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Abstract
Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly
pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in
adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially
modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical
effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were
exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein
levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative
and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic
degradation of αII-spectrin by caspase-3 and the dephosphorylation of serine116 on PEA-15 indicated
greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals.
Further, β-synuclein was upregulated by ETS, a neuroprotective protein previously reported to
exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS
exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory
and cell death processes.
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Introduction
Exposure to environmental tobacco smoke (ETS) is a known health risk in adults and children.
A recent US Surgeon General Report (2006) reviewed the causal relationship of ETS with
disease, particularly pulmonary and cardiac. Neurological effects were deemed inconclusive,
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with the stated need for more research (US Surgeon General 2006). Yet, ETS is a known risk
factor for cerebrovascular disease (Bonita et al. 1999; Garcia-Nunez et al. 2007; Howard et al.
1998). Further, epidemiological studies recently indicated ETS as a risk factor for Alzheimer’s
disease (AD) (Barrett 2007; Llewellyn et al. 2009). At the same time, ETS appears to decrease
risk for Parkinson’s disease (PD) (Mellick 2006). Despite an apparent clinical impact on the
adult brain, the molecular influence of ETS is underexplored, and is largely considered benign.

ETS administered has been shown to alter morphology during primate brain development
(Slotkin et al. 2006). ETS exposure caused an increase in smaller glial cells, suggestive of
reactive astrogliosis. Astrogliosis was also observed in the developing brain after prenatal
nicotine exposure, with increased glial fibrillary acid protein (GFAP) levels in the cerebellum
and hippocampus of offspring (Abdel-Rahman et al. 2003). Importantly, GFAP levels
remained elevated out to postnatal day 60, and deficiencies in basic sensory motor skills were
observed (Abdel-Rahman et al. 2004), a long-term, functional effect. Susceptibility to ETS
may differ between the developing and mature mammalian brains, but these data raise the
potential of an astrocytic response following adult ETS exposure.

Chemicals from ETS have also been found to influence apoptotic processes in cell cultures.
Apoptosis is a cell death processed that can be triggered via internal or external cues. Regulation
of extrinsic apoptosis involves PEA-15 (phosphoprotein enriched in astrocytes), an inhibitory
protein that binds Fas-associated protein with death domain (FADD) when phosphorylated on
Serine 116 (S116) (Renganathan et al. 2005). Dephosphorylation leads to caspase 3 activation
and subsequent protein cleavage events. One such cleaved protein is αII-spectrin, the cleavage
product of which is a known marker selective for apoptosis in neurons (Martin et al. 1995;
Wang et al. 1998). ETS chemical extracts induced apoptosis in cardiac cells, with increased
Fas and active forms of caspases 3 and 9 (Kuo et al. 2005a, b). In contrast, nicotine
administration alone was neuroprotective in spinal cord neurons challenged by apoptosis
inducing arachidonic-acid. Activation of caspases 3, 8, and 9 and release of cytochrome c were
all reduced with nicotine relative to vehicle (Garrido et al. 2001, 2003). These data illustrate
how the effects of ETS, with a complex chemical formulation (Swan and Lessov-Schlaggar
2007), may not be sufficiently modeled by nicotine administration alone. Different components
of ETS may induce competing pro- and anti-apoptotic responses.

Given the aforementioned relationships between ETS exposure and the molecular processes
astrogliosis and apoptosis in other systems, we present this initial study examining molecular
effects in the adult mammalian brain. The glial selective marker GFAP and the neuronal
selective caspase 3 proteolytic fragment of αII-spectrin were employed to characterize these
processes across multiple brain regions. Mass spectrometry methods were also employed to
test for ETS effects on the neuroproteome. This initial assessment focused on the limbic areas
frontal cortex and hippocampus, as well as the cerebellum. Hippocampus and cerebellum were
areas shown affected by ETS in the developing brain, and limbic regions, such as frontal cortex
and hippocampus, are known to be affected in smokers (Almeida et al. 2008). Further, these
limbic areas are affected by increased apoptotic and gliotic pathology in adult-onset
neurodegenerative disease (Camins et al. 2008; Pereira et al. 2004; Ross et al. 2003).

