
How Kinesin Motor Proteins Drive Mitotic Spindle Function:
Lessons from Molecular Assays

Linda Wordeman
Department of Physiology & Biophysics, University of Washington School of Medicine, 1705 NE
Pacific St., Seattle, WA 98195-7290
Linda Wordeman: worde@u.washington.edu

Abstract
Kinesins are enzymes that use the energy of ATP to perform mechanical work. There are
approximately 14 families of kinesins within the kinesin superfamily. Family classification is derived
primarily from alignments of the sequences of the core motor domain. For this reason, the enzymatic
behavior and motility of each motor generally reflects its family. At the cellular level, kinesin motors
perform a variety of functions during cell division and within the mitotic spindle to ensure that
chromosomes are segregated with the highest fidelity possible. The cellular functions of these motors
are intimately related to their mechanical and enzymatic properties at the single molecule level. For
this reason, motility studies designed to evaluate the activity of purified molecular motors are a
requirement in order to understand, mechanistically, how these motors make the mitotic spindle work
and what can cause the spindle to fail. This review will focus on a selection of illustrative kinesins,
which have been studied at the molecular level in order to inform our understanding of their function
in cells. In addition, the review will endeavor to point out some kinesins that have been studied
extensively but which still lack sufficient molecular underpinnings to fully predict their contribution
to spindle function.
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1. Introduction: The discovery of motors in the mitotic spindle
“The venerable and provocative speculation that all forms of movement in biological
systems have a common molecular basis can, at present, be subjected to few kinds of
experimental test, for all of which muscle contraction provides the paradigms. One
test is the search for proteins corresponding to actin and myosin in their physical
properties, a second is the preparation of working “models,”’ and a third is the
demonstration that the molecules composing the working structure not only interact
with but split ATP.”(1)

Ever since the surprising discovery that myosin(2) was capable of hydrolyzing ATP(3), the
energy source for muscle contraction, students of mitosis have exhibited a keen interest in
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molecular motors. This might derive from the appearance of mitotic chromosomes which, even
in fixed preparations, seemed to be experiencing motive force. It did not escape the eye of
David Mottier (1903)(4) that chromosomes attached to the mitotic spindle appeared to be
experiencing a pulling force exerted by the spindle fibers (Figure 1). The isolation of an ATPase
from Tetrahymena cilia in 1965(5) only served to intensify the resolve among cell biologists
to link these motors to mitotic spindle function. Especially compelling was the fact that this
ciliar enzyme, dynein, resembled an ATPase isolated from mitotic spindles(1) more closely
than it resembled myosin. Two decades later another microtubule motor called kinesin was
purified from squid axoplasm and implicated as the motor powering fast axonal transport in
neurons(6). Kinesin, which ironically, bears considerable structural similarity to myosin (6,
7), seemed like a valuable molecule for use within the spindle if it could only be identified in
non-neuronal cells. Kinesin and dynein suggested a palette of force generators potentially
available to the spindle. Dynein, which travels toward microtubule minus ends in combination
with kinesin, whose founding member travels unidirectionally toward microtubule plus-ends
seemed like a perfect complement of motors that could be employed for all the mechanical
requirements of cell division. Unfortunately, neither of these molecules could be identified,
unambiguously, with the mitotic spindle for a number of years using the biochemical
techniques available at the time. The 1990’s, however, were a comparatively rich decade for
motors in the spindle in that several genetic studies simultaneously galvanized and
revolutionized the mitosis field by identifying mitotic kinesins that strongly resembled but
were not identical to previously identified neuronal kinesin(8–12). At the same time and after
much hard work, cytoplasmic dynein was also unambiguously identified in the mitotic spindle
(13,14). The mitotic spindle can now flex its muscles.

Kinesins, which now number over 45 unique genes in mammals, fall into approximately 14
subfamilies based on sequence homology within the catalytic core motor domain(15). It would
not be an overstatement to say that almost all identified kinesin families participate to some
extent in cell division. The purpose of this review will be to examine a subset of kinesins, which
have been carefully evaluated for activity in isolation and then attempt to place this activity in
the context of spindle function. Space constraints prevent me from a comprehensive review of
all mitotic motors, which would include kinesins, dyneins and myosins. Finally, I hope to
emphasize that there are a number of interesting, heavily investigated, mitotic kinesins which
still lack thorough evaluation of enzymatic function in vitro and that without these data a
complete understanding of cellular function is impossible.

