid sulfatase

SC stratum corneum

SCCE stratum corneum chymotryptic enzyme

SCTE stratum corneum tryptic enzyme

SG stratum granulosum

SLS Sjögren-Larsson syndrome

TAG triacylglyceride

TEWL transepidermal water loss

TGM1 transglutaminase 1
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Fig. 1.
Proposed pathogenesis of neutral lipid storage disease. LB, lamellar body; PL, phospholipids;
SC, stratum corneum; TAG, triacylglyceride; TEWL, transepidermal water loss.
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Fig. 2.
Potential disruptions in peroxidated lipid pathways in autosomal recessive congenital
ichthyosis. CYP4F22, cytochrome P450, family 4, subfamily F, polypeptide 22; FALDH, fatty
aldehyde dehydrogenase; PPAR, peroxisome proliferator-activated receptor; 12R-HPETE, 12
(R)-hydro-peroxyeicosatetraenoic acid; 12R-LOX, 12R-lipoxygenase.
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Fig. 3.
How steroid sulfatase (SSase) deficiency leads to recessive X-linked ichthyosis. CE, cornified
envelope; CLE, cornified lipid envelope; PKC, protein kinase C; TGM1, transglutaminase 1.

Elias et al. Page 29

J Lipid Res. Author manuscript; available in PMC 2010 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Consequences of the epidermal cholesterol sulfate cycle for normal skin. Chol, cholesterol;
SULT2B1b, cholesterol sulfotransferase.
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Fig. 5.
Potential pathogenic mechanisms in Gaucher disease. Cer, ceramide; GlcCer,
glucocerebroside; GlcCer’ase, glucocerebrosidase.
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Fig. 6.
Protein delivery to lamellar bodies is dependent upon prior lipid deposition: sites of blockade
in harlequin ichthyosis and cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar
keratoderma syndrome. ER, endoplasmic reticulum; TGN, trans-Golgi network.
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TABLE 1

Inherited lipid metabolic disorders with ichthyosis

Metabolic Category Inheritance Pattern Multisystem Affected Protein (Gene) Normal Function

Fatty acid metabolism

 Refsum disease Recessive Yes Phytanoyl-CoA hydroxylase
(PAHX, PHYH ); peroxin 7 receptor
(PEX7 )

α-Hydroxylation of branched chain
FFA

 Sjögren-Larsson syndrome Recessive Yes Fatty aldehyde dehydrogenase
(ALDH3A2)

Oxidation of fatty aldehydes to free
fatty acids

 Autosomal recessive
congenital ichthyosis

Recessive No 12R-Lipoxygenase (ALOX12) ? Oxygenation of arachidonic acid
to12(R)-HPETE

Recessive No Lipoxygenase-3 (ALOXE3) ? Hydroxyperoxide isomerization of
12(R)-HPETE to epoxyalcohol
metabolites

Recessive No Cytochrome P450 4F22(CYP4F22,
FLJ39501)

? ω-Hydroxylation of trioxilins

Recessive No Ichthyin (ichthyin) ? Receptor for hydroxyepoxyalcohol
metabolites

Cholesterol metabolism

 Conradi-Hünermann syndrome X-linked dominant Yes Δ8, Δ7-sterol isomerase emopamil
binding protein (EBP)

Distal cholesterol synthetic pathway

 CHILD syndrome X-linked dominant Yes NAD(P)H steroid dehydrogenase-
like protein (NSDHL)

Distal cholesterol synthetic pathway

 X-linked ichthyosis X-linked recessive (Yes) Ssase Desulfate cholesterol sulfate

Sphingolipid metabolism

 GD type I Recessive Yes β-Glucocerebrosidase (GBA) Deglucosylated β-glucocerebrosidase

 Niemann-Pick disease Recessive Yes Acidic sphingomyelinase (SMPD1) Generates ceramides from
sphingomyelin

Triglyceride metabolism

 Neutral lipid storage disease Recessive Yes CGI-58 acid lipase (ABHD5) Generates diacylglycerides and FFAs
from triacylglycerides

Lipid transporter

 Harlequin ichthyosis Recessive No ATP binding cassette (ABCA12,
truncation, deletion)

Transports glucosylceramides into
LBs

 Lamellar ichthyosis (some) Recessive No ATP binding cassette (ABCA12,
missense)

Same

 CEDNIK syndrome Recessive Yes Soluble n-ethylmaleimide-sensitive
factor attachment protein receptor
(SNAP29)

Facilitates exocytosis of LB contents

ALOX, arachidonate lipoxygenase; CEDNIK, cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma; CHILD, congenital
hemidysplasia with ichthyosiform erythroderma and limb defects; GD, Gaucher disease; LB, lamellar body; 12(R)-HPETE, 12(R)-hydroperoxyeicosa-
tetraenoic acid; SSase, steroid sulfatase.
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TABLE 2

Ichthyoses that have or could have lamellar phase separation as a basis for barrier abnormality

Disease Enzymatic Defect Barrier Dysfunction Lamellar/Nonlamellar Phase Separation Phase-Separated Lipid

Neutral lipid storage disease Neutral lipid hydrolase
(CGI-58)

Demonstrated (35) Demonstrated (35) Triglycerides

Recessive X-linked ichthyosis SSase Demonstrated (225) Demonstrated (225) Cholesterol sulfate

Refsum disease Phytanoyl-CoA hydroxylase
(PhyH); peroxin 7 receptor

Not assessed Not assessed Phytanic acid in all
glycerolipids (226)

Sjögren-Larsson Fatty aldehyde dehydrogenase Not assessed Demonstrated (227) Not assessed

GD β-Glucocerebrosidase Demonstrated (228) Demonstrated (228) Glucosylceramides

CHILD syndrome NAD(P)H 3β-hydroxysteroid
dehydrogenase (NSDHL)

Not assessed Not assessed Not assessed

Niemann-Pick disease Acidic sphingomyelinase Demonstrated (14,229) Demonstrated (229) Not assessed
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