Materials and Methods
Animal Procedures and Tissue Collection

Ten-week-old male Sprague Dawley rats (Harlem, Indianapolis, IN, USA) were acclimated to
the laboratory for 4 days prior to exposure. Rats were kept under a controlled environment and
housed two to a cage. Food and water were provided ad libitum except during exposure, when
food was removed. No enrichment was provided to either the control or treated groups.
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Following acclimation, rats were placed in a Teague TE-10 smoke exposure system (Teague
1994) for 3 h per day over a 3-week period. The ETS group (n=8) was exposed to a mixture
of 15% mainstream (aspirated through filter) and 85% sidestream smoke diluted with air to a
concentration of 5 mg/m3 of respirable suspended particulate (RSP). The control group (n=8)
was exposed simultaneously to room air. During each exposure, 20 Kentucky 3R4F reference
cigarettes (University of Kentucky, Lexington, KY) were smoked at a rate of one puff per
minute, 2 s per puff (35 cm3), for eight puffs in 9 min per cigarette. This model provided
comparable air-born exposure as experienced in a 50-m3 household room (0.7 air changes per
hour), with a smoker consuming two cigarettes per hour over 10 h (per tables in EPA 2004),
which was validated by repeated mass measurements of respirable suspended particles.

A day after the last ETS exposure, rats were decapitated under deep anesthesia (5% isoflurane
for 5 min). Frontal cortex, hippocampus, and cerebellum were dissected, and snap frozen in
liquid nitrogen. All procedures conformed to the US Public Health Service policy with approval
of the Institutional Animal Care and Use Committee.

Statistical Analysis
Experiments were performed with n=4 biological replicates per group. Multivariable datasets
were analyzed by a two-way repeated measure ANOVA with the Holm–Sidak distribution test
and Bonferroni correction. Single-variable datasets were analyzed by a t test with a
Kolmogorov–Smirnov distribution test. A Q test was applied to identify outlier values.

Immunoblotting
Lysates were prepared from the brain tissue as described before (Zhang et al. 2007). Protein
concentration was determined via Bio-Rad DC Protein Assay (Hercules, CA, USA). Protein-
balanced samples were prepared for SDS-PAGE, 4–20% Tris-glycine gel, in a twofold Tris-
glycine loading buffer (Invitrogen, Carlsbad, CA, USA). Samples were heated for 90 s at 90°
C, and centrifuged for 2 min. Following electrophoresis, separated proteins were transferred
to polyvinylidene fluoride membranes by the semi-dry method. Membranes were probed with
primary antibodies to: GFAP (Millipore, Billerica, MA, USA) at 1:5,000, αII-spectrin
caspase-3 breakdown product (University of Florida, Gainesville, FL, USA) at 1:2,000, β-
synuclein (BD Biosciences, San Jose, CA, USA) at 1:20,000, α-synuclein (BD Biosciences)
at 1:1,000, heat shock protein 70 (Stressgen, Victoria, British Columbia, Canada) at 1:2,500,
inducible nitric oxide synthase (BD Biosciences) at 1:5,000, superoxide dismutase 1
(Millipore) at 1:500, and β-actin (Sigma-Aldrich, St. Louis, MO, USA) at 1:2,000. The blots
were then incubated with a biotinylated-conjugated secondary antibody followed by a
streptavidin alkaline phosphatase conjugate. Bound antibodies were visualized by colorimetric
development with the phosphatase substrate BCIP/NBT (KPL, Gaithersburg, MD, USA).
Quantitative evaluation of protein levels was performed via densitometric analysis of 16-bit
grayscale images using Image J software (National Institute of Health, v 1.6, Bethesda, MD,
USA).

Mass Spectrometry
Fresh-frozen hippocampus tissues were prepared for immobilized metal ion affinity
chromatography (IMAC) analysis as described previously (Ficarro et al. 2002). Briefly, Trizol
reagent (Invitrogen) was employed for protein extraction as per the manufacturer’s
instructions. The protein pellet was resuspended with phosphatase inhibitors (Sigma-Aldrich).
Protein concentration was determined by DC protein assay. Protein (50 µg) was then reduced
and alkylated with DTT and iodoacetamide, respectively, and digested with endo-Lys-C
(Roche, Indianapolis, IN, USA) overnight at 37°C. ETS-exposed and control group samples
were reacted for 2 h with heavy and light methanolic HCl, respectively, as described previously
(Goodlett et al. 2001). Sample pairs were loaded onto a Poros MC (PerSpective Biosystems,
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Framingham, MA, USA) packed IMAC column, and separated as described previously
(Ficarro et al. 2002). The phosphopeptide-enriched fractions were separately resolved by
reversed-phase gradient separation from 0.7% to 28% acetonitrile/0.2% formic acid in 150 min
online with a ThermoElectron (San Jose, CA, USA) LTQ Orbitrap XL with electron transfer
dissociation source (McAlister et al. 2008). ETD-produced c/z· spectra were searched against
a Uniprot Rattus protein database (v14.1) and the reversed image of that database with the
OMSSA search engine, and were filtered for a 1% false-detection rate. Integrated peak areas
were used to quantify the deuterated and non-deuterated forms of the PEA-15 apoptosis-
signaling phosphopeptide.