2. Kinesin: The Movement Protein
2.1 Introduction

For the majority of enzymes it is difficult to “see” them work. One can measure the
accumulation of product or the decrease in substrate. Detailed structural studies can reveal
mechanistic snapshots of the protein in action. But generally speaking it is often difficult to
watch an enzyme working in real time. In contrast, many details of motor protein mechanism
can be viewed in the light microscope in real time. The early biochemical purification of
neuronal kinesin made use of this property in the form of a “motility assay”(6). Motors can be
purified, affixed to a substrate, a bead, or a fluorescent tag and fed with a little ATP. Then their
directionality, processivity, on-rate and off-rate can be measured directly as they travel along
the surface of the microtubule lattice.

To date approximately 45 unique kinesin superfamily genes have been identified in mammals
falling into 14 families(15,16). These motors participate in a wide variety of often cell- and
tissue-specific functions and the majority possess one or more members that assist during
mitosis or meiosis. The 14 families of kinesin genes are classified based on a combination of
sequence (and therefore structural) similarity and functional grouping(16,17). The functional
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grouping of kinesins must be, by necessity, relatively broad because kinesins exhibit tissue-
specific functions. An example is the microtubule-depolymerizing kinesin, MCAK, a member
of the kinesin-13 family of which there are 3 unique members in mammals. MCAK
depolymerizes microtubules(18). In mitotic cells, MCAK promotes the turnover of kinetochore
fiber microtubules during cell division, which leads to improvements in error-correction,
congression and spindle assembly(19–22). MCAK is not, thus far, found in post-mitotic or
terminally differentiated cells(23). However, postmitotic neurons do express a kinesin-13
family member, Kif2A, which limits collateral branch extension in developing neurons(24).
What is the functional link between these two jobs? In both cases they are accomplished by
disassembling microtubules. Thus, the functional classification of kinesins ends up being
dependent on how they move on, and what they do to, microtubules.

2.2 Kinesin Families
Kinesin families fall into three broad functional categories based on what they do in conjunction
with microtubules: (i) kinesins that translocate to the plus ends of microtubules (kinesins-1
through 7, kinesin-12), (ii) kinesins that translocate to the minus ends of microtubules
(kinesin-14), (iii) kinesins that depolymerize microtubules (kinesin-13, kinesin-8). As always,
there are interesting exceptions to these classifications (kinesin-10) and a few not rigorously
tested (kinesin-9, kinesin-11). Within these broad functional classifications detailed analyses
of motility reveal themes consistent or likely to be consistent within each family. As a
cautionary note, it is usually the case that individuals within a subfamily have not been tested
for motile properties relative to each other. Perhaps this is because researchers are afraid such
an analysis will be boring or repetitive. I suspect, however, that comparative studies within
subfamilies will discover interesting, functionally relevant, specializations. Nevertheless, for
most kinesin families there is at least one member who has been run through its paces (Table
1).

2.3 Kinesin Motility
Initial studies of representative family members in vitro revealed basic features that can easily
be related to function. Using the energy of ATP, motile motors will translocate unidirectionally
along the surface of a microtubule relative to the microtubule’s inherent structural polarity
(minus ends anchored at the spindle pole, plus ends extending distally to the cell membrane,
kinetochores and spindle midzone). The direction a motor will “walk” will then define its
suitability for certain tasks during cell division. The majority of kinesins walk toward the plus
end of the microtubule putting them in an excellent position to transport chromosomes to the
end of kinetochore fibers during congression, or to slide two half spindles apart during spindle
elongation. Some kinesins (and all dyneins) walk toward the minus ends of microtubules. This
predicts a potential utility in anaphase chromosome movement, focusing anastral spindle
microtubules and positioning the spindle within the cell via minus-end directed motors
anchored to the submembranous cytoskeleton. Two families of kinesins (kinesin-8 and
kinesin-13) have been implicated in modulating the kinetics of microtubule assembly and
disassembly from free tubulin dimers. These kinesins are suspiciously enriched near the
centrosomes and centromeres, areas rich with microtubule ends, where assembly and
disassembly occur. It continues to be useful for researchers to apply the characteristics that
individual motors display on microtubules in vitro into the context of the mitotic spindle in
order to evaluate the role a particular motor will play during cell division (Figure 2). In addition
to motility and directionality, it is important to consider carefully the potential “attachment
points”, the structures, either identified or speculative, against which the motor will exert force
during movement. These “attachment points” constitute one of the most poorly understood
aspects of motor function in the spindle. For example, if a motor is proposed to use its plus
end directed motor activity to slide a microtubule relative to another microtubule is the motor
anchored statically to one microtubule and sliding the other? Or, is the motor anchored to a
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“matrix” of structural proteins surrounding the microtubules? Is a motor anchored to a
chromosome arm able to exert force on the entire chromosome given the inherent flexibility
of the chromatin to which it is attached? These are the sorts of questions that still flourish,
generally unanswered, in the mitotic motor field.

2.3.1 Eg5—Kinesin families have broad structural divisions, which, in turn, reflect their
particular motility style. Kinesin-5 family members (Eg5/BimC, for example, are bipolar
tetramers with two plus-end directed motors at each end(25). Such a molecule is admirably
suited to slide two parallel microtubules relative to each other, minus end leading if it has a
separate attachment site (such as a spindle matrix) against which to exert force(26).
Alternatively, the molecule may push two anti-parallel microtubules relative to each other
without attachment ot other structures. Not surprisingly, in vitro the molecule exhibits a clear
preference to slide antiparallel microtubules relative to each other(27,28).

What does it mean for Eg5 to exhibit a “preference” for anti-parallel microtubules? This is
where the fine details of motility in vitro become potentially important. Fine details include:
processivity, the number of cycles the enzyme undergoes before detaching from the
microtubule substrate; and diffusion, a non-energy requiring, gliding that motors do for short
distances along the microtubule which is generally unbiased in directionality. Processivity, in
the case of walking kinesins, refers to the number of steps that the motor will take before
detaching. A motor that is highly processive can do a lot of work all on its own without the
assistance of other motors. A non-processive motor, in contrast, may function most effectively
in groups. Diffusion tends to be an extremely rapid method of scanning short distances along
the microtubule but falls off in importance when efforts over a long distance are required. The
bipolar tetramer, Eg5, is a rather poor motor at physiological salt conditions, dithering back
and forth on the microtubule in ATP-independent diffusive mode. However, once the motor
encounters another microtubule that it can crosslink and, presumably, push against, then it
becomes an active, ATP-hydrolyzing directional motor(29). Furthermore, the motor domains
appear to be oriented in a manner that favors the second bound microtubule to be in an
antiparallel orientation(28). There would be no way to predict this without careful, detailed in
vitro assays of purified motor and microtubules in isolation. Yet, the information fits,
mechanistically, very well with the proposed functions of kinesin-5s in driving spindle
elongation and establishing bipolarity(30–32). However, motors by virtue of their propensity
to cycle through strong and weakly microtubule-bound states during ATP hydrolysis, have the
potential capability to crosslink microtubules and oppose movement as well as promote it. Eg5
is no exception and has also been reported to limit spindle elongation in some systems(33,
34). Many excellent studies and essential tools, such as Eg5-specific small molecule inhibitors,
have made Eg5 one of the mechanistically better understood motors contributing to mitotic
spindle function. The motor has a clear role in “establishing spindle bipolarity”. Yet, the
complete manner in which it does so is still maddeningly elusive.

2.3.2 NCD—NCD (Non-Claret Disjunctional) is a minus-end directed kinesin originally
identified as essential for proper chromosome segregation in Drosophila female meiosis and
early embryos(8). The motor domain has been crystallized and shows striking similarity to
plus-end directed kinesins (35). In fact, electron microscopy in conjunction with 3D
reconstruction shows that motors kinesin motors strongly bound to microtubules will always
bind in one orientation(36). Thus, directionality, as has been shown in numerous studies, relies
on domains outside of the motor domain. NCD can be released from minus-end directionality
by a single point mutation in either of two, highly conserved, interacting residues, one in the
“neck” outside the motor domain and one in the core motor domain(37). The resultant motors
can translocate in either direction in an ATP-dependent manner. This would be an excellent
point at which to regulate directionality, the control of which has yet to be demonstrated, in
any motor in a cellular setting.
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Motility studies of NCD have long shown that it is relatively non-processive, suggesting that
it is a motor that is most effective in groups(38). Kinesin-14 family members have long been
known to be prodigious bundlers of microtubules in addition to their minus-end directed
motility. Far from being a nuisance for motility assays, recent in vitro studies of full-length
NCD and its orthologue from S. pombe have demonstrated that these molecules preferentially
slide anti-parallel microtubules relative to each other in various bound motor orientations. In
contrast, microtubules with uniform parallel orientation become locked in place by inter-
microtubule-bound motors working against each other(39,40). HSET, the kinesin-14
orthologue in human cells, is non-essential for cell division in normal cells yet is helpful at
rescuing multipolar spindles via centrosome clustering in cells with multiple centrosomes
(41). Thus, its force-locked microtubule bundling activity may be more functionally important
than sliding and may be especially important in female meiosis in Drosophila where the
spindles lack the focusing activites of centrosomes or in situations in which too many
centrosomes are present and need to be coalesced into one pole-focusing entity.