Results
ETS Exposure Animal Model

The ETS exposure model developed for this study produce no notable stress in the research
animals. Exposed and control animals were handled daily. Normal curiosity to a change in
environment was observed for all animals. Animals exposed to ETS displayed less spontaneous
movement during exposure than controls, but became immediately alert and explorative
whenever the ETS exposure ceased (prior to any other change in environment). The pre-
exposure mean body mass for the ETS animal group was 5 g less than that of the control group,
and finished 8 g less 3 weeks later. Overall, no statistical difference in weight gain rate was
observed between the two groups.

ETS Induces GFAP Expression in the Brain
GFAP was modulated as a main treatment effect of ETS exposure (p=0.003). Multiple
comparison analysis also showed an ETS treatment within brain region interaction on GFAP
expression (Fig. 1) that was statistically significant in hippocampus (p=0.001) and cerebellum
(p=0.02). Frontal cortex exhibited a lower, non-significant (p=0.09) interaction, with the data
exhibiting a bimodal distribution of individual values, confirmed by replicate assay to rule out
experimental error.

ETS Affects Markers of Apoptosis, not Cell Stress
ETS exposure also had a main treatment effect on increased caspase-3 proteolysis of αII-
spectrin in the adult rat brain (p<0.001) in exposed animals. There was also an interaction of
ETS treatment within brain regions (Fig. 2), with a statistically significant increase in frontal
cortex (p=0.001). The breakdown product was up for ETS treatment within hippocampus and
cerebellum as well, but the observations were not statistically significant (p=0.03 and p=0.4,
respectively). Mass spectrometry analysis revealed dephosphorylation of PEA-15 at S116
(p<0.001) in the hippocampus of ETS exposed animals. Site-specific phosphorylation was
confirmed with the selective pattern of c and z· (ETD) fragment ions (Fig. 3). Additional
immunochemical studies showed that levels of the oxidative and cell stress-associated proteins
(data not shown), inducible nitric oxide synthase (iNOS), superoxide dismutase 1, and heat
shock protein 70 kDa (HSP70) were unaffected by ETS exposure across the three brain regions
examined in this study.

ETS Induces Synuclein Protein Expression
Mass spectrometry analysis also revealed a large quantitative difference in synuclein protein
abundance, though the data lacked isoform specificity. Further immunochemical analysis
determined that it was the neuroprotective isoform β-synuclein which increased (p<0.001) in
the hippocampus of ETS-exposed animals relative to room-air controls (Fig. 4). In contrast,
aggregate-forming α-synuclein expression trended slightly lower among ETS-exposed
animals, but was not a statistically significant difference.
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Discussion
ETS exposure was verified to influence the adult rat brain neuroproteome in this investigative
study. Molecular effects were observed across multiple brain areas while animal growth, as a
basic physiological measure, was unaffected. Changes in protein markers suggested modulated
astrogliosis (GFAP), apoptotic cell death (cytoskeletal degradation of neurons, and DISC
complex formation), and the over-expression of β-synuclein as a potential neuroprotective
response.

ETS Induces Astrogliosis in Adult Rat Brain
ETS resulted in modulation of GFAP across the three brain areas examined. GFAP levels are
a known marker of astrogliosis in the damaged brain (O’Callaghan and Sriram 2005). The
ETS-induced difference in GFAP was statistically significant as a main effect and as a regional
interactive effect in hippocampus and cerebellum. The adult GFAP results correlate with
previous observations of increased GFAP expression consequent to prenatal nicotine exposure
(Abdel-Rahman et al. 2003, 2004) and an increase in cell density in the developing brain from
ETS (Slotkin et al. 2006).

ETS Induces Apoptosis in Adult Rat Brain
Apoptotic cell death was demarked by greater caspase 3 degradation of neuronal αII-spectrin
in the adult rat brain. Increased degradation was a main effect of ETS treatment; although,
multiple comparison analysis showed statistically significant treatment within region
interactions for frontal cortex. Apoptosis has been reported as a direct result of cigarette smoke-
induced cell stress in other organs and cultures. ETD tandem mass spectrometry revealed the
dephosphorylation of PEA-15 at S116 in ETS-exposed hippocampus, suggesting the activation
of the extrinsic apoptotic pathway, which was previously found activated by ETS in cardiac
cells (Kuo et al. 2005a, b).