Minus-end directed directional sliding should implicate kinesin-14s in promoting spindle
collapse and opposing the activity of Eg5(42). Yet recent studies have shown that
overexpression of HSET, lengthens spindles while depletion modestly shortens them without
interfering with cell division. Mutational analysis in which sliding ability was eliminated
indicated that both sliding and crosslinking contribute to spindle elongation(43). How sliding
of parallel microtubules in the half-spindle accomplishes this task when kinesin-14 molecules
tend to become force-locked in these conditions is mysterious. It may be that minus-end
directed motility and crosslinking are not fully separable activities. For example, in ATP, a
microtubule may be immovable because the collective motors operating on it are equivalently
balanced in opposition to each other. They may be able to progress partially through the cross-
bridge cycle until a strongly bound or force-locked state is reached. This would result in strong
crosslinking without a lot of overt microtubule sliding. Regardless, it is necessary to know the
orientation and anchor points (both static and dynamic) of the motors to the half-spindle
microtubules are essential in order to understand how HSET functions in the spindle. This is
best understood by extension from in vitro studies of purified protein supplemented by
computational modeling(44).

Kar3p is a kinesin-14 important for mitosis and karyogamy in S. cerevesiae. Up to this point
we have been discussing kinesin-14 motors that are two-headed homodimers connected by a
long coiled-coil stalk. The orthologous protein in yeast, Kar3, preferentially heterodimerizes
with either Vik1p or Cik1p, although it can homodimerize as well(45). Structural studies have
revealed these proteins to be kinesin motor domains that lack an ATP-binding site yet still bind
microtubules(46). Dimerization with these “dead heads” significantly enhances Kar3p minus-
end directed motility(45) and confers the ability to destabilize the microtubule plus-end as well
(45,47). Nothing analogous to Vik1p or Cik1p has been identified in mammalian cells, but it
is well within the realm of possibility that similar non-motor motors will be identified as a
means to structurally and functionally diversify kinesin activity. More precise motility assays
of these two heterodimers in order to mechanistically evaluate how they operate in promoting
spindle positioning, spindle integrity, chromosome maintenance, and synaptogenesis(48,49).
A key unanswered question is whether Kar3p and its partners behave similarly to other
kinesin-14s with respect to microtubule crosslinking.

2.3.3 NOD—NOD is a kinesin-10 family member, which includes the mitotic chromokinesin,
KID. Both KID and NOD are found on chromosome arms and both are implicated in
chromosome positioning during congression. NOD is required for the proper positioning of
achiasmate chromosomes during meiosis in Drosophila. KID appears to be monomeric(50)
and exhibited plus-end directed motility only when surveyed using a bead assay (motors affixed
to a bead rather than a glass coverslip)(51). NOD is widely considered to be non-motile(52)
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and has been reported to bind preferentially to microtubule ends and stimulate microtubule
polymerization(53). Structural studies suggest that NOD binds and releases microtubules
concurrent with ATP hydrolysis but that ATP turnover is inhibited when the motor binds the
microtubule end until the end elongates(54). This would be an excellent means by which to
help coax chromosomes to the plus-ends of microtubules without relying on hand-over-hand
motility.

It must be said, however, that the disparity between the motility described for NOD and for
KID feels incomplete for two motors in the same general family. There is still much work to
be done with these motors. Furthermore, there is another family of chromokinesins (kinesin-4),
which is characterized by Kif4/XKLP1. An extensive study of XKLP1 shows that it is a plus-
end directed motor that also modulates microtubule ends by inhibiting both microtubule growth
and shrinkage(55). This activity and also those ascribed to the kinesin-10s, KID and NOD, are
all compatible with their proposed role in promoting the congression of chromosomes to the
metaphase plate. Previously, it was though that microtubules polymerizing from the spindle
pole produced a “polar ejection force” that tended to assist with the job of moving chromosomes
away from the pole and toward the spindle midzone(56). This force promotes the ejection of
chromosomes from microtubule-dense areas near the spindle pole, toward the plus-ends of
microtubules at the spindle midzone even when the chromosome arm is physically detached
from the kinetochore(57). Now, with the discovery of chromokinesins (plus-end directed
motors on chromosome arms), it is widely thought that motor-dependent plus-end directed
motility associated with chromosome arms corresponds to the polar ejection force. Ejection
force arising from polymerizing microtubules and microtubule motor-dependent polar ejection
force are not mutually exclusive and it is not presently known which of these activities is acting
on chromosome arms to produce the polar ejection force. Nevertheless, chromosome arm-
associated microtubule-stabilizing activity would be a useful way of promoting congression
either by facilitating the maintenance of a track for plus-end directed motility, or by promoting
a preferential association with polymerizing microtubule ends (as is proposed for NOD), or by
facilitating microtubule polymerization, an activity which is likely to be capable of producing
a polar ejection force in isolation. These activities are extremely difficult to isolate within the
context of the spindle so further assays of the chromokinesins in vitro are likely to be
informative with respect to the motor activities possessed by chromosome arms.

2.3.4 MCAK—MCAK was originally identified as a kinesin-related protein that was enriched
in the inner centromere region of mitotic chromosomes(58). Rapid depletion of this kinesin
from cellular extracts led to explosive microtubule growth(59) and a classic study subsequently
confirmed that the motor was capable of completely disassembling microtubules stabilized
against disassembly by either paclitaxel or non-hydrolyzable GTP analogs(18). Subsequent
studies confirmed that MCAK and other members of its kinesin-13 family are capable of
disassembling microtubules(18,60,61) in a catalytic manner and that it is most likely that one
motor can remove approximately twenty tubulin dimers prior to dissociating from the
microtubule(62). The process involves the motor preferentially stabilizing a curved (rather than
straight) protofilament conformation that weakens the association of tubulin with the
microtubule(63,64). Tubulin dimer removal from the microtubule is tightly coupled to ATP
hydrolysis and can be isolated from tubulin dimer release by the bound motor by introducing
a point mutation into the switch II region motor domain(65). Such mutations have been
commonly used to isolate the pre-and post-power stroke structures of myosin and other motile
kinesins(66–68). In the case of MCAK, the process of ATP-binding and hydrolysis triggers
the motor to sequentially bend, remove and release a tubulin dimer during one ATP hydrolysis
cycle(65). Thus, MCAK and its family members are potent, catalytic microtubule
depolymerizers and it is likely that this is the activity that they contribute to the centromeric,
centrosomal, and spindle midzone regions of the mitotic spindle.
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Evaluating the role of these depolymerizers in cells is challenging because the activity of
MCAK in the cell appears to be intimately associated with the ratio of tubulin dimer to polymer.
This is not surprising as it has been known for quite some time that cells adjust their level of
tubulin expression to the level of free tubulin dimer in the cell(69,70). However, slow (12–36
hour) depletion of MCAK such as occurs during siRNA treatment, gives the cell ample time
to adjust microtubule polymer dynamics and results in a rather subtle mitotic phenotype. Cells
experience a modest increase in lagging chromosomes and longer astral microtubules(20,71).
Defects in congression due to improper kinetochore microtubule attachment(72) and
antagonism of bipolar spindle assembly have also been reported(20,72–75). MCAK’s activity
and centromere localization are regulated by Aurora B kinase, further implicating the motor
in kinetochore function and error correction(76–79). Depletion of centromere-associated
MCAK leads to decreased speed of chromosome movement and also to decreased kinetochore
fiber microtubule turnover(21). In contrast, addition of more MCAK to the centromere resulted
in fewer lagging chromosomes (suggesting increased error-correction activity), increased
microtubule turnover in the kinetochore fiber and greater overall speed of chromosome
movement and fewer erroneous microtubule connections(21). This suggests, commensurate
with its potent microtubule depolymerizing activity, that MCAK facilitates kinetochore fiber
microtubule turnover and error correction by gently antagonizing microtubule attachment at
the kinetochore.