Neuroinflammation can induce the extrinsic apoptotic pathway through the production of
reactive oxygen species (ROS). The ROS nitric oxide is often, though not always (Brown
2007; O’Callaghan et al. 2008), induced from increased iNOS expression. In this study, ETS
treatment showed no effect on iNOS expression by immunoblot. While ETS may induce
astrogliosis, it separately may be suppressing iNOS expression in glia. Cigarette smoke
condensates were previously observed to inhibit iNOS in glial cultures (Mazzio et al. 2005).
Superoxide dismutase 1 (SOD 1) is an antioxidant that is also upregulated as a response to
brain ROS (Dimayuga et al. 2007). SOD 1 expression, like iNOS, was unaffected by ETS
exposure in this study. Rats exposed to direct smoke (as opposed to ETS) have been shown to
express significantly greater levels of HSP70 in brain (Anbarasi et al. 2006), pulmonary
airways (Doz et al. 2008), and mammalian cell cultures (Vayssier et al. 1998). HSP70 is a
neuroprotective protein upregulated during times of cell stress; however, in this study, HSP70
expression was also found to be unaffected by ETS exposure in replicate assays. Together,
these data suggest that ROS is not induced by ETS exposure in the brain areas studied with
this model and is, therefore, not likely the causal factor promoting apoptosis.

ETS Affects β-Synuclein Protein Expression
β-Synuclein expression was upregulated in ETS exposed animals. α- and β-synuclein are
functionally distinct, with the α isoform prone to Lewy body forming aggregation found in the
PD brain (Polymeropoulos 1998). In contrast, β-synuclein is immune from aggregation due to
its lack of a non-amyloidogenic domain (Ueda et al. 1993). β-synuclein has shown anti-
apoptotic properties through down-regulation of p53 expression (da Costa et al. 2003). β-
synuclein has also been shown to restore the anti-apoptotic function of α-synuclein (da Costa
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et al. 2003). The marked increase in β-synuclein levels observed here may be a neuroprotective
response to the observed neuronal apoptosis.

Smoking has long been known to reduce PD incidence (Dorn 1959) in a dose-dependent fashion
(Allam et al. 2007; Gorell et al. 1999). A recent epidemiological study showed ETS as having
a similar effect on PD incidence (Mellick 2006). Many studies have explored a connection
between smoke exposure and PD neuroprotection. This is the first study to demonstrate
increased expression of neuroprotective β-synuclein by ETS, which could be involved in
reduced PD incidence. β-synuclein is known to inhibit α-synuclein aggregation in addition to
its anti-apoptotic properties (Hashimoto et al. 2001; da Costa et al. 2003). A recent study
pointed to nicotine as an active agent that retards the fibrillogenic activity of α-synuclein (Ono
et al. 2007). Future work will examine β-synuclein as an intermediate in PD-relevant brain
regions.

In conclusion, the results from this study demonstrate a main treatment effect of ETS on adult
rat brain biochemistry, which begins to dispel the notion that ETS exposure is benign to the
adult mammalian brain. The data point to modulated apoptosis and astrogliosis via increases
in markers of these processes, but without the influence of ROS. The data also suggest
differences among individual animals that may signify variable susceptibility to ETS effects.
β-synuclein expression is significantly increased by ETS exposure, which may be a
neuroprotective response with a potential benefit relative to PD. Future work will investigate
the induction of apoptosis by ETS and its connection with the increase in β-synuclein in the
adult rat brain.
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Figure 1.
Effect of ETS on the astrogliosis marker GFAP in the adult rat brain. a GFAP immunoblot
analysis as a marker of astrogliosis in three regions of the adult rat brain after a 3-week ETS
or room air exposure. b Normalized densitometric quantification of GFAP with β-actin used
as a loading control. Symbols indicate significant differences from control (*p≤0.02 and
**p<0.001) by a repeated measures ANOVA multiple comparison of treatment × brain area
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Figure 2.
Effect of ETS exposure on a neuronal apoptosis marker in the adult rat brain. a Immunoblot
analysis of the neuronal αII-spectrin caspase-3 breakdown product as a marker of apoptosis in
three regions of the adult rat brain after a 3-week ETS or room air exposure. b Normalized
densitometric quantification of the breakdown product with β-actin used as a loading control.
Symbols indicate significant differences from control (*p≤0.02 and **p<0.001) by a repeated
measures ANOVA multiple comparison of treatment × brain area
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Figure 3.
Effect of ETS exposure on DISC inhibiting dephosphorylation of PEA-15. a Example electron
transfer dissociation spectrum of c/z· fragment ions selectively identifies the phosphorylated
S116 site, with the phosphorylation state assessed for ETS exposed (b) and control (c) groups
by chromatographic peak integration
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Figure 4.
Effect of ETS exposure on synuclein proteins in the adult rat hippocampus. a Immunoblot
analysis was performed with antibodies against α- and β-synuclein with hippocampal tissue
from adult rat brain after a 3-week ETS or room air exposure. b Normalized densitometric
quantification of synuclein proteins with β-actin used as a loading control. Symbol indicates a
significant difference from control (**p<0.001) by a t test
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