2.3.5 Kif18A—The kinesin-8 family possesses unique attributes that significantly inform our
perception of their role during cell division. Members of this family were described in
Drosophila as plus-end directed motors whose elimination led to unexpectedly long
microtubules. This conundrum was partially solved with the discovery that the kinesin-8,
Kip3p, from S. cerevesiae is a highly processive plus-end directed motor that disassembles
microtubules from the plus-end in a length dependent manner(80,81). This length dependence
is related to the high processivity of the motor in that, once it is translocating along the
microtubule, it is unlikely to detach. This leads to an accumulation of the motors at the plus
end of the microtubule if the motors do not walk off the end of the microtubule. This ability
of kinesin-8s to stay attached at the end of the microtubule is an interesting phenomenon in
and of itself. Not all motile kinesins do this. Once the concentration of Kip3p is high enough
the microtubule begins to shorten in a length dependent manner. This is because the high
processivity of the motor results in longer microtubules accumulating more motor over time,
thus leading to a positive relationship between the length of the microtubule and the rate of
disassembly. The importance of a high concentration of motor is underscored by the
observation that one molecule of Kip3 will not remove a tubulin dimer until another motor
kicks it off(82). Thus, the motor will only remove tubulin dimers when the lattice near the plus-
end is essentially saturated.

The mammalian orthologue of Kip3p, Kif18A, is also capable of disassembling microtubules
(80) and distributes in a gradient along kinetochore fibers suggesting it may provide positional
information to congressing chromosomes(83). However the activity that Kif18A supplies to
the gradient may not be as simple to interpret as the depolymerase activity of MCAK. Based
on the length-dependent disassembly of microtubules by Kip3p(81), the molecule has been
implicated in using its depolymerase activity to limit microtubule length within the spindle.
Furthermore, loss of Kif18A leads to a modest lengthening in spindles and longer microtubules.
So far so good. However, there is more than one way to shorten a microtubule. Suppressing
microtubule dynamics can shift the steady state length of microtubules to a narrow distribution
around a shorter length. One can accomplish this by either simultaneously suppressing rate of
assembly and disassembly or by simultaneously increasing both catastrophe and rescue (the
transitions between disassembly and assembly). Kip3p in living yeast appears to have its
principal effect in vivo by increasing the transitions between growth and shortening(84). Thus
a microtubule has less time to grow and less time to shorten in the presence of Kip3p. Overall
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this is going to shift the distribution of microtubule lengths in the cell to a narrow distribution
of shorter lengths. Interestingly, the expression of excess Kif18A protein in mitotic cells has
similar effects on chromosome oscillations(83). Bioriented chromosomes exhibit oscillatory
movement during metaphase. This movement is related to the growth and shrinkage of
microtubule ends bound by kinetochores in that it can be suppressed by microtubule drugs that
suppress microtubule dynamics. Similarly, expression of Kif18A suppresses chromosome
movement without appreciably affecting their ability to congress. Conversely, depletion of
Kif18A increases the speed at which chromosomes travel and decreases the frequency with
which they switch directions, leading to an inability to congress because they sail past the
metaphase plate without stopping(83). By extension, this resembles the situation in yeast
whereby microtubule transition frequencies decrease with the loss of Kip3p(84). This suggests
that further evaluation of the effect of purified Kif18A protein on dynamic microtubule in
vitro is definitely warranted in order to reconcile the microtubule shortening effect of kinesin-8s
with their cellular role in suppressing microtubule dynamics.

2.3.6 MKLP1—Both MKLP1 and MKLP2 are kinesin-6 family members. Previous evidence
indicates that they are dimers in metazoans(85) but recent crosslinking data suggests that klp9p,
the kinesin-6 family member in S. pombe, may form a tetramer(86). This is consistent with the
recent discovery that klp9p may slide bipolar mitotic spindles apart in S. pombe during
anaphase B (spindle elongation)(86). Klp9p accomplishes this in conjunction with a
microtubule bundling protein Ase1 (Prc1 in metazoans). In a perplexing twist, prc1 in mammals
also bundles microtubules and interacts with three plus-end directed kinesins, the
chromokinesin, Kif4A (kinesin-4 family), the kinesin-6, MKLP1, and the kinesin-7, CENP-E
(87).

In Drosophila, which possesses all three representatives implicated in spindle midzone
function: Kif4A (Klp3A; kinesin-4), MKLP1 (Pavarotti; kinesin-6) and MKLP2 (Subito;
kinesin-6), the kinesin-4 Klp3A, is proposed to operate in spindle elongation by promoting
midzone bundling and suppressing flux(88). As expected for a chromokinesin there is also a
mild congression defect associated with Klp3A loss (89). In mammalian cells, depletion of
Kif4A lead to long anaphase spindles implying a role in opposing spindle elongation(90). This
is interesting as both kinesin-6s and kinesin-4s are plus-end directed. Most studies implicating
a balance of forces involved antagonism between motors of opposite directionality. A detailed
in vitro study of the Xenopus kinesin-4, Xklp1, may provide some answers. Xklp1 was shown
to be a rapid plus-end directed motor with the ability to suppress both depolymerization and
polymerization in an ATP-independent manner once it reached the end of the microtubule
(55). This suggests how kinesin-4s might antagonize the sliding activities of kinesin-6s, by
limiting the polymerization of interzonal microtubules and thus limiting the extent of the zone
of anti-parallel microtubule overlap.

Kinesin-6s such as MKLP1/2 have not been as clearly implicated in pole separation by sliding
of antiparallel microtubules in cells other than S. pombe. This may be because anaphase B
spindle elongation is less pronounced in other systems. Furthermore, the role of kinesin-6s in
“organizing” the central spindle can lead to mechanistically difficult to interpret phenotypes
such as broken, splayed or collapsed spindles. Instead, a much larger body of work from C.
elegans, Drosophila and mammalian cells (reviewed in (91)) demonstrates that a dimer of the
kinein-6 family member, MKLP1, forms a complex with a dimer of RhoGAP to form the
centralspindlin complex, which is required for Rho-dependent cleavage furrow ingression
(85). MKLP2 (found in Drosophila and mammals but not C. elegans) relocalizes from the
inner centromere at mitosis to the spindle midzone, interacts with polo kinase, INCENP and
Aurora kinase and is required to localize Aurora kinase to the midzone, which then
phosphorylates MKLP1(92). Phosphorylation of MKLP1 is, in turn, required for specification
of the cleavage furrow (93). Less well understood is the more phylogenetically restricted
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kinesin-6, MPP1, although it is also implicated in the completion of cytokinesis in human
cultured cells(94). Regardless, the take-home message is that, in contrast to S. pombe, the
kinesin-6 family in other organisms seems to be primarily involved in positioning and
facilitating the function of the cleavage furrow, rather than physically pushing the spindle poles
apart. This is curious in that pushing the spindle poles apart might be an excellent way to locally
reduce the number of cortically associated astral microtubules and to redundantly localize
furrowing(95). Perhaps the redundancy is not as evolutionarily robust when imparted by the
same motor?

In organisms that possess more than one kinesin-6, they appear to interact with different
signaling molecule complexes. For example, in contrast to MKLP2 which complexes with
midzone passenger proteins, MKLP1 forms a complex with RhoGAP and RhoGEF and is
required for Rho-dependent cleavage furrow ingression(96). Both of these kinesin-6s are
strongly associated with anti-parallel microtubules in the spindle midzone. MKLP1 is a plus-
end directed motile kinesin that can crosslink and appears to be able to slide anti-parallel
microtubules relative to each other(97). The activity of MKLP2 in vitro is likely to be similar
but has not been tested. It would be interesting to understand whether kinesin-6s can elongate
mitotic spindles by exerting plus-end directed force on each half spindle and whether this
contributes to their role in cleavage furrow specification or represents a separate function.

Our understanding of the role of MKLP1 in directing the establishment of the cleavage furrow
has benefited from informative biochemical and genetic studies. However, from the perspective
of MKLP1, the motor, the ability of the kinesin-6 family proteins to slide anti-parallel
microtubules relative to each other is consistent with their localization to the interdigitating
anti-parallel microtubules of the midzone but superficially inconsistent with their role as
transporters of signaling complexes. Such tasks could be accomplished by any plus-end
directed motor. Thus, a true mechanistic evaluation of their function remains to be determined.
How, precisely does MKLP1 direct the accumulation of RhoA to the forming cleavage furrow
and is the ability to slide antiparallel microtubules required for this process? How is its actin-
binding activity useful for this process? Does MKLP1 transport RhoA regulators to the cortex
or does it localize them at the midzone and rely on diffusion to signal cortical actin? More
detailed analysis of the activity kinesin-6 family motors on single and bundled microtubules
coupled with live imaging of the dynamic behavior of these motors during cell division would
help answer some of these questions.

3. Conclusions
A comprehensive survey of kinesins in cell division is not possible within the constraints of
this review. However, I have endeavored to touch on a few kinesins for which detailed analysis
in vitro has been or is likely to be informative with respect to cellular function. This is especially
the case for mitosis, as compared to other microtubule-based processes, because the
organization of microtubules during mitosis is complex and dynamic. Mitotic spindle
microtubules form parallel arrays, anti-parallel arrays, asters and bundles. They undergo
dynamic instability, flux, sliding and exhibit high rates of nucleation and turnover during cell
division. Future studies in vitro should include experiments designed to mimic these substrates.
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Figure 1.
Chromosome segregation in the Lillium pollen shore mother cell from Mottier (1903)(4).
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Figure 2.
Motors contribute diverse mechanical activities to the mitotic spindle. Minus-end directed
motility (examples are NCD and dynein), plus-end directed motility (Kid, MKLP1, MKLP2,
and others); bipolar plus-end directed motility (Eg5, presently no bipolar minus-end directed
motors have been reported); plus- and minus-end directed motility transporting signaling
molecules (MKLP1, dynein); depolymerizing and end modulating activity (MCAK, Kif18A,
Xklp1, Nod). Motors may couple to microtubules (left inset), spindle matrix components such
as NuMa(140,141) (right inset) or other cargo.
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Table 1

Motility and Function of Kinesin Families

Family Common Names Structure Motility in vitro Mitotic Function

Kinesin-1 UKHC, Kif5, UNC-116 Heterotetramer: 2 HC and 2
LC

Plus-end directed,
processive, hand-over-
hand motility (68).

No known function in mitotic spindles
but mediates translocation of meiotic
spindle to the oocyte cortex in C.
elegans meiosis (98).

Kinesin-2 Kif3A/B/C Hetero- and Homodimer Plus-end directed, fast,
processive, variable
based on composition
of heterodimer(99).

Dominant-negative mutants result in
aneuploidy and multipolar spindles(98,
100).

Kinesin-3 Kif14; Kif13B/Gakin Dimer Plus-end directed rapid
motility (101).

Interacts with PRC1, implicated in late
stage cytokinesis (102–104).

Kinesin-4 Kif4, Xklp1, Klp38B Not confirmed, Dimer? Plus-end directed
motility, inhibits
dynamics(55,105).

Congression, spindle assembly,
cytokinesis.(87,106)

Kinesin-5 Eg5, BimC, Cin8 Bipolar tetramer Bundling, parallel and
antiparallel
microtubule sliding
(29,107).

Spindle elongation(108), spindle
assembly(109), congression(110).

Kinesin-6 MKLP1, MKLP2,
Pavarotti, Subito,
Klp9p, Cho1, Kif12,
Rab6Kinesin, Kif20,
Kif23

Dimer or Tetramer Plus-end directed,
antiparallel
microtubule sliding
(97).

Spindle assembly(111), spindle
elongation(86), cleavage furrow
positioning(96), regulation of midzone
assembly(112), cytokinesis (113).

Kinesin-7 Cenp-E Dimer Plus-end directed
processive motility
(114–116).

Congression(117,118)

Kinesin-8 Kip3, Kif18A, Klp5/6,
Klp67A

Not confirmed, Dimer(119) Length-dependent
depolymerization(81),
increase catastrophe
and rescue, decreased
dynamicity (84).

Congression(80,83), kinetochore fiber
dynamics(83,120), central spindle
dynamics(121).

Kinesin-9 Kif6, Kif9, Klp1 Unknown Unknown Tumor suppressor(122), flagellar(123).

Kinesin-10 Kif22, Kid, Nod Monomer(50) Weak plus-end
directed motility(51) or
no motility (52,54).

Congression(124–126). chromosome
compaction (127), meiotic
chromosome positioning (128).

Kinesin-11 Smy1, Kif26A, Vab-8 Unknown Unknown None identified

Kinesin-12 Krp180, Klp-10, Xklp2,
Hklp2, Kif12, Kif15

Unknown Slow plus-end directed Centrosome separation(129). Spindle
positioning(130), Ki-67 interaction
(131).

Kinesin-13 Kif2A,B,C, MCAK,
Klp10A, Klp57C,
XKCM1, Dsk1

Homodimer Depolymerizer(18,62),
promote catastrophes
(132).

Congression(22), error correction(76,
78), increase K-fiber turnover(21).

Kinesin-14 Ncd, CHO2, Xctk2,
Kar3,KlpA, KifC2,
KifC2, Kata

Dimer Nonprocessive minus-
end directed motility
(10,133), sliding of
anti-parallel
microtubules, bundling
(134), depolymerizer
(47,135).

Bipolar spindle assembly (43,136,137),
pole focusing(138), regulate
microtubule length and number(139).